
Metabolomics in community-acquired pneumonia: exploring
metabolomics-based biomarkers for diagnosis and treatment
response monitoring of community-acquired pneumonia
Hartog, I. den

Citation
Hartog, I. den. (2024, September 17). Metabolomics in community-acquired
pneumonia: exploring metabolomics-based biomarkers for diagnosis and
treatment response monitoring of community-acquired pneumonia. Retrieved
from https://hdl.handle.net/1887/4083598
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/4083598
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4083598


CHAPTER 4
Longitudinal metabolite
profiling of Streptococcus
pneumoniae-associated
community-acquired

pneumonia

Ilona den Hartog∗, Laura B. Zwep∗, Thomas Hankemeier, Jacqueline J. Meulman,
Ewoudt M.W. van de Garde, J.G. Coen van Hasselt. Longitudinal metabolite profiling of
Streptococcus pneumoniae-associated community-acquired pneumonia. Metabolomics
(2024). (∗ Shared first authors)

53



Chapter 4

Abstract

Introduction: Longitudinal biomarkers in patients with community-acquired
pneumonia (CAP) may help in monitoring of disease progression and treatment
response. The metabolic host response could be a potential source of such biomarkers
since it closely associates with the current health status of the patient.
Objectives: In this study we performed longitudinal metabolite profiling in patients with
CAP for a comprehensive range of metabolites.
Methods: Previously collected serum samples from CAP patients with confirmed
Streptococcus pneumoniae infection (n=25) were used. Samples were collected at multiple
time points, up to 30 days after admission. A wide range of metabolites was measured,
including amines, acylcarnitines, organic acids, and lipids. The associations between
metabolites and C-reactive protein (CRP), procalcitonin, CURB disease severity score at
admission, and total length of stay were evaluated.
Results: Distinct longitudinal profiles of metabolite profiles were identified,
including cholesteryl esters, diacyl-phosphatidylethanolamine, diacylglycerols,
lysophosphatidylcholines, sphingomyelin, and triglycerides. Positive correlations
were found between CRP and phosphatidylcholine (34:1) (cor=0.63) and negative
correlations were found for CRP and nine lysophosphocholines (cor=-0.57 to -0.74). The
CURB disease severity score was negatively associated with six metabolites, including
acylcarnitines (tau=-0.64 to -0.58). Negative correlations were found between the length
of stay and six triglycerides (TGs), especially TGs (60:3) and (58:2) (cor=-0.63 and -0.61).
Conclusion: The identified metabolites may provide insight into biological mechanisms
underlying disease severity and may be of interest for exploration as potential treatment
response monitoring biomarker.
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4.1 Introduction

Community-acquired pneumonia (CAP) is a lower respiratory tract infection with a
high incidence and is associated with the hospitalization of approximately one million
adults per year [104]. The most common cause of CAP is Streptococcus pneumoniae
[105]. In hospitalized CAP patients, there is a need to monitor the antibiotic treatment
response to optimize the treatment strategy [106]. In addition, there is a need for
guidance on decisions about earlier termination of antibiotic treatment to minimize the
risk of antimicrobial resistance. Monitoring of treatment response is currently achieved
through observation of clinical symptoms and with inflammatory markers such as
C-reactive protein (CPR) and procalcitonin (PCT) [13, 12]. In particular, PCT is relevant
for informing early treatment termination decisions but lacks predictive performance
for CAP prognosis [107, 108]. Therefore, there is a need for biomarkers that give early
insights into the clinical course of CAP.

Biomarkers that reflect the current physiological state of the patient have the potential
to accurately monitor and predict the treatment response in CAP patients. Because
the metabolome closely represents this physiological state, metabolomics-techniques
may enable discovery of relevant novel biomarkers. Indeed, for CAP and sepsis, the
potential for metabolomics-based biomarkers measured at a static time point has been
demonstrated [109]. However, the longitudinal monitoring of metabolic changes within
patients may allow for an improved characterization of treatment response [14]. For
example, CAP patients show a change in lysophosphatidylcholines that mirrors the
transition from acute illness to recovery after starting antibiotic treatment [25]. Further
systematic characterization of longitudinal metabolic changes in CAP patients may thus
be of relevance for identification of metabolic biomarkers that can predict and monitor
the treatment response in these patients.

To this end, in this study, we aimed to comprehensively characterize the change
of longitudinal metabolite profiling in hospitalized CAP patients with a confirmed
S. pneumoniae infection using metabolomite profiling and evaluate how metabolic
changes relate to disease severity based on CURB scores, established inflammation
markers, and clinical treatment response quantified using the length of stay in the
hospital.

4.2 Materials and methods

4.2.1 Patient cohort

We utilized serum samples collected at multiple time points during hospitalization from
25 hospitalized CAP patients with an S. pneumoniae infection. These samples were
previously collected as part of a larger clinical study that was performed between
November 2007 and September 2010 [29]. The causative pathogen was identified
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using culturing or a urinary antigen test. We selected samples from patients with
a confirmed S. pneumoniae infection. We excluded patients with a mixed infection
involving additional pathogen(s) and one patient that died during the study period.
Samples were collected at five time points: at the day of admission (day 0), and at days
1, 2, 4, and 30 after admission. CRP and creatinine were measured in the hospital at the
same time points as the blood samples used for metabolite profiling obtained. Samples
were stored at -80 degrees Celsius, andwent through amaximumof 2 freeze-thaw cycles,
so stable metabolites were preserved in the samples [110, 111]. Not all time points were
available for each patient, resulting in 115 samples over the 25 patients. On the day of
admission, disease severity was determined using the CURB score, which is a scoring
system based on confusion, blood urea > 7 mmol/l, respiratory rate (RR) ≥ 30/min;
systolic BP < 90 mmHg or diastolic BP ≤ 60 mmHg [112]. A score of two or higher
is classified as severe CAP.

4.2.2 Bio-analytical procedures

Serum samples were analyzed using five targeted LCMS methods and one targeted
GCMS method by the Biomedical Metabolomics Facility of Leiden University, Leiden,
The Netherlands, as described previously [59]. The metabolomics profiling covered 596
metabolite targets from 25 metabolite classes, including amino acids, biogenic amines,
acylcarnitines, organic acids, and multiple classes of lipids. Details of the metabolomic
analysis methods used are provided in section 4.5. A total of 369 unique metabolites
was measured as relative levels, of which 6 metabolites were removed due to high
missingness (≥ 20%), resulting in 363 metabolites being evaluated in data analysis.
Biochemically-selected sums and ratios of metabolites were calculated and added to the
data (Table 4.2).

PCT was measured in the same serum samples used for the metabolomite profiling
analysis. PCT analysis was performed using the human procalcitonin CLIA kit from
Abbexa (abx190129). Samples were measured in duplicate if sample volumes were
sufficient (95% of samples).

4.2.3 Data analysis

The metabolite levels were scaled through log-transformation and standardization. To
explore the variability of the high-dimensional metabolomite profiling dataset, principal
component analysis (PCA) was used. The PCA was used on the scaled metabolite
profiling data over the different time points, with the metabolites as variables and each
observation being a sample from a patient for a specific time point [113]. As part of
the PCA, missing values were imputed through multiple imputation using expectation
maximization (EM-PCA), which iteratively calculates the principal components and
imputes the missing values [114].

To evaluate how much of the variation in the metabolites could be explained by the
change over time, the first two principal components were related to time using a
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polynomial regressionmodel. The importance of themetabolites to explain the variation
between the patients over time was evaluated by evaluating the squared variable
loadings. Specifically, the squared variable loadings within and between biochemical
metabolite classes were evaluated to study similarities within classes and see which
biochemical classes vary more between the patients.

To characterize the metabolic time profiles and profiles of current inflammation markers
for different patients, we estimated the correlations between the scaled metabolite levels
and CRP, PCT and creatinine levels over time. Next, we evaluated which metabolites
could be of interest for the prediction of the clinical course, by estimating the Kendall’s
Tau correlation between the scaled metabolite levels and a clinical disease severity
marker, the CURB score [112] at hospital admission, and estimating Pearson correlation
between the scaled metabolite levels and the outcome length of stay (LOS) in the
hospital. Since the CURB and LOS are static values, while the metabolites changed
over time, the correlations between these outcomes and the change in metabolite levels
from baseline (mt=k - mt=0) at each time point (k) were calculated. Due to the large
number of correlations calculated and the small sample size, the correlations were
not tested for significance, to prevent multiple testing problems. In our analysis we
focused on metabolites with the largest (positive or negative) correlation, as exploratory
analysis. The metabolites with the largest correlations were further evaluated in
literature research to assess their biological function.

All analyses were performed in R. The scripts used for the analyses were deposited on
GitHub (http://github.com/vanhasseltlab/LongitudinalMetabolomicsCAP/tree/manuscript).

4.3 Results

4.3.1 Metabolite time profiles

Metabolite profiling was performed for 25 patients and resulted in 363 metabolite levels
on five time points (Table 4.3). The patient characteristics are displayed in Table 4.1.
Comorbidities present in patients included kidney disease (n = 1), cardiovascular disease
(n = 4), malignancy (n = 2), COPD (n=1, nmissing = 15), diabetes (n=3, nmissing = 15). No
patients were using corticosteroids before admission (nmissing = 15).

Metabolite profiles within all CAP patients shifted over time, as shown in the PCA over
all time points (Figure 4.1). The close relationship between metabolite levels and time
is reflected in the results from the polynomial regression model which indicated that
45% of the metabolite variation captured in these first two principal components could
be explained by time. Due to the large age range, we tested whether age was a large
explanatory factor for the metabolite differences between individuals, but did not find a
significant contribution of age (section 4.5).
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Table 4.1 Patient characteristics

Patient characteristics CAP patients
(n=25)

Age (years)
Median [Min, Max] 67.0 [18.0, 98.0]
Sex

Male 12 (48.0%)
Female 13 (52.0%)
CURB score

Median [Min, Max] 1.00 [0, 3.00]
Duration of symptoms before admission (days)
Median [Min, Max] 3.00 [1.00, 14.0]
Missing 15 (60.0%)
Antibiotic treatment before admission

No 8 (32.0%)
Yes 2 (8.0%)
Missing 15 (60.0%)
Length of stay (days)

Median [Min, Max] 7.50 [2.50, 24.5]

Figure 4.1 PCA scores for patient metabolite profiles over time. Every point represents the scores
of an individual patient at a certain time point, in two dimensions based on the metabolite values.
The panels show a trend over time of the metabolite profiles.
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The metabolites that were targeted in this study were categorized into different
biochemical classes. Metabolites from different biochemical classes showed distinct
contributions to the total variation between the patients over time as was expressed
in the variable loadings and directionality of the principal components (Figure 4.2).
The squared PCA loadings represent the weight that the different metabolites in the
biochemical class have in explaining the variation between patients over time. Of the
variation in principal component one and two, 48% was explained by metabolites of the
classes of cholesteryl esters, LPC’s, sphingomyelins, diacylglycerols, and triglycerides
(Figure 4.2A). The metabolites were categorized in classes based on their biochemistry
and not based on their biological functions. The PCA indicate that metabolites that
are categorized in the same class do not necessarily behave similarly (Figure 4.2B).
For example, amino acids behave very differently from each other. Metabolites
that do behave similarly in their biochemical class are for example triglycerides and
sphingomyelins.

For each patient, the metabolic time profiles were shown as the two first components
from the PCA (Figure 4.3, Figure 4.7). Generally, a shift from low to high principal
component values was seen over time, corresponding to the shift in metabolite levels for
the different metabolites (Figure 4.2B). The large variability in the time profiles indicates
a large interpatient variability in metabolic levels and changes over time.

4.3.2 Inflammation marker associations

To explore associations between metabolite profiles and inflammation, the metabolite
values were compared to currently used inflammation biomarkers. Correlations were
found between CRP and PCT and several metabolites. For example, phosphocholine
(PC) (34:1) showed a positive correlation with CRP (cor = 0.63). Several individual
lysophosphocholines (LPCs) and the sum of all LPCs showed a negative correlation
with CRP (cor = -0.57 to -0.74, Figure 4.4A). PC (34:1) was found to decrease over
time and several LPCs showed an increase over time, thereby mirroring the clinical
disease progression (Figure 4.4B). Positive correlations with CRP and PCTwere reported
for the short-chain acylcarnitines (SCACs) tiglylcarnitine, 2-methylbutyroylcarnitine,
and isovalerylcarnitine (cor with PCT = 0.61, 0.58, and 0.57; cor with CRP = 0.54,
0.64, and 0.51, respectively). Negative correlations were seen between the long-chain
acylcarnitine (LCAC) stearoylcarnitine and CRP (cor = 0.62). This trend for decreasing
SCACs over time is also represented by the positive correlation of CRP and PCT with
the sum of all SCACs (cor = 0.55 and 0.53, respectively).

Correlations between metabolite levels and creatinine, a marker of renal failure, were
also identified. The same trends were seen for creatinine as for CRP and PCT (Figure 4.8).
Strong positive correlations were observed between creatine and 1-Methylhistidine,
SDMA, inositol, homoserine, methionine sulfone, and octanoylcarnitine (cor > 0.7)
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Figure 4.2 Metabolite contributions to the two dimensions of the PCA as variable loadings. a)
The importance of each biochemical class for the different principal components (PCs), expressed
by their squared metabolite loadings. Each box represents the squared loadings of the metabolites
within a metabolic class. High squared loadings indicate a larger contribution to explaining the
variation between patients. b) The loading plots for each biochemical metabolite class. The arrows
indicate the importance (length) and direction of themetabolites in the principal component space.
For example, high PC1 values correspond to high metabolite levels for metabolites with right
pointing arrows, and lowmetabolite levels for metabolites with left pointing arrows. Arrows with
a similar direction have similar metabolite patterns. Abbreviations: PC: principal component.
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Figure 4.3 Individual time profiles over PC1 and PC2. The lines PC1 (solid) and PC2 (dashed),
indicate the change in the corresponding principal component over time. Changes in PC values
correspond to changes in metabolite levels according to their respective loadings. Abbreviations:
PC: principal component. Abbreviations: PC: principal component.
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Figure 4.4 Correlations between inflammation markers CRP and PCT, and metabolites. A) The
correlations between metabolites and CRP or PCT. Metabolites with a correlation >0.55 or <-0.55
for at least one marker are shown. A positive correlation (orange) indicates that a higher CRP or
PCT level corresponds to an increase of that metabolite over time, while a negative correlation
(blue) indicates a decrease over time for patients with a higher CRP or PCT level. B) Average CRP,
PCT, PC (34:1), and LPC levels over time over all patients. Metabolite and CRP data were scaled.
Abbreviations: see the abbreviation list.

4.3.3 Disease severity score associations

To identify possible metabolic biomarkers for indication of disease severity, associations
between the CURB disease severity score at admission and the change in metabolite
levels on from day 0 to days 1, 2, 4, and 30 were evaluated (Figure 4.8). Negative
associations were found between the CURB score and the change of metabolite levels
(m) between day 0 and day 30 (mt=30 – mt=0) of tiglylcarnitine, isovalerylcarnitine,
3-hydroxyisovaeric acid, carnitine, N6,N6,N6-trimethyl-lysine, and isobutyryl carnitine
(tau = -0.64 to -0.58, Figure 4.5). Patients with higher CURB scores showed decreasing
levels of these metabolites.

4.3.4 Hospital length of stay associations

We evaluated the association between metabolites and clinical outcomes using the
length of stay (LOS) as a potential surrogate endpoint. The strongest negative
correlations to LOS were reported for the metabolite change over the first two days
of admission (mt=2 – mt=0, Figure 4.6), especially for the triglycerides (TGs) (60:3) and
(58:2) (cor = -0.63 and -0.61 respectively). The correlations of these metabolites to LOS
were much stronger than to CRP and PCT (cor = -0.08 and -0.25 respectively). Positive
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Figure 4.5 The correlation between the CURB score and six metabolites with highest associations.
The change in metabolite level is the difference between the scaled metabolite level at day 30 and
scaled metabolite level at admission (y-axis). These six metabolites all show a negative correlation
with the CURB score (tau). This means, for patients with a CURB score of 0 the metabolite change
between day 30 and day 0 is positive, so their metabolite levels were increasing over time. For
patients with a CURB score of 2, the metabolite levels decreased over time.

correlations were most pronounced when analyzing the metabolite change from the day
of admission to day 30 (mt=30 – mt=0). In the case of fatty acid (FA) (22:1) the day after
admission (mt=1 – mt=0) was the most strongly positively correlated to the LOS (cor =
0.58).

4.4 Discussion

In this study, we characterized the dynamics of the serum metabolites in pneumococcal
CAP patients. We found that a large part of the variation in the metabolite values
was associated with time-varying changes in metabolites within the patients. We
furthermore found that several groups of metabolites were found to correlate with
inflammation markers, CURB score, and length of hospital stay. These findings both
support the potential relevance ofmetabolite-based biomarkers tomonitor the treatment
response or disease progression in CAP.
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Figure 4.6 a) The correlations between the length of stay and metabolite change from baseline at
days 1, 2, 4, and 30 after admission (mt=k - mt=0). CRP and PCT are added as a reference. A positive
correlation (orange) indicates that a longer stay in the hospital corresponds to an increase of that
metabolite over time, while a negative correlation (blue) indicates a decrease over time for patients
with longer stay. b) Metabolite levels over time for individual patients for metabolites with large
negative correlations (cor < -0.55) over the first two days after admission. Abbreviations: see the
abbreviation list.

We found that length of stay in the hospital was negatively correlated with the
triglycerides TG (60:3) and TG (58:2). . Interestingly, these TGs are not highly correlated
to CRP, PCT, or the CURB score, which suggests that they can explain a part of the
variability of disease progression in patients not explained by established biomarkers
for inflammation. We previously found that TGs do not contribute to the etiological
prediction of pathogenic in CAP [59]; as such TGs may be of interest as potential
biomarker beyond pneumococcal CAP studied in this analysis. Further studies should
however consider the potential impact of diet on TGs, as a potential confounding factor
[115].

Phosphatidylcholine (PC) (34:1) and lysophosphatidylcholines (LPCs) (14:0), (16:0),
(16:1), (18:0), (18:1), (18:2), (18:3) and (20:4) correlated to inflammatory markers, which
also corresponds to previous findings [25, 116]. PC (34:1), a ligand of nuclear receptor
PPARα30, showed a positive correlation with CRP, which was previously associated
with an anti-inflammatory response [117]. LPC 14:0 has been recently identified as a
biomarker for disease severity in CAP patients [118]. Due the correlation with CRP,
these metabolites could be of interest as treatment response biomarkers, also beyond
pneumococcal CAP patients [34].

The CURB score was negatively associated with six metabolites, including several
acylcarnitines. One of these acylcarnitines, tigylcarnitine, has previously been found
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to be increased in non-survivors of CAP and could be considered a marker for disease
severity [116]. Isovalerylcarnitine and isobutyrylcarnitine have, to our knowledge, not
been studied as disease severity marker before, but may show a comparable performance
to tigylcarnitine as their direction on the first principal component is similar.

In this analysis we demonstrated which biochemical metabolite classes explain most of
the variation in metabolite patterns between individuals and over time. Triglycerides
and LPCs were important for explaining the variation over time in the principal
component analysis (PCA) and correlated with LOS and inflammatory markers. Within
the biochemical classes, not all metabolites showed similar patterns, indicating that
metabolites in some biochemical classes behave similarly during the infection, while
metabolites in other classes behave differently (Figure 4.2B). The amino acids behave
very differently, which could be expected since they are involved in a wide variety of
biological functions [119].

The longitudinal analysis of the metabolomite profiling data enabled us to gain
insight into acute and longer-term changes in the metabolome during the clinical
course of CAP. Since patients are admitted to the hospital in different stages of the
disease, interpretation of the metabolite profile at one time point can be challenging.
The longitudinal metabolite profiles that were measured in this study give more
information about the state of the patient and elucidate the effect of comorbidities and
co-medications. The principle component analysis (Figure 4.3) showed large variability
between different patients, indicating the importance of considering changes within
patients, instead of evaluating the metabolite profile at one timepoint. We found that the
differences in metabolite levels were largely explained by changes over time and were,
therefore, related to the treatment response.

This studywas conducted in a well-characterized set of CAP patients with S. pneumoniae
infections. S. pneumoniae is a common cause of CAP, but other bacterial or viral
pathogens can also be the cause of CAP. A previous study did not show significant
differences in metabolic profiles between common causes of CAP [59]. The results of
the current study may apply to CAP patients with these other causative pathogens,
but this is still unsure because the previous study does not cover changes over time.
Especially metabolites associated with length of stay should be validated in CAP cohorts
with various causative pathogens, since they are not related to the general inflammatory
response.

In further research, the addition of patients with other causes of CAP is of interest to
compare metabolic time profiles for different treatment strategies based on the causative
pathogen. Early recognition of a pathogen-drug mismatch using metabolite profiling
couldmake antibiotic therapies more targeted and shorter. This study shows that mainly
TGs, LPCs, PCs, and acylcarnitines are of interest for the disease severity and the length
of stay for patients with CAP. By focusing on these metabolite classes, the number of
metabolites that has to be measured for every patient can be reduced.
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In conclusion, we find that that metabolomics-based biomarkers have potential for
treatment response monitoring in CAP patients. The triglycerides found in this study
could potentially complement the currently available biomarkers such as CRP and PCT
as they yield additional information about the clinical course in these patients. This
study furthermore supports the relevance for collecting longitudinal data to follow
the highly dynamic metabolite profiles in patients, which can further enable the
development of personalized treatment strategies.

4.5 Supplementary Information

Details on metabolite profiling methods

Batch design: Aliquoted samples were run in a randomized fashion in several batches
together with quality control (QC) samples (every 10 samples), sample replicates (every
7 samples), internal standards (ISTDs), blanks, and calibration lines.

Quality control: Blank samples were used to determine the blank effect. Replicate
samples were used to check the instrument for repeatability. In-house developed
algorithms were applied using the pooled QC samples to compensate for shifts in the
sensitivity of the mass spectrometer over the batches.

Reported results: After quality control correction the metabolites that complied with
the acceptance criteria of a relative standard deviation of the quality control samples
(RSDqc) <15% were reported. The data was reported as relative response ratio (analyte
signal area / ISTD area; unit free) of the metabolites after QC correction. Metabolites
that did not comply with the acceptance criteria of the quality control, but have been
included in the results present RSDs up to 30% and should be handled with caution.

Amine profiling : Amine profiling was performed according to the validated amine
profiling analytical platform with minor optimization [50] . The amine platform covers
amino acids and biogenic amines employing anAccq-Tag derivatization strategy adapted
from the protocol supplied by Waters. 5,0 𝜇L sample was spiked with an internal
standard solution. Protein precipitation was performed by addition of MeOH and the
sample was dried in a speedvac. The residue was reconstituted in borate buffer (pH
8.5) with AQC reagent. The prepared samples were transferred to autosampler vials
and placed in an autosampler tray. The vials were cooled at 4o C upon injection.
1,0 𝜇L prepared sample was injected in a UPLC-MS/MS system. Chromatographic
separation was achieved by an Agilent 1290 Infinity II LC System on an Accq-Tag
Ultra column (Waters) with a flow of 0.7 mL/min over an 11 min gradient. The UPLC
was coupled to electrospray ionization on a triple quadrupole mass spectrometer (AB
SCIEX Qtrap 6500). Analytes were detected in the positive ion mode and monitored
in Multiple Reaction Monitoring (MRM) using nominal mass resolution. Acquired
data was evaluated using MultiQuant Software for Quantitative Analysis (AB SCIEX,
Version 3.0.2), by the integration of assignedMRMpeaks and normalization using proper
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internal standards. For analysis of amino acids, their 13C15N-labeled analogs were used.
For other amines, the closest-eluting internal standard was employed. After quality
control correction the amines that complied with the acceptance criteria of RSDqc <15%
were included in the results. Additionally, the amines that presented an RSDqc between
15 and 30% were included in the results but these compounds should be considered with
caution.

Acylcarnitine profiling: The acylcarnitine platform covers acylcarnitines as well as
trimethylamine-N-oxide, choline, betaine, deoxycarnitine, and carnitine. 10 µL sample
was spiked with an internal standard solution. Protein precipitation was performed by
addition of MeOH. The supernatant was transferred to an autosampler vial and placed
into an autosampler. The vials were cooled at 10◦Cupon injection. 1.0µL of the prepared
sample was injected into a triple quadrupole mass spectrometer. Chromatographic
separation was achieved by UPLC (Agilent 1290, San Jose, CA, USA) on an Accq-Tag
Ultra column (Waters) with a flow of 0.7 mL/min over an 11min gradient. The UPLCwas
coupled to electrospray ionization on a triple quadrupole mass spectrometer (Agilent
6460, San Jose, CA, USA). Analytes were detected in the positive ionmode andmonitored
in Multiple Reaction Monitoring (MRM) using nominal mass resolution. Acquired
data was evaluated using Agilent MassHunter Quantitative Analysis software (Agilent,
Version B.05.01), by integration of assigned MRM peaks and normalization using proper
internal standards. The closest-eluting internal standard was employed. After quality
control correction the compounds that complied with the acceptance criteria of RSDqc
<15% were included in the results. Additionally, the compounds that presented an
RSDqc between 15 and 30% were included in the results but these compounds should
be considered with caution.

Organic acid profiling: The organic acid platform covers 28 organic acids. 50
µL sample was spiked with an internal standard solution. Protein precipitation
was performed by addition of MeOH. After centrifugation, the supernatant was
transferred and the sample was dried using a speedvac. Then, two-step
derivatization procedures were performed on-line: oximation using methoxyamine
hydrochloride (MeOX, 15 mg/mL in pyridine) as the first reaction and silylation
using N-Methyl-N-(trimethylsilyl)- trifluoroacetamide (MSTFA) as the second reaction.
1 µL of each sample was directly after its derivatization injected on GC-MS. Gas
chromatography was performed on an Agilent Technologies 7890A equipped with an
Agilent Technologies mass selective detector (MSD 5975C) and MultiPurpose Sampler
(MPS, MXY016-02A, GERSTEL). Chromatographic separations were performed on an
HP-5MS UI (5% Phenyl Methyl Silox), 30 m × 0.25 m ID column with a film thickness of
25 µm, using helium as the carrier gas at a flow rate of 1,7 mL/min. A single-quadrupole
mass spectrometer with electron impact ionization (EI, 70 eV) was used. The mass
spectrometer was operated in SCAN mode mass range 50-500. Acquired data was
evaluated using Agilent MassHunter Quantitative Analysis software (Agilent, Version
B.05.01). After quality control correction and considering blank effects, the organic acid
compounds that complied with the acceptance criteria RSDqc <15% and blank effect
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<20% were included in the results. Also, the organic acids that reported an RSDqc
between 15 and 30% were included and should be considered with caution.

Negative lipid profiling: The negative lipid platform is a semi-target methodology for
the identification of 30 fatty acids. 50 µL sample was spiked with 50 𝜇L of an internal
standard solution. Protein precipitation was performed by addition of 550 𝜇L MeOH.
After centrifugation, 600 𝜇L supernatant was transferred and the sample was dried
using a speedvac. The residue was reconstituted in 300 𝜇L of isopropanol with 0,1%
formic acid. The prepared samples were transferred to autosampler vials and placed in
an autosampler tray. 8,0 µL of the prepared sample was injected into an LC-MS. The
analysis was performed on an ACQUITY UPLC™ (Waters, the Netherlands) coupled
to a high-resolution mass spectrometer with a Synapt G2 Q-TOF system (Waters, the
Netherlands) using reference lock mass correction. Lipids were detected in full scan
in the negative ion mode. Chromatographic separation was achieved using an HSS T3
column (1.8 µm, 2.1 * 100 mm) with a flow of 0.4 mL/min over a 16-minute gradient.
Acquired data was preprocessed using Targetlynx software (Masslynx, V4.1, SCN916).
After quality control correction, the compounds that complied with the acceptance
criteria RSDqc <15% were included in the results. Additionally, the compounds that
reported an RSDqc between 15 and 30% were included in the results and should be
considered with caution.

Positive lipid profiling: The positive lipid platform covers 185 compounds including
triglycerides (TGs, n=85) and non-triglycerides (non-TGs, n=100). 10 µL preprocessed
sample was spiked with 1000 µL IPA containing internal standards and vortexed for
30 sec. Prepared samples were transferred to autosampler vials for LC-MS analysis. In
total 2.5 µL prepared sample was injected for analysis. Chromatographic separation
was achieved on an ACQUITY UPLC™ (Waters, Ettenleur, the Netherlands) with an
HSS T3 column (1.8 µm, 2.1 * 100 mm) with a flow of 0.4 mL/min over a 16 min
gradient. The lipid analysis is performed on a UPLC-ESI-Q-TOF (Agilent 6530, Jose, CA,
USA) high-resolution mass spectrometer using reference mass correction. Lipids were
detected in full scan in the positive ion mode. The raw data were preprocessed using
Agilent MassHunter Quantitative Analysis software (Agilent, Version B.04.00). After
quality control correction, the TGs and non-TGs compounds that complied with the
acceptance criteria RSDqc <15% and blank effect <40 % were included in the results. The
TG and non-TGs that reported an RSDqc between 15 and 30% were also included and
should be considered with caution.

Signaling lipid profiling: The signaling lipids platform covers various isoprostane
classes together with their respective prostaglandin isomers from different poly
unsaturated fatty acids (PUFA), including n-6 and n-3 PUFAs such as dihomo-γ-linoleic
acid (DGLA) and arachidonic acid (both n-6) and eicosapentaenoic acid (EPA)
and docosahexaenoic acid (DHA) (both n-3). Also included in this platform are
endocannabinoids, bile acids, and signaling lipids from the sphingosine and sphinganine
classes and their phosphorylated forms, as well as three classes of lysophosphatidic
acids. The three lysophosphatidic acid classes include lysophosphatidic acids (LPAs),
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lysophosphatidylglycerol (LPG), lysophosphatidylinositol (LPI), lysophosphatidyserine
(LPS), lysophosphatidylethanolamines (LPE), cyclic-phosphatidic acids(cLPA), and
fatty acid all ranging from C14 to C22 chain length species. The signaling and
peroxidized lipids platform is divided into two chromatographic methods: low and
high pH. In the low pH method, isoprostanes, prostaglandins, nitro-fatty acids,
lyso-sphingolipids, endocannabinoids, and bile acids are analyzed. The high pH
method covers lyso-sphingolipids, lysophosphatidic acids, lysophosphatidylglycerol,
lysophosphatidylinositol, lysophosphatidyserine, lysophosphatidylethanolamines,
cyclic-phosphatidic acids, and fatty acid. Each sample was spiked with antioxidant
and internal standard solution. The extraction of the compounds is performed via
liquid-liquid extraction (LLE) with butanol and methyl tert-butyl ether (MTBE). After
collection, the organic phase is concentrated by first drying followed by reconstituted
in a smaller volume. After reconstitution, the extract is transferred into amber
autosampler vials and used for high and low pH injection. A Shimadzu system, formed
by three high-pressure pumps (LC-30AD), a controller (CBM-20Alite), an autosampler
(SIL-30AC), and an oven (CTO-30A) from Shimadzu Benelux, was coupled online
with an LCMS-8050 triple quadrupole mass spectrometer (Shimadzu) for high pH
measurements. An LCMS-8060 triple quadrupole mass spectrometer (Shimadzu) was
coupled to the Shimadzu system for low pHmeasurements. Both systems were operated
using LabSolutions data acquisition software (Version 5.89, Shimadzu). The samples
were analyzed by UPLC-MS/MS. An Acquity UPLC BEH C18 column (Waters) was
used to measure the samples in the low pH method. For the high pH method, a Kinetex
EVO column by Phenomenex was used. The triple quadrupole mass spectrometer was
used in polarity switching mode and all analytes were monitored in dynamic Multiple
Reaction Monitoring (dMRM). The acquired data was evaluated using LabSolutions
Insight software (Version 3.1 SP1, Shimadzu), by integration of assigned MRM peaks
and normalization using accordingly selected internal standards. When available, a
deuterated version of the target compound was used as an internal standard. For
the other compounds, the closest-eluting internal standard was employed. For low
pH mode, after quality control correction, the metabolites that complied with the
acceptance criteria of RSDqc <15% and blank effect <40% were included in the results.
Additionally, the compounds that reported an RSDqc between 15 and 30% were included
in the results and should be considered with caution. For high pH mode, after quality
control correction, the metabolites that complied with the acceptance criteria of RSDqc
<15% and blank effect <40% were included in the results. Additionally, the compounds
that reported an RSDqc between 15 and 30% were included in the results and should be
considered with caution.

Testing the influence of age on metabolite profiles

To test whether the age is a factor to take into account in the correlation analysis between
the change in metabolite values and the CURB score and hospitalization time, we tested
the whether the interindividual variance of the metabolite profiling was explained by
age, to decide whether age should be a confounder in the analysis. To test this, we
did an anova test to compare a mixed effect model on the principal components, which
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represent the metabolite profiles in a lower dimension, in two models: one with only
an patient specific random effect and one model that included both a patient specific
random effect and a parameter for age. The anova was done two times, with the first and
second principle component scores as outcomes respectively. The code and outcomes
of the anova are shown below, where subject.id denotes the patient and age is the age
variable. The p-values for principle component 1 and 2 were 0.18 and 0.09 respectively
and did not indicate a significant improvement of the model including age over the
model not including age, which motivated the correlation analysis without adding age
as confounder or using it to stratify the analysis. The small sample size could be a reason
for not finding significance, but this is also a reason for not stratifying the analysis.

lmer_age_pc1 <- lmer(PC1 ~ age + (1|subject.id),
data = pca_data, REML = F)

lmer_pc1 <- lmer(PC1 ~ (1|subject.id),
data = pca_data, REML = F)

anova(lmer_pc1, lmer_age_pc1)

npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
lmer_pc1 3 768.60 776.83 -381.30 762.60
lmer_age_pc1 4 768.82 779.80 -380.41 760.82 1.7827 1 0.1818

lmer_age_pc2 <- lmer(PC2 ~ age + (1|subject.id),
data = pca_data, REML = F)

lmer_pc2 <- lmer(PC2 ~ (1|subject.id),
data = pca_data, REML = F)

anova(lmer_pc2, lmer_age_pc2)

npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
lmer_pc2 3 770.96 779.19 -382.48 764.96
lmer_age_pc2 4 770.10 781.08 -381.05 762.10 2.8589 1 0.09087
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Figure 4.7 PCA score plots for each patient. For each patient, the time points are labelled and
connected with lines. Abbreviations: PC: principal component
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Figure 4.8 The correlations between metabolites and creatinine, CRP, and PCT over time; and the
correlations of the CURB score and length of stay with a change of the metabolites between day
k and day 0, where the change in metabolite levels is denoted by mt=k mt=0.
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Table 4.2Metabolite ratios and sums

Metabolite sum or ratio name in R Metabolite sum or ratio formula
BCAA_sum isoleucine + leucine + valine
TCA_cycle_sum Citric acid + lactic acid + malic acid + fumaric acid
urea_cycle_sum Citrulline + arginine + ornithine + fumaric acid

lc_Carnitines_sum
Myristoilcarnitine + Hexadecenoylcarntine + Palmitoylcarnitine + Stearoylcarnitine
+ Dodecenoylcarnitine + Tetradecenoylcarnitine + Linoleylcarnitine + Oleylcarnitine
+ Tetradecadienylcarntine

mc_Carnitines_sum Hexanoylcarnitine + Octanoylcarnitine + Octenoylcarnitine + Decanoylcarnitine
+ Lauroylcarnitine + Nonaylcarnitine + Pimeylcarnitine + Decenoylcarnitine

sc_Carnitines_sum Acetylcarnitine + Propionylcarnitine + Isobutyrylcarnitine + Butyrylcarnitine
+ Tiglylcarnitine + Methylbutyroylcarnitine + Isovalerylcarnitine

Cer_sum Cer(d18:1/22:1) + Cer. (d18:1/24.1. + Cer(d18:1/24:0) + Cer(d18:1/16:0)
+ Cer(d18:1/23:0) + Cer(d18:1/24:0)

SM_sum

Sphingomyelin (d18:1/14:0) + (d18:1/15:0) + (d18:1/16:0) + (d18:1/16:1) + (d18:1/17:0)
+ (d18:1/18:0) + (d18:1/18:1) + (d18:1/18:2) + (d18:1/20:0) + (d18:1/20:1) + (d18:1/21:0)
+ (d18:1/22:0) + (d18:1/22:1) + (d18:1/23:0) + (d18:1/ 23:1) + (d18:0/24:0) + (d18:0/24:1)
+ (d18:0/24:2) + (d18:0/25:0) + (d18:0/25:1)

LPC_sum Lysophosphatidylcholine (14:0) + (16:0) + (16:1) + (18:0) + (18:1) + (18:2) + (18:3)
+ (20:4) + (20:5) + (22:6) + (O-16:1) + (O-18:1)

PC_sum

Diacyl-phosphatidylcholine (32:0) + (32:1) + (32:2) + (34:1) + (34:2) + (34:3) + (34:4)
+ (36:1) + (36:2) + (36:3) + (36:4) + (36:5) + (36:6) + (38:2) + (38:3) + (38:4) + (38:5)
+ (38:6) + (38:7) + (40:4) + (40:5) + (40:6) + (40:7) + (40:8) + (O-34:1) + (O-34:2)
+ (O-34:3) + (O-36:2) + (O-36:3) + (O-36:4) + (O-36:5) + (O-36:6) + (O-38:4)
+ (O-38:5) + (O-38:6) + (O-38:7) + (O-40:6) + (O-42:6) + (O-44:5)

HT5_Trp_ratio Serotonine / Tryptophan
ADMA_Arg_ratio ADMA / Arginine
SDMA_Arg_ratio SDMA / Arginine
Carnitine_sum_lc_Carnitines_ratio Carnitine / LCAC sum
Carnitine_sum_mc_Carnitines_ratio Carnitine / MCAC sum
Carnitine_sum_sc_Carnitines_ratio Carnitine / SCAC sum
DCA_CA_ratio DCA / CA
FA_14.1_14.0 FA (14:1) / FA (14:0)
FA_16.1_16.0 FA (16:1) / FA(16:0)
Gln_Glu Glutamine / Glutamic acid
Kyn_Trp Kynurenine / Tryptophan
sum_BCAA_sum_Phe_Tyr_ratio BCAA sum / (Phenylalanine + Tyrosine)
sum_CER_sum_SM_ratio Cer sum / SM sum
sum_LPC_sum_PC_ratio LPC sum / PC sum
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Table 4.3Metabolite ratios and sums

Biochemical class Metabolite Biochemical class Metabolite

Acylcarnitines Acetylcarnitine Betaines Betaine
Acylcarnitines Butyrylcarnitine Bile acids and other steroids Cholic acid
Acylcarnitines Decanoylcarnitine Bile acids and other steroids Cortisol
Acylcarnitines Decenoylcarnitine Bile acids and other steroids Deoxycholic acid
Acylcarnitines Dodecanoylcarnitine Bile acids and other steroids GCA
Acylcarnitines 9-Hexadecenoylcarnitine Bile acids and other steroids GCDCA
Acylcarnitines Hexanoylcarnitine Bile acids and other steroids GDCA
Acylcarnitines Isobutyryl-carnitine Bile acids and other steroids GLCA
Acylcarnitines Isovalerylcarnitine Bile acids and other steroids GUDCA
Acylcarnitines Lauroylcarnitine Bile acids and other steroids TCA
Acylcarnitines Linoleylcarnitine Biogenic amines ADMA
Acylcarnitines Myristoylcarnitine Biogenic amines Anserine
Acylcarnitines Nonaylcarnitine Biogenic amines Beta-Alanine
Acylcarnitines 2-Octenoylcarnitine Biogenic amines Cystathionine
Acylcarnitines Octanoylcarnitine Biogenic amines 3-Aminoisobutyric acid
Acylcarnitines Oleylcarnitine Biogenic amines Ethanolamine
Acylcarnitines Palmitoylcarnitine Biogenic amines N2-gamma-Glutamylglutamine
Acylcarnitines Pimeylcarnitine Biogenic amines gamma-Glutamylalanine
Acylcarnitines Propionylcarnitine Biogenic amines Glutathione
Acylcarnitines Stearoylcarnitine Biogenic amines Glycylglycine
Acylcarnitines Tetradecadienylcarntine Biogenic amines Glycylproline
Acylcarnitines Tetradecanoylcarnitine Biogenic amines Homocitrulline
Acylcarnitines Tiglylcarnitine Biogenic amines Homocysteine
Acylcarnitines 2-Methylbutyroylcarnitine Biogenic amines 5-Hydroxylysine
Amino acids Citrulline Biogenic amines Aminoadipic acid
Amino acids Cysteine Biogenic amines Alpha-aminobutyric acid
Amino acids Glycine Biogenic amines Homoserine
Amino acids 4-Hydroxyproline Biogenic amines Kynurenine
Amino acids Alanine Biogenic amines Methionine sulfoxide
Amino acids Arginine Biogenic amines Methionine sulfone
Amino acids Asparagine Biogenic amines N6, N6, N6-Trimethyl-lysine
Amino acids Aspartic acid Biogenic amines O-Acetylserine
Amino acids Glutamic acid Biogenic amines Putrescine
Amino acids Glutamine Biogenic amines Methylcysteine
Amino acids Histidine Biogenic amines Saccharopine
Amino acids Isoleucine Biogenic amines Sarcosine
Amino acids Leucine Biogenic amines SDMA
Amino acids Lysine Biogenic amines Serotonin
Amino acids Methionine Biogenic amines Taurine
Amino acids Phenylalanine Biogenic amines 1-Methylhistidine
Amino acids Proline Biogenic amines 3-Methoxytyramine
Amino acids Serine Biogenic amines 5-Aminolevulinic acid
Amino acids Threonine Carnitines Carnitine
Amino acids Tryptophan Ceramides Ceramide (d18:0/24:0)
Amino acids Tyrosine Ceramides Ceramide (d18:1/16:0)
Amino acids Valine Ceramides Ceramide (d18:1/22:1)
Amino acids Ornithine Ceramides Ceramide (d18:1/23:0)

Ceramides Ceramide (d18:1/24:0)
Ceramides Ceramide (d18:1/24:1)

74



Longitudinal metabolomics

C
ha

pt
er

4

Biochemical class Metabolite Biochemical class Metabolite

Cholesteryl esters CE (18:3) Diacyl-phosphatidylethanolamine PE (34:2)
Cholesteryl esters CE (18:2) Diacyl-phosphatidylethanolamine PE (36:3)
Cholesteryl esters CE (18:1) Diacyl-phosphatidylethanolamine PE (36:4)
Cholesteryl esters CE (20:5) Diacyl-phosphatidylethanolamine PE (38:2)
Cholesteryl esters CE (22:6) Diacyl-phosphatidylethanolamine PE (38:4)
Cholines Choline Diacyl-phosphatidylethanolamine PE (38:6)
Diacylglycerols DG (36:2) Diacyl-phosphatidylethanolamine PE (O-36:5)
Diacylglycerols DG (36:3) Diacyl-phosphatidylethanolamine PE (O-38:5)
Diacylglycerols DG (36:4) Diacyl-phosphatidylethanolamine PE (O-38:7)
Diacyl-phosphatidylcholine PC (32:0) Endocannabinoids alpha-LEA
Diacyl-phosphatidylcholine PC (32:1) Endocannabinoids AEA
Diacyl-phosphatidylcholine PC (32:2) Endocannabinoids DEA
Diacyl-phosphatidylcholine PC (34:1) Endocannabinoids DGLEA
Diacyl-phosphatidylcholine PC (34:2) Endocannabinoids DHEA
Diacyl-phosphatidylcholine PC (34:3) Endocannabinoids LEA
Diacyl-phosphatidylcholine PC (34:4) Endocannabinoids O-AEA
Diacyl-phosphatidylcholine PC (36:1) Endocannabinoids PEA
Diacyl-phosphatidylcholine PC (36:2) Endocannabinoids POEA
Diacyl-phosphatidylcholine PC (36:3) Endocannabinoids SEA
Diacyl-phosphatidylcholine PC (36:4) Endocannabinoids 1-/2-Arachidonoyl Glycerol (20:4)
Diacyl-phosphatidylcholine PC (36:5) Endocannabinoids 1-Linoleoyl Glycerol (18:2)
Diacyl-phosphatidylcholine PC (36:6) Fatty acids FA (14:0)
Diacyl-phosphatidylcholine PC (38:2) Fatty acids FA (14:1)
Diacyl-phosphatidylcholine PC (38:3) Fatty acids FA (15:0)
Diacyl-phosphatidylcholine PC (38:4) Fatty acids FA (16:0)
Diacyl-phosphatidylcholine PC (38:5) Fatty acids FA (16:1)
Diacyl-phosphatidylcholine PC (38:6) Fatty acids FA (17:0)
Diacyl-phosphatidylcholine PC (38:7) Fatty acids FA (17:1)
Diacyl-phosphatidylcholine PC (40:4) Fatty acids FA (18:1)
Diacyl-phosphatidylcholine PC (40:5) Fatty acids FA (20:0)
Diacyl-phosphatidylcholine PC (40:6) Fatty acids FA (20:1)
Diacyl-phosphatidylcholine PC (40:7) Fatty acids FA (20:2)
Diacyl-phosphatidylcholine PC (40:8) Fatty acids FA (22:1)
Diacyl-phosphatidylcholine PC (O-34:1) Fatty acids FA (22:4)
Diacyl-phosphatidylcholine PC (O-34:2) Fatty acids FA (22:5)-w6
Diacyl-phosphatidylcholine PC (O-34:3) Fatty acids FA (22:6)
Diacyl-phosphatidylcholine PC (O-36:2) Fatty acids FA (24:1)
Diacyl-phosphatidylcholine PC (O-36:3) Free fatty acids FA (18:1)
Diacyl-phosphatidylcholine PC (O-36:4) Free fatty acids FA (18:2)
Diacyl-phosphatidylcholine PC (O-36:5) Free fatty acids FA (20:5)
Diacyl-phosphatidylcholine PC (O-36:6) Free fatty acids FA (22:4)-w6
Diacyl-phosphatidylcholine PC (O-38:4) Free fatty acids FA (22:5)-w3
Diacyl-phosphatidylcholine PC (O-38:5) Free fatty acids FA (22:5)-w6
Diacyl-phosphatidylcholine PC (O-38:6) Free fatty acids FA (22:6)
Diacyl-phosphatidylcholine PC (O-38:7)
Diacyl-phosphatidylcholine PC (O-40:6)
Diacyl-phosphatidylcholine PC (O-42:6)
Diacyl-phosphatidylcholine PC (O-44:5)
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Biochemical class Metabolite Biochemical class Metabolite

Lysophosphatidylcholine LPC (14:0) Lysophospholipids LPS (18:0)
Lysophosphatidylcholine LPC (16:0) Lysophospholipids LPS (18:1)
Lysophosphatidylcholine LPC (16:1) Lysophospholipids LPS (20:4)
Lysophosphatidylcholine LPC (18:0) Lysophospholipids LPS (22:4)
Lysophosphatidylcholine LPC (18:1) Lysophospholipids LPS (22:6)
Lysophosphatidylcholine LPC (18:2) Nitro-Fatty Acids 10-NO2(OA9)NO2(OA)
Lysophosphatidylcholine LPC (18:3) Organic acids Inositol
Lysophosphatidylcholine LPC (20:4) Organic acids 2-hydroxybutyric acid
Lysophosphatidylcholine LPC (20:5) Organic acids Citric acid
Lysophosphatidylcholine LPC (22:6) Organic acids Glutamic acid
Lysophosphatidylcholine LPC (O-16:1) Organic acids Lactic acid
Lysophosphatidylcholine LPC (O-18:1) Organic acids Malic acid
Lysophosphatidylethanolamines LPE(22:6) Organic acids Fumaric acid
Lysophospholipids LPA (14:0) Organic acids Pyroglutamic acid
Lysophospholipids LPA (16:0) Organic acids 3-Hydroxybutyric acid
Lysophospholipids LPA (16:1) Organic acids Aspartic acid
Lysophospholipids LPA (18:0) Organic acids 3-Hydroxyisobutyric acid
Lysophospholipids LPA (18:1) Organic acids 3-Hydroxyisovaleric acid
Lysophospholipids LPA (18:2) Organic acids Uracil
Lysophospholipids LPA (20:3) Oxylipins PGF2a
Lysophospholipids LPA (20:4) Oxylipins TXB2
Lysophospholipids LPA (20:5) Oxylipins 10-HDoHE
Lysophospholipids LPA (22:4) Oxylipins 11,12-DiHETrE
Lysophospholipids LPA (22:6) Oxylipins 11-HETE
Lysophospholipids LPE (14:0) Oxylipins 12,13-DiHODE
Lysophospholipids LPE (16:0) Oxylipins 12,13-DiHOME
Lysophospholipids LPE (16:1) Oxylipins 12-HETE
Lysophospholipids LPE (18:0) Oxylipins 12S-HEPE
Lysophospholipids LPE (18:1) Oxylipins 12S-HHTrE
Lysophospholipids LPE (18:2) Oxylipins 13-HODE
Lysophospholipids LPE (20:3) Oxylipins 14,15-DiHETrE
Lysophospholipids LPE (20:4) Oxylipins 14-HDoHE
Lysophospholipids LPE (20:5) Oxylipins 15-HETE
Lysophospholipids LPE (22:4) Oxylipins 15S-HETrE
Lysophospholipids LPE (22:5) Oxylipins 16-HDoHE
Lysophospholipids LPE (22:6) Oxylipins 17,18-DiHETE
Lysophospholipids LPG (16:0) Oxylipins 19,20-EpDPE
Lysophospholipids LPG (16:1) Oxylipins 19,20-DiHDPA
Lysophospholipids LPG (18:0) Oxylipins 20-HETE
Lysophospholipids LPG (18:1) Oxylipins 5,6-DiHETrE
Lysophospholipids LPG (18:2) Oxylipins 5-HETE
Lysophospholipids LPG (20:3) Oxylipins 5S-HEPE
Lysophospholipids LPG (20:4) Oxylipins 8,9-DiHETrE
Lysophospholipids LPI (16:0) Oxylipins 8-HETE
Lysophospholipids LPI (16:1) Oxylipins 9,10,13-TriHOME
Lysophospholipids LPI (18:0) Oxylipins 9,10-DiHOME
Lysophospholipids LPI (18:1) Oxylipins 9,12,13-TriHOME
Lysophospholipids LPI (20:4) Oxylipins 9-HODE
Lysophospholipids LPI (22:4) Oxylipins 9-HOTrE
Lysophospholipids LPS (16:0) Platelet activating factor PAF(18:2)-adduct
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Biochemical class Metabolite Biochemical class Metabolite

Sphingolipids S1P (16:1) Triglycerides TG (54:1)
Sphingolipids S1P (18:0) Triglycerides TG (54:2)
Sphingolipids S1P (18:1) Triglycerides TG (54:3)
Sphingolipids S1P (18:2) Triglycerides TG (54:4)
Sphingomyelin SM (d18:1/14:0) Triglycerides TG (54:5)
Sphingomyelin SM (d18:1/15:0) Triglycerides TG (54:6)
Sphingomyelin SM (d18:1/16:0) Triglycerides TG (54:7)
Sphingomyelin SM (d18:1/16:1) Triglycerides TG (55:2)
Sphingomyelin SM (d18:1/17:0) Triglycerides TG (55:3)
Sphingomyelin SM (d18:1/18:0) Triglycerides TG (56:2)
Sphingomyelin SM (d18:1/18:1) Triglycerides TG (56:3)
Sphingomyelin SM (d18:1/18:2) Triglycerides TG (56:4)
Sphingomyelin SM (d18:1/20:0) Triglycerides TG (56:5)
Sphingomyelin SM (d18:1/20:1) Triglycerides TG (56:6)
Sphingomyelin SM (d18:1/21:0) Triglycerides TG (56:7)
Sphingomyelin SM (d18:1/22:0) Triglycerides TG (55:1)
Sphingomyelin SM (d18:1/22:1) Triglycerides TG (58:1)
Sphingomyelin SM (d18:1/23:0) Triglycerides TG (58:10)
Sphingomyelin SM (d18:1/ 23:1) Triglycerides TG (58:2)
Sphingomyelin SM (d18:0/24:0) Triglycerides TG (58:3)
Sphingomyelin SM (d18:0/24:1) Triglycerides TG (58:4)
Sphingomyelin SM (d18:0/24:2) Triglycerides TG (58:5)
Sphingomyelin SM (d18:0/25:0) Triglycerides TG (58:6)
Sphingomyelin SM (d18:0/25:1) Triglycerides TG (58:8)
Triglycerides TG (44:2) Triglycerides TG (58:9)
Triglycerides TG (46:1) Triglycerides TG (60:2)
Triglycerides TG (46:2) Triglycerides TG (60:3)
Triglycerides TG (48:0) Trimethylamine-N-oxides TMAO
Triglycerides TG (48:1)
Triglycerides TG (48:2)
Triglycerides TG (48:3)
Triglycerides TG (O-50:2)
Triglycerides TG (50:1)
Triglycerides TG (50:2)
Triglycerides TG (50:3)
Triglycerides TG (50:4)
Triglycerides TG (51:1)
Triglycerides TG (51:2)
Triglycerides TG (51:3)
Triglycerides TG (51:4)
Triglycerides TG (52:1)
Triglycerides TG (52:2)
Triglycerides TG (52:3)
Triglycerides TG (52:4)
Triglycerides TG (52:5)
Triglycerides TG (52:6)
Triglycerides TG (53:1)
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