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Abstract

Diagnosis of microbial disease etiology in community-acquired pneumonia (CAP) remains
challenging. We undertook a large-scale metabolomics study of serum samples in
hospitalized CAP patients to determine if host-response associated metabolites can enable
diagnosis of microbial etiology, with a specific focus on discrimination between the major
CAP pathogen groups S. pneumoniae, atypical bacteria, and respiratory viruses. Targeted
metabolomic profiling of serum samples was performed for three groups of hospitalized
CAP patients with confirmed microbial etiologies: S. pneumoniae (n=48), atypical bacteria
(n=47), or viral infections (n=30). A wide range of 347 metabolites was targeted, including
amines, acylcarnitines, organic acids, and lipids. Single discriminating metabolites were
selected using Student’s T-test and their predictive performance was analyzed using
logistic regression. Elastic net regression models were employed to discover metabolite
signatures with predictive value for discrimination between pathogen groups. Metabolites
to discriminate S. pneumoniae or viral pathogens from the other groups showed poor
predictive capability, whereas discrimination of atypical pathogens from the other groups
was found to be possible. Classification of atypical pathogens using elastic net regression
models was associated with a predictive performance of 61% sensitivity, 86% specificity,
and anAUCof 0.81. Targeted profiling of the hostmetabolic response revealedmetabolites
that can support diagnosis of microbial etiology in CAP patients with atypical bacterial
pathogens compared to patients with S. pneumoniae or viral infections.
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2.1 Introduction

Community-acquired pneumonia (CAP) is a commonly occurring respiratory tract
infection caused by bacterial or viral pathogens that can lead to severe disease, especially
in elderly patients [4]. The predominant pathogens found in hospitalized CAP patients
are Streptococcus pneumoniae and to a lesser extent, Haemophilus influenzae, Legionella
pneumophila, and respiratory viruses [29, 30]. Patients hospitalized with severe CAP
typically receive empirical antibiotic treatment with broad-spectrum antibiotics until
the microbial etiology is determined [31, 8]. Current standard diagnostic methods for
microbial identification are pathogen-targeted and include culturing, antigen testing,
and molecular diagnostics such as PCR [8]. In over 60% of CAP patients, no causative
pathogen can be identified with these pathogen-targeted diagnostic techniques [29,
32]. As a consequence, broad-spectrum antibiotics are over-used, which facilitates the
emergence of antimicrobial resistance [1, 33]. To this end, a need exists to explore
innovativemethods to enhance the diagnostic performance for the detection ofmicrobial
pathogens in CAP.

Evaluation of differences in the host-response to CAP-associated pathogens may be
an alternative approach to improve diagnosis [34]. There is growing evidence that
the host, i.e. the patient, metabolic response to infections can be a relevant source
of novel host immune response biomarkers to infections [35, 36]. Several small
studies have reported differences in metabolite profiles in blood and urine samples in
patients with different types of infections (Table 2.4) [37, 38, 23, 20, 39, 22, 40]. For
instance, studies comparing metabolomic changes in CAP and tuberculosis (TB) patients
show increased levels of plasma lipids and decreased levels of metabolites involved
in cholesterol synthesis [37, 20]. A study comparing viral and bacterial respiratory
tract infections showed that plasma metabolite profiles of patients with influenza A
and bacterial pneumonia differed significantly [22]. In another study, urine samples of
patients with a respiratory syncytial virus (RSV) or a bacterial respiratory tract infection
showed differences in metabolite levels as well [40]. An important limitation of these
studies is that the comparisons made cannot yet support the etiological diagnosis of
CAP but merely focus on differences between diseases such as TB versus CAP. The
studies that compared viral and bacterial causative pathogen groups of CAP used an
untargeted metabolomics approach. While an untargeted approach is especially useful
for the discovery of new features and hypothesis-free analysis, a targeted approach that
can be fully quantified to clinical laboratory standards may be preferable for clinical
implementation. Furthermore, these studies have the limitation that they focus on the
comparison of pediatric patients while most hospitalized CAP patients are adults. No
studies have evaluated differences in metabolite profiles of CAP patients comparing
different microbial etiologies relevant for treatment of CAP, i.e. S. pneumoniae, atypical
pathogens, and viral infections.

In the current study, we performed extensive targeted metabolomic profiling for
three groups of hospitalized CAP patients with confirmed microbial etiologies of S.
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pneumoniae, atypical bacteria, or viral infections. We aimed to determine whether
host-response associated metabolites can enable diagnosis of microbial etiology,
focusing on discrimination between the pathogen groups S. pneumoniae, atypical
bacteria, and respiratory viruses in patients hospitalized with CAP.

2.2 Materials and methods

2.2.1 Study population

Serum samples were taken from 505 patients that were diagnosed with CAP in two
previously conducted clinical studies that were executed between October 2004 and
September 2010. [29, 30]. The samples were taken from CAP patients within 24 hours
after hospital admission. In 57% of these patient samples, the causative pathogen could
be identified using conventional diagnostic methods such as culturing, PCR, and urinary
antigen tests. The most commonly found causative pathogen in these patients was S.
pneumoniae, followed by atypical bacterial and viral pathogens. A minority of patients
was diagnosed with other bacteria.

From the selection of patients in which a causative pathogen was identified, we excluded
patients with mixed infections. Furthermore, we constructed three distinctive groups
of patients with Streptococcus pneumoniae, atypical (Coxiella burnetii, Chlamydophila
psittaci, Legionella pneumophila or Mycoplasma pneumoniae), or viral (influenza virus,
herpes simplex virus (HSV), respiratory syncytial virus (RSV), parainfluenza virus,
or another respiratory virus) infections. The number of available samples for the
patient group with confirmed viral CAP infection was limited (n=31). The patients
included in the S. pneumoniae and atypical bacterial groups were randomly drawn
from the remaining study population in an iterating fashion until the bacterial groups
were composed in such a way that three groups showed comparable means for sex
and pneumonia severity index scores. This resulted in a group of 49 patients with
S. pneumoniae and a group of 50 patients with atypical infections (Figure 2.1). No
matching of individual samples was performed. An overview of patient characteristics
is provided in Table 2.1 and Table 2.5. Patient characteristics that might be considered as
possible covariates were: age, sex, nursing home resident, renal disease, congestive heart
failure, CNS disease, malignancy, COPD, diabetes, altered mental status, respiratory
rate, systolic blood pressure, temperature, pulse, pH, BUN, sodium, glucose, hematocrit,
partial pressure of oxygen, pleural effusion on x-ray, duration of symptoms before
admission, antibiotic treatment before admission. The analyses performed in this study
were executed conform the informed consent given by the patients. The clinical data
was anonymized before use.

2.2.2 Bioanalytical procedures

Serum samples were analyzed with five liquid chromatography methods and one
gas chromatography, mass spectrometry-based, targeted, metabolomics method. The
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Table 2.1 Patient characteristics per pathogen group.

S. pneumoniae
(n=48)

Atypical
(n=47)

Viral
(n=30) P-value

Age (years)
Mean (SD) 62.2 (18.9) 54.7 (14.6) 70.1 (16.4) <0.01
Median [Min, Max] 63.5 [18.0, 98.0] 52.0 [26.0, 81.0] 74.0 [29.0, 95.0]
Sex

Male 22 (45.8%) 34 (72.3%) 21 (70.0%) 0.12
PSI score

<50 9 (18.8%) 9 (19.1%) 2 (6.7%) 0.33
51-70 7 (14.6%) 13 (27.7%) 6 (20.0%)
71-90 5 (10.4%) 10 (21.3%) 7 (23.3%)
91-130 23 (47.9%) 12 (25.5%) 11 (36.7%)
>131 4 (8.3%) 3 (6.4%) 4 (13.3%)
Liver disease

No 48 (100%) 47 (100%) 30 (100%)
Kidney disease

Yes 3 (6.2%) 1 (2.1%) 4 (13.3%) 0.30
Cardiovascular disease

Yes 6 (12.5%) 5 (10.6%) 3 (10.0%) 0.93
CNS disease

No 46 (95.8%) 44 (93.6%) 28 (93.3%) 0.66
Yes 1 (2.1%) 3 (6.4%) 2 (6.7%)
Missing 1 (2.1%) 0 (0%) 0 (0%)
Malignancy

No 44 (91.7%) 46 (97.9%) 28 (93.3%) 0.66
Yes 3 (6.2%) 1 (2.1%) 2 (6.7%)
Missing 1 (2.1%) 0 (0%) 0 (0%)
COPD

No 24 (50.0%) 44 (93.6%) 25 (83.3%) 0.16
Yes 9 (18.8%) 3 (6.4%) 5 (16.7%)
Missing 15 (31.2%) 0 (0%) 0 (0%)
Diabetes

No 26 (54.2%) 45 (95.7%) 26 (86.7%) 0.17
Yes 7 (14.6%) 2 (4.3%) 4 (13.3%)
Missing 15 (31.2%) 0 (0%) 0 (0%)
Duration of symptoms before admission (days)

Mean (SD) 4.06 (3.03) 5.83 (5.65) 4.70 (3.21) 0.33
Median [Min, Max] 3.50 [1.00, 14.0] 5.00 [1.00, 42.0] 4.00 [0.00, 14.0]
Missing 16 (33.3%) 0 (0%) 0 (0%)
Antibiotic treatment before admission

No 27 (56.2%) 29 (61.7%) 23 (76.7%) 0.17
Yes 5 (10.4%) 18 (38.3%) 7 (23.3%)
Missing 16 (33.3%) 0 (0%) 0 (0%)
Corticosteroid use before admission

No 29 (60.4%) 46 (97.9%) 29 (96.7%) 0.67
Yes 2 (4.2%) 1 (2.1%) 1 (3.3%)
Missing 17 (35.4%) 0 (0%) 0 (0%)
Data are presented as number (%) or mean (SD). Abbreviations: PSI: pneumonia severity

index; CNS: central nervous system; COPD: chronic obstructive pulmonary disease.
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Figure 2.1 Flow chart of the formation of the three studied patient groups.

metabolomics profiling covered 596 metabolite targets from 25 metabolite classes,
including amino acids, biogenic amines, acylcarnitines, organic acids, and multiple
classes of lipids (Table 2.6). Levels of 374 unique metabolites were detected in
the samples. The metabolomic profiling was performed within the Biomedical
Metabolomics Facility of Leiden University in Leiden, The Netherlands. Details of the
metabolomic analysis methods used are provided in section 2.5.

2.2.3 Data analysis

The data resulting from the metabolomic profiling was cleaned by removing patient
samples with more than 10 missing metabolite values, for example, if results from
one measurement platform were missing because of too low sample volumes, and by
removing metabolites with missing patient samples, for example, because of a sample
preparation error. The clean dataset consisted of 347 metabolite levels (Table 2.7)
for 125 patients diagnosed with the microbial etiology S. pneumoniae (n=48), atypical
(n=47), or viral (n=30). The pathogens identified in each group are shown in Table 2.2.
The resulting metabolite levels were preprocessed by applying log transformation and
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standardized to correct for heteroscedasticity. The preprocessed metabolomics dataset
was visually inspected using a principal component analysis.

Data imputation was performed for patient characteristics that were to be evaluated
as covariates in the statistical analysis and showed missingness in the data. Five times
repeated imputation using predictive mean matching was performed with the ‘mice’
package for R to impute the patient data for the covariates with less than 25% missing
data. Predictive mean matching is suitable for both numeric and binary covariates.
Patient characteristics with >25% missing data were excluded from further analysis.

We performed logistic regression and elastic net regression modeling to determine if
patients in one pathogen group could be discriminated from patients in the remaining
two groups. Also, we aimed to determine which metabolites were important for
prediction of the causative pathogen. In both methods, five-fold cross-validation was
used to make the most efficient use of the available data for estimation of the predictive
performance of the models and its associated metabolites [41]. Furthermore, the
model generation was repeated 100 times to obtain robust estimates of the predictive
performance of the models.

To identify single discriminative metabolites, Student’s T-tests with false discovery
rate (FDR) multiple testing corrections were performed (p < 0.05). Then, significant
metabolites and a combination of significant metabolites were modeled using logistic
regression. Also, models containing covariates age and sex and all covariates were
generated. The predictive logistic regression models were analyzed by comparison of
their area under the curve (AUC), sensitivity, specificity, balanced error rate (BER), and
receiver operating characteristic (ROC) curve.

Elastic net regression was performed to test if the predictive power of the metabolite
data could be increased by including correlations between metabolites in addition
to evaluating single metabolites. In elastic net regression, metabolites that have no
explanatory power can be set to zero, as in a lasso regression, and metabolites that
explain the same amount of variance can all be included with balanced coefficient sizes,
as in a ridge regression [42].

To obtain robust estimates of the predictive performance of the elastic net model,
hyperparameters were optimized in a five-fold nested-cross validation, where the
hyperparameters were selected truly independent of the calculation of the predictive
performance, as is schematically shown in Figure 2.2 [43]. In the inner cross-validation
loop, the model optimization loop, optimal values for model hyperparameters α and
λ were determined. In the outer cross-validation loop, the model performance loop,
the optimal model for the training fold was built on the set hyperparameters α and λ

(Figure 2.5). Hyperparameter selection was performed using the balanced error rate
(BER), which can be calculated from the true- and false positive (TP, FP), and true- and
false-negative rates (TN, FN, Equation 2.1). The BER accounts for different group sizes
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per model and therefore gives an accurate picture of the performance of models in the
model optimization and model performance loop.

BER = 0.5 ∗
(

FP
TN + FP

+ FN
FN + TP

)
(2.1)

The overall predictive diagnostic performance was evaluated using sensitivity and
specificity performance measures, generated from the confusion matrix that represents
the number of samples falling into each possible outcome (Equation 2.2-2.3). The average
sensitivity and specificity of all 500 generated models and its standard deviation were
used to compare the assay performance to currently used methods.

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
TP

TP + FN
(2.2)

𝑆𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐𝑖𝑡𝑦 =
TN

TN + FP
(2.3)

The relative contribution of metabolites to provide predictions of the expected pathogen
groupwere quantified using the variable importance in prediction (VIP) score, expressed
as a percentage. The VIP score was calculated per metabolite per fold or repeat as
follows:

VIP (%) =
𝛽 𝑗∑𝑝

𝑖=0 |𝛽𝑖 |
· 100% (2.4)

where 𝛽 j is the regression coefficient for fold j over the sum of all regression coefficient
values in the model. Metabolites were arranged based on their mean VIP score over all
folds and repeats. Metabolites with an absolute VIP > 1% were considered to be most
important. Furthermore, to determine the need to include age and sex, or all covariates
in the models we compared the BER for models with and without age and sex, or all
covariates included. Finally, mean AUC values and ROC curves were calculated and
generated to compare the performance of the elastic net models to the logistic regression
models.

The scripts used for the statistical analyses were deposited in Github at
http://github.com/vanhasseltlab/MetabolomicsEtiologyCAP.
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analysis.

Causative pathogen S. pneumoniae
(n=48)

Atypical bacterial
(n=47)

Viral
(n=30)

S. pneumoniae 48 (100%) 0 (0%) 0 (0%)
Legionella pneumophila 0 (0%) 18 (38.3%) 0 (0%)
Coxiella burnetii 0 (0%) 17 (36.2%) 0 (0%)
Chlamydophila psittaci 0 (0%) 7 (14.9%) 0 (0%)
Mycoplasma pneumoniae 0 (0%) 5 (10.6%) 0 (0%)
Influenza virus 0 (0%) 0 (0%) 11 (36.7%)
HSV 0 (0%) 0 (0%) 6 (20.0%)
RSV 0 (0%) 0 (0%) 4 (13.3%)
Parainfluenza virus 0 (0%) 0 (0%) 3 (10.0%)
Other viruses 0 (0%) 0 (0%) 6 (20.0%)

Data are presented as number (%). Abbreviations: S. pneumoniae: Streptococcus
pneumoniae; HSV: herpes simplex virus; RSV: respiratory syncytial virus.

Figure 2.2 Schematic representation of stratified nested cross-validation for elastic net regression
model optimization and performance [43]. Abbreviations: CV: cross-validation.
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2.3 Results

2.3.1 Metabolomics profiling and exploratory analysis of
metabolomics data

Metabolomics profiling was performed for 130 patients and 596 metabolite targets.
Preprocessing of the metabolomics dataset resulted in a reduced dataset including 125
patients and 347metabolites (Figure 2.1). The patient characteristics of these 125 patients
are displayed in Table 2.1. The patients were diagnosed with the microbial etiology
S. pneumoniae (n=48), atypical bacteria (n=47), or respiratory virus (n=30) (Table 2.2).
A list of all targeted and detected metabolites and their identifiers can be found in
Table 2.7. Unsupervised principal component analysis showed no clear separation
between pathogen groups (Figure 2.6).

2.3.2 Single discriminating metabolites for pathogen groups

Three significant metabolites were found for the discrimination of atypical pathogens
from S. pneumoniae and viral pathogens using a Student’s T-test with FDR multiple
testing correction (p < 0.05): glycylglycine, symmetric dimethylarginine (SDMA), and
lysophosphatidylinositol (18:1) (LPI (18:1)). For the other comparisons, no significantly
discriminating metabolites were found.

The significantly differentiating metabolites were included in logistic regression models
to differentiate patients with atypical pathogens from patients suffering from CAP
caused by S. pneumoniae or viral pathogens. The logistic regression models were
evaluated based on their AUC, sensitivity, specificity, BER, and ROC curve after fivefold
cross-validation with 100 repeats (Table 2.3, Figure 2.3). They show that logistic
regression models of the individual metabolites glycylglycine, SDMA, and LPI(18:1)
can differentiate atypical pathogens from S. pneumoniae and viral pathogens with
AUCs between 0.70-0.72, sensitivities between 0.32-0.36, sensitivities between 0.83-0.85,
and BERs of 0.39-0.41. A logistic regression model including all three significantly
discriminating metabolites yields a more successful separation with an AUC of 0.78,
sensitivity of 0.57, specificity of 0.83, and BER of 0.30. Addition of the covariates age
and sex to the three metabolite model, slightly improved the predictive performance of
the model resulting in a sensitivity of 0.63 and a specificity of 0.84. This model also
showed the highest AUC (0.79) and lowest BER (0.26) of the tested logistic regression
models. The addition of other covariates to the logistic regression model resulted in
lower performance, probably due to overfitting of themodel. The ROC curves emphasize
the increased model performance upon the addition of more discriminating metabolites
to the logistic regression model (Figure 2.3).
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2.3.3 Predictive metabolites for diagnosis of CAP-associated
pathogens

Elastic net models including multiple metabolites were fit to discriminate S. pneumoniae,
atypical bacterial, and viral pathogens from the remaining two groups (e.g., S.
pneumoniae versus atypical bacterial and viral pathogens). Elastic net models separating
patients with atypical bacterial pathogens from patients with S. pneumoniae and viral
infections resulted in a mean AUC of 0.81, a sensitivity of 0.61, a specificity of 0.86, and
a BER of 0.26. Prediction of S. pneumoniae or viral infection etiologies showed lower
predictive capabilities with AUC’s of 0.74 and 0.63, high sensitivities of 0.83 and 0.89,
but low specificities of 0.5 and 0.23, and BER’s of 0.33 and 0.44, respectively (Table 2.3).

We included the covariates age and sex, and all covariates in the elastic net models to
account for potential confounding effects. The addition of these covariates showed no
improved performance of the elastic net models for differentiation of atypical pathogens
or S. pneumoniae from the other groups. For the differentiation of viral pathogens from
the other two pathogen groups, a slight performance improvement was seen upon the
addition of the covariates age and sex resulting in an AUC of 0.63, a sensitivity of 0.89,
a specificity of 0.23, and a BER of 0.44 (Table 2.3).

The ROC curves for the separation of atypical pathogens from S. pneumoniae and viral
pathogens show that elastic net models perform better than the logistic regression
models for single metabolites. However, the logistic regression model including the
three significant metabolites and the covariates age and sex shows similar performance
as the elastic net regression which included 100 metabolites on average (Figure 2.3).

2.3.4 Metabolite classes predictive for atypical bacterial pathogens

Focusing on the metabolites that have shown to be predictive for atypical bacterial
pathogens, i.e., the only comparison with clinically relevant predictive performance,
we identified 26 metabolites with an absolute VIP > 1% using elastic net regression
(Figure 2.4). The metabolites originated from multiple metabolite classes. However, the
classes of biogenic amines and lysophospholipids were well represented (4-5 metabolites
per class), compared to the other classes. The number of metabolites included in the
models varied across folds without a clear correlation to the BER. Commonly, models
including all metabolites were favored, followed by models including 20-100 metabolites
(Figure 2.7). We visualized the separation of the different pathogens in the atypical
pathogen group using an unsupervised PCA analysis including all metabolites. The
PCA plot indicated that no clear sub-group is present within the atypical group that
would prominently drive the separation from the S. pneumoniae and viral infections
(Figure 2.8).
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Figure 2.3 ROC curves of the results from logistic regression and elastic net regression models
that were tested in five-fold cross-validation with 100 repeats for the comparisons: atypical versus
S. pneumoniae and viral pathogens; S. pneumoniae pathogens versus atypical and viral pathogens;
and viral versus S. pneumoniae and atypical pathogens. Abbreviations: LR: logistic regression, EN:
elastic net regression, SDMA: symmetric dimethylarginine, LPI (18:1): lysophosphatidylinositol
(18:1).

Figure 2.4 Variable importance of metabolites for the prediction of an atypical bacterial infection
versus S. pneumoniae and viral infections. Only metabolites with an absolute mean percentage of
influence > 1% are visualized.
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Table 2.3 Results from the logistic regression and elastic net regression models that were
tested in a fivefold cross-validation with 100 repeats. The table displays the performance of
the models for the three comparisons: atypical versus S. pneumoniae and viral pathogens; S.
pneumoniae pathogens versus atypical and viral pathogens; and viral versus S. pneumoniae and
atypical pathogens. Logistic regression is only included for the comparison of atypical versus S.
pneumoniae and viral pathogens because no significant singlemetabolites were found for the other
comparisons. The performance is evaluated using the mean area under the curve (AUC), the mean
sensitivity, the mean specificity, and the mean balanced error rate (BER) over all folds and repeats.
All performances result from the test sets within the cross-validation. The best performing model
per comparison and evaluation measure is displayed in bold and underlined.

Model Variables AUC Sensitivity Specificity BER
Atypical – (S. pneumoniae + viral)

LR Glycylglycine 0.72 (0.094) 0.36 (0.14) 0.83 (0.110) 0.40 (0.084)
LR SDMA 0.72 (0.093) 0.36 (0.15) 0.86 (0.100) 0.39 (0.082)
LR LPI.18.1. 0.70 (0.099) 0.32 (0.14) 0.85 (0.100) 0.41 (0.082)
LR Age + sex 0.71 (0.097) 0.39 (0.15) 0.85 (0.090) 0.38 (0.071)
LR All covariates 0.65 (0.098) 0.52 (0.15) 0.68 (0.120) 0.40 (0.087)

LR Glycylglycine + SDMA
+ LPI.18.1. 0.78 (0.094) 0.57 (0.16) 0.83 (0.100) 0.30 (0.090)

LR Glycylglycine + SDMA
+ LPI.18.1. + age + sex 0.79 (0.089) 0.63 (0.16) 0.84 (0.095) 0.26 (0.085)

LR Glycylglycine + SDMA
+ LPI.18.1. + all covariates 0.75 (0.097) 0.60 (0.16) 0.78 (0.110) 0.31 (0.093)

ENR 100 (82) 0.81 (0.087) 0.61 (0.18) 0.86 (0.092) 0.27 (0.094)
ENR 110 (91) incl. age & sex 0.80 (0.094) 0.61 (0.17) 0.84 (0.096) 0.28 (0.090)
ENR 270 (140) incl. all covariates 0.69 (0.100) 0.58 (0.17) 0.70 (0.120) 0.36 (0.098)

S. pneumoniae – (atypical + viral)
ENR 210 (120) 0.74 (0.091) 0.83 (0.10) 0.50 (0.160) 0.33 (0.087)
ENR 240 (130) incl. age & sex 0.74 (0.095) 0.80 (0.10) 0.52 (0.160) 0.34 (0.084)
ENR 290 (120) incl. all covariates 0.63 (0.110) 0.69 (0.13) 0.51 (0.17) 0.40 (0.098)

Viral – (S. pneumoniae + atypical)
ENR 170 (140) 0.54 (0.120) 0.88 (0.11) 0.16 (0.170) 0.48 (0.075)
ENR 130 (130) incl. age & sex 0.63 (0.130) 0.89 (0.08) 0.23 (0.160) 0.44 (0.082)
ENR 180 (160) incl. all covariates 0.56 (0.130) 0.79 (0.11) 0.31 (0.190) 0.45 (0.099)

Data are presented as mean (SD). Variables are presented as variable names or as the
number of variables that are included in the model. Abbreviations: LR: Linear regression,

ENR: Elastic net regression, SDMA: symmetric dimethylarginine, LPI (18:1):
lysophosphatidylinositol (18:1), AUC: area under the curve, BER: balanced error rate.

17



Chapter 2

2.4 Discussion

Targeted profiling of the host metabolic response revealed metabolites that can support
the diagnosis of microbial etiology in CAP patients with atypical bacterial pathogens
compared to patients with S. pneumoniae or viral infections. CAP patients suffering
from S. pneumoniae and viral infection could not be as successfully discriminated from
the other groups based on the metabolic host-response.

The currently used clinical assays still outperform the metabolomics host-response
assays developed in this study. For atypical pathogens, the sensitivity of 63% and
specificity of 86% reported in this study are lower than the current urinary antigen tests
for detection of Legionella pneumophilawhich shows a sensitivity of approximately 70%
and a specificity up to 96% [44]. For detection of S. pneumoniae, the 83% sensitivity
reached with the metabolomics-based assay outperforms the current antigen tests that
show 70% sensitivity. However, the specificity of the metabolomics-based assay is
only 50% while antigen tests reach specificity up to 96% [45, 46]. PCR assays of
nasopharyngeal swabs for viral pathogens show sensitivities of up to 96% for influenza
viruses A and B [47]. Our viral metabolomics-based assay shows a good sensitivity
of 89% as well. However, the specificity of this assay is with 23% very low. The
expected clinical utility of the studied metabolite classes as host-response biomarkers
for etiological diagnosis of CAP may therefore be considered limited.

The combination of the metabolites glycylglycine, SDMA, and LPI (18:1) and the
covariates age and sex showed predictive capacities similar to elastic net models
including 100 metabolites in the comparison of atypical pathogens versus S. pneumoniae
and viral pathogens. This result suggests that a simple model might perform as well as
a more complex elastic net model, which is an important finding when considering the
use of these biomarkers for clinical diagnostic applications, e.g., where a limited set of 3
metabolites is preferable.

Glycylglycine, a biogenic amine, showed to be significantly contributing to the
differentiation of atypical pathogens from the other pathogens, but was not often
included in elastic net models. In contrast, SDMA and LPI (18:1) were often included
in the elastic net models as was shown in the overview of the 26 most influential
metabolites. Metabolites of the classes biogenic amines and lysophospholipids, to
which SDMA and LPI (18:1) have been assigned, were most represented in the 26
most influential metabolites compared to other metabolite classes in the comparison
of atypical versus S. pneumoniae and viral pathogens. A comparison of the most
influential metabolites in this study to metabolites of interest reported in previous
studies of metabolomics in CAP patients shows limited overlap. Major reasons for
this could be that (i) not all studies measured the same set of metabolic classes; (ii)
some other studies poorly controlled patient comparator groups; and (iii) difference
in bioanalytical methodologies, e.g. the use of NMR or MS as analytical method with
their respective (dis)advantages might provide different results [48]. For example, most
lipids found to be predictive in this study have not been reported previously, most

18



Metabolomic profiling

C
ha

pt
er

2

likely because the applied bioanalytical methodologies did not allow their detection.
However, some overlap was found between the most influential metabolites for the
comparison of atypical versus S. pneumoniae and viral pathogens in this study, and the
metabolites of interest from other metabolomics studies involving CAP patients. The
amino acid alanine was found in multiple studies [23, 39, 22]. Ceramide (d18:1/16:0), two
diacyl-phosphatidylcholines, and diacyl-phosphatidylethanolamine (38:2) were found
in other studies as well, the latter in the form of choline and ethanolamine [20, 39,
40]. Lactic acid was identified by several other metabolomics studies to respiratory
bacterial and viral infections [37, 23, 22]. Lactic acid levels are also known to rise in
case of severe disease. However, because the three pathogen groups were balanced in
terms of disease severity and, for example, did not show significant differences in pH
levels, we hypothesize that the differences in lactate levels are, in this case, an effect
of the pathogen-specific host-response to infection. The result showed that models
including disease severity covariates do not perform better than models without these
confounders, thus supporting this hypothesis. Finally, 3-hydroxyisovaleric acid and
betaine have been reported in a previous study comparing viral and bacterial pneumonia
[40]. The overlap in these findings may provide insights into common metabolic
responses to pathogens involved in CAP.

Multiple biological processes besides infection can influence metabolic processes in
patients. Inclusion of age and sex in the models did not improve the predictive
performance of the elastic net models for atypical bacteria and S. pneumoniae but did
improve the model for viral pathogens. The average age in the viral pathogen group
was higher than in the other groups, which could explain this result. For the other
comparisons, we see that a model including age and sex or more covariates does not
outperform models without these possible confounders. This doesn’t imply there is
no metabolomic effect of age in the bacterial pathogen groups but implies that the
separation between bacterial pathogen groups is more dependent on the metabolomic
host-response to the infection than on the age-related metabolomic changes. In this
study, we included patients with mild to severe CAP, reflecting the target patient
population for which improvements in a diagnostic assay are required. However, the
combination of samples from patients with different disease severities may negatively
influence the predictive capabilities of the model because the effect from the causative
pathogen on the host-metabolism may be less pronounced for less severe disease [49].
However, separating the patients into groups with comparable disease severity scores
would decrease the power for statistical analysis. Furthermore, no standardization of
sampling times and conditions was applied, e.g., patients had not fasted before blood
sampling, which may influence the metabolite patterns found. Since variations in
sampling conditions were unknown, we were unable to consider these in our analyses.
However, we expect that the impact of not standardizing and correcting for these factors
is limited because the noise in metabolite levels introduced by these factors is expected
to be randomwith regard to the pathogen groups compared in this study. A standardized
sampling approach could improve the sensitivity of the models to detect predictive
metabolites because some noise is reduced. However, the specificity of the models with
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respect to the prediction of specific pathogens would be unchanged, since no correlation
with pathogen groups is likely.

The sample size of this study (n = 125) was relatively large compared to studies
researching metabolomic differences between causative pathogens of CAP that included
approximately 70 patients [22, 40]. The compared groups S. pneumoniae, atypical
bacteria, and viruses were chosen because antibiotic treatment strategies differ between
these three groups. Ideally, we would have further investigated differences within
studied groups, e.g. to identify metabolic responses to specific pathogens within the
atypical pathogens and viral infection groups. For example, it would be of interest to
study Legionella species more in-depth because their intracellular growth might result
in a differentiated host-response. However, this was considered not feasible in this study
due to sample size restrictions. The heterogeneous pathogen population in the atypical
bacterial and viral pathogen groups might have lowered the predictive performance of
the metabolomic analysis. Studying the individual pathogens in bigger sample sizes
might reveal more characteristic metabolite signatures. In this study, no control group
was included because the goal of the studywas to provide a faster and optimal diagnostic
method and a guide for antibiotic treatment in hospitalized CAP patients. In further
studies, it would be preferable to include patients with all causes of CAP, including the
remaining microorganisms, which were excluded in the current study because of their
low frequency, to enable a more comprehensive comparison with current clinical assays.
In this study, CAP patients with unknown pathogens were excluded. In a follow-up
study, themetabolite pattern of the patients with unknown causative pathogens could be
compared to the metabolite patterns of the distinguished pathogen groups to gain more
information about the metabolomic resemblance of the samples in which pathogens
could and could not be identified using the conventional diagnostic techniques.

Metabolomics analysis resulted in some missing data because of sample preparation
errors or the limited volume of the samples. Because the measurement platforms
covered multiple metabolites within one pathway, metabolites with missing data could
be removed without influencing the final results. Some patient samples had to be
removed because of multiple missing metabolite levels, for example, if the results from
a whole metabolomics platform were missing. Data imputation was not performed for
the metabolomics data, because the wide range of patients included in the dataset did,
in our opinion, not provide enough information for accurate data imputation.

In summary, this comprehensive analysis of the host metabolic response across multiple
metabolic classes and based on a well-balanced study cohort of CAP patients has shown
the possibility to identify atypical pathogens in CAP and limited utility of predicting S.
pneumoniae and viral infection disease etiologies.
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2.5 Supporting information

Details on metabolomic sample analysis

Batch design: Aliquoted samples were run in a randomized fashion in several batches
together with quality control (QC) samples (every 10 samples), sample replicates (every
7 samples), internal standards (ISTDs), blanks, and calibration lines.

Quality control: Blank samples were used to determine the blank effect. Replicate
samples were used to check the instrument for repeatability. In-house developed
algorithms were applied using the pooled QC samples to compensate for shifts in the
sensitivity of the mass spectrometer over the batches.

Reported results: After quality control correction the metabolites that complied with
the acceptance criteria of a relative standard deviation of the quality control samples
(RSDqc) <15% were reported. The data was reported as relative response ratio (analyte
signal area / ISTD area; unit free) of the metabolites after QC correction. Metabolites
that did not comply with the acceptance criteria of the quality control, but have been
included in the results present RSDs up to 30% and should be handled with caution.

Amine profiling: Amine profiling was performed according to the validated amine
profiling analytical platform with minor optimization [50]. The amine platform covers
amino acids and biogenic amines employing anAccq-Tag derivatization strategy adapted
from the protocol supplied by Waters. 5,0 𝜇L sample was spiked with an internal
standard solution. Protein precipitation was performed by addition of MeOH and
the sample was dried in a speedvac. The residue was reconstituted in borate buffer
(pH 8.5) with AQC reagent. The prepared samples were transferred to autosampler
vials and placed in an autosampler tray. The vials were cooled at 4oC upon injection.
1,0 𝜇L prepared sample was injected in a UPLC-MS/MS system. Chromatographic
separation was achieved by an Agilent 1290 Infinity II LC System on an Accq-Tag
Ultra column (Waters) with a flow of 0.7 mL/min over an 11 min gradient. The UPLC
was coupled to electrospray ionization on a triple quadrupole mass spectrometer (AB
SCIEX Qtrap 6500). Analytes were detected in the positive ion mode and monitored
in Multiple Reaction Monitoring (MRM) using nominal mass resolution. Acquired
data was evaluated using MultiQuant Software for Quantitative Analysis (AB SCIEX,
Version 3.0.2), by the integration of assignedMRMpeaks and normalization using proper
internal standards. For analysis of amino acids, their 13C15N-labeled analogs were used.
For other amines, the closest-eluting internal standard was employed. After quality
control correction 48 amines complied with the acceptance criteria of RSDqc <15%.
Additionally, 7 amines presented an RSDqc between 15 and 30%. They are included
in the results but these compounds should be considered with caution.

Acylcarnitine profiling: The acylcarnitine platform covers acylcarnitines as well as
trimethylamine-N-oxide, choline, betaine, deoxycarnitine, and carnitine. 10 µL sample
was spiked with an internal standard solution. Protein precipitation was performed by
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addition of MeOH. The supernatant was transferred to an autosampler vial and placed
into an autosampler. The vials were cooled at 10◦Cupon injection. 1.0µL of the prepared
sample was injected into a triple quadrupole mass spectrometer. Chromatographic
separation was achieved by UPLC (Agilent 1290, San Jose, CA, USA) on an Accq-Tag
Ultra column (Waters) with a flow of 0.7 mL/min over an 11min gradient. The UPLCwas
coupled to electrospray ionization on a triple quadrupole mass spectrometer (Agilent
6460, San Jose, CA, USA). Analytes were detected in the positive ionmode andmonitored
in Multiple Reaction Monitoring (MRM) using nominal mass resolution. Acquired
data was evaluated using Agilent MassHunter Quantitative Analysis software (Agilent,
Version B.05.01), by integration of assigned MRM peaks and normalization using proper
internal standards. The closest-eluting internal standard was employed. After quality
control correction 24 acylcarnitines complied with the acceptance criteria of RSDqc
<15%. Additionally, 4 acylcarnitines presented an RSDqc between 15 and 30%. They
are included in the results but these compounds should be considered with caution.

Organic acid profiling: The organic acid platform covers 28 organic acids. 50
µL sample was spiked with an internal standard solution. Protein precipitation
was performed by addition of MeOH. After centrifugation, the supernatant was
transferred and the sample was dried using a speedvac. Then, two-step
derivatization procedures were performed on-line: oximation using methoxyamine
hydrochloride (MeOX, 15 mg/mL in pyridine) as the first reaction and silylation
using N-Methyl-N-(trimethylsilyl)- trifluoroacetamide (MSTFA) as the second reaction.
1 µL of each sample was directly after its derivatization injected on GC-MS. Gas
chromatography was performed on an Agilent Technologies 7890A equipped with an
Agilent Technologies mass selective detector (MSD 5975C) and MultiPurpose Sampler
(MPS, MXY016-02A, GERSTEL). Chromatographic separations were performed on an
HP-5MS UI (5% Phenyl Methyl Silox), 30 m × 0.25 m ID column with a film thickness of
25 µm, using helium as the carrier gas at a flow rate of 1,7 mL/min. A single-quadrupole
mass spectrometer with electron impact ionization (EI, 70 eV) was used. The mass
spectrometer was operated in SCAN mode mass range 50-500. Acquired data was
evaluated using Agilent MassHunter Quantitative Analysis software (Agilent, Version
B.05.01). After quality control correction and considering blank effects, 9 organic acid
compounds complied with the acceptance criteria RSDqc <15% and blank effect <20%.
4 organic acids reported an RSDqc between 15 and 30% and should be considered with
caution.

Negative lipid profiling: The negative lipid platform is a semi-target methodology for
the identification of 30 fatty acids. 50 µL sample was spiked with 50 𝜇L of an internal
standard solution. Protein precipitation was performed by addition of 550 𝜇L MeOH.
After centrifugation, 600 𝜇L supernatant was transferred and the sample was dried
using a speedvac. The residue was reconstituted in 300 𝜇L of isopropanol with 0,1%
formic acid. The prepared samples were transferred to autosampler vials and placed in
an autosampler tray. 8,0 µL of the prepared sample was injected into an LC-MS. The
analysis was performed on an ACQUITY UPLC™ (Waters, the Netherlands) coupled
to a high-resolution mass spectrometer with a Synapt G2 Q-TOF system (Waters, the
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Netherlands) using reference lock mass correction. Lipids were detected in full scan
in the negative ion mode. Chromatographic separation was achieved using an HSS T3
column (1.8 µm, 2.1 * 100 mm) with a flow of 0.4 mL/min over a 16-minute gradient.
Acquired data was preprocessed using Targetlynx software (Masslynx, V4.1, SCN916).
After quality control correction, 10 compounds complied with the acceptance criteria
RSDqc <15%. 6 compounds reported an RSDqc between 15 and 30% and should be
considered with caution.

Positive lipid profiling: The positive lipid platform covers 185 compounds including
triglycerides (TGs, n=85) and non-triglycerides (non-TGs, n=100). 10 µL preprocessed
sample was spiked with 1000 µL IPA containing internal standards and vortexed for
30 sec. Prepared samples were transferred to autosampler vials for LC-MS analysis. In
total 2.5 µL prepared sample was injected for analysis. Chromatographic separation
was achieved on an ACQUITY UPLC™ (Waters, Ettenleur, the Netherlands) with an
HSS T3 column (1.8 µm, 2.1 * 100 mm) with a flow of 0.4 mL/min over a 16 min
gradient. The lipid analysis is performed on a UPLC-ESI-Q-TOF (Agilent 6530, Jose,
CA, USA) high-resolution mass spectrometer using reference mass correction. Lipids
were detected in full scan in the positive ion mode. The raw data were preprocessed
using Agilent MassHunter Quantitative Analysis software (Agilent, Version B.04.00).
After quality control correction, 56 TGs and 39 non-TGs compounds complied with the
acceptance criteria RSDqc<15% and blank effect <40 %. 1 TG and 53 non-TGs reported
an RSDqc between 15 and 30% and should be considered with caution.

Signaling lipid profiling: The signaling lipids platform covers various isoprostane
classes together with their respective prostaglandin isomers from different poly
unsaturated fatty acids (PUFA), including n-6 and n-3 PUFAs such as dihomo-γ-linoleic
acid (DGLA) and arachidonic acid (both n-6) and eicosapentaenoic acid (EPA)
and docosahexaenoic acid (DHA) (both n-3). Also included in this platform are
endocannabinoids, bile acids, and signaling lipids from the sphingosine and sphinganine
classes and their phosphorylated forms, as well as three classes of lysophosphatidic
acids. The three lysophosphatidic acid classes include lysophosphatidic acids (LPAs),
lysophosphatidylglycerol (LPG), lysophosphatidylinositol (LPI), lysophosphatidyserine
(LPS), lysophosphatidylethanolamines (LPE), cyclic-phosphatidic acids(cLPA), and
fatty acid all ranging from C14 to C22 chain length species. The signaling and
peroxidized lipids platform is divided into two chromatographic methods: low and
high pH. In the low pH method, isoprostanes, prostaglandins, nitro-fatty acids,
lyso-sphingolipids, endocannabinoids, and bile acids are analyzed. The high pH
method covers lyso-sphingolipids, lysophosphatidic acids, lysophosphatidylglycerol,
lysophosphatidylinositol, lysophosphatidyserine, lysophosphatidylethanolamines,
cyclic-phosphatidic acids, and fatty acid. Each sample was spiked with antioxidant
and internal standard solution. The extraction of the compounds is performed via
liquid-liquid extraction (LLE) with butanol and methyl tert-butyl ether (MTBE). After
collection, the organic phase is concentrated by first drying followed by reconstituted
in a smaller volume. After reconstitution, the extract is transferred into amber
autosampler vials and used for high and low pH injection. A Shimadzu system, formed
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Figure 2.5Optimization of α and λ in the inner cross-validation (CV) to reach a minimal balanced
error rate (BER) in the outer CV. (A) Shows allα and λ values tested in inner CV against mean BER
of the inner CV. (B) A plot of the optimal α and λ combinations chosen in the inner CV against
their BER in the outer CV shows a variety of favorable α and λ concentrations. (C) A plot of
the number of variables selected in the elastic net model in outer CV shows that with increasing
alpha, the number of variables decreases as is expected in an elastic net model. The data shown
in the figure is a result of the comparison Atypical – (S. pneumoniae + viral).

by three high-pressure pumps (LC-30AD), a controller (CBM-20Alite), an autosampler
(SIL-30AC), and an oven (CTO-30A) from Shimadzu Benelux, was coupled online
with an LCMS-8050 triple quadrupole mass spectrometer (Shimadzu) for high pH
measurements. An LCMS-8060 triple quadrupole mass spectrometer (Shimadzu) was
coupled to the Shimadzu system for low pHmeasurements. Both systems were operated
using LabSolutions data acquisition software (Version 5.89, Shimadzu). The samples
were analyzed by UPLC-MS/MS. An Acquity UPLC BEH C18 column (Waters) was
used to measure the samples in the low pH method. For the high pH method, a Kinetex
EVO column by Phenomenex was used. The triple quadrupole mass spectrometer was
used in polarity switching mode and all analytes were monitored in dynamic Multiple
Reaction Monitoring (dMRM). The acquired data was evaluated using LabSolutions
Insight software (Version 3.1 SP1, Shimadzu), by integration of assigned MRM peaks
and normalization using accordingly selected internal standards. When available, a
deuterated version of the target compound was used as an internal standard. For the
other compounds, the closest-eluting internal standard was employed. For low pH
mode, after quality control correction, 46 metabolites complied with the acceptance
criteria of RSDqc <15% and blank effect <40%. 6 compounds reported an RSDqc between
15 and 30% and should be considered with caution. For high pH mode, after quality
control correction, 43 metabolites complied with the acceptance criteria of RSDqc <15%
and blank effect <40%. Additionally, 18 compounds reported an RSDqc between 15 and
30% and should be considered with caution.
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Figure 2.6 Unsupervised principal component analysis (PCA) plot of all pathogen groups.
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Figure 2.7 Boxplot of BER per number of variables selected shows no clear relation between the
number of variables selected and model performance. (B) Histogram of the number of variables
selected shows that a model with all metabolites included is favored, followed bymodels including
34, 49, 82, 24, or 45 metabolites. Both Figs contain the data of all folds and repeats (n=500) for the
comparison between atypical versus S. pneumoniae and viral infections.
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Figure 2.8 Principal component analysis (PCA) of the atypical pathogen group (log-transformed
and standardized data) shows that there is no clear subgroup within the atypical group that would
prominently drive the separation from the S. pneumoniae and viral infections.
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Table 2.4 Summary of previous studies focusing on bacterial and viral respiratory tract infections and related metabolites.

Compared groups Matrix Analytical method Significantly altered metabolites Reference
Upregulated Downregulated

30 CAP vs 30 HC Plasma NMR 1-methylhistidine lactate, ketone bodies Zhou et al. (2015)

30 CAP vs 38 TB Plasma NMR lactate, pyruvate, lipids, ketone bodies amino acids[leucine, isoleucine, valine],
1-methylhistidine, glucose, nicotinate, GPC Zhou et al. (2015)

11 pneumonia vs
11 HC (children) Plasma UPLC-TOF-MS uric acid, hypoxanthine, glutamic acid L-tryptophan, adenosine-diphosphate Laiakis et al. (2010)

11 pneumonia vs
11 HC (children) Urine UPLC-TOF-MS uric acid, L-histidine Laiakis et al. (2010)

47 pneumonia vs 47 HC Urine NMR

glucose, lactate, ketone bodies, amino acids
[alanine, asparagine, isoleucine, leucine, lysine,
serine, threonine, tryptophan, tyrosine, valine],
carnitine, acetylcarnitine, hypoxanthine, fucose,
myo-inositol, taurine, quinolinate, adipate,
dimethylamine, creatine, 2-oxoglutarate, fumarate

citrate, trigonelline, 1-methylnicotinamide,
succinate, levoglucosan, 1-methylhistidine Slupsky et al. (2009)

30 CAP vs 46 TB Plasma UPLC-QTOF-MS
12(R)-hydroxyeicosatetraenoic acid, ceramide
(d18:1/16:0), cholesterol sulfate,
4a-formyl-4b-methyl-5a-cholesta-8-en-3b-ol

Lau et al. (2015)

42 Influenza A vs
30 Bacterial CAP Plasma NMR, GC-MS

3-Methyl-2-Isovalerate, 3-Methyl-2-oxovalerate,
4-Hydroxybutyrate, Adipate, Alanine, Arabinonic
acid, Asparagine, Aspartic Acid, Citrate, Citric acid,
Fumerate, Histidine, Lysine, Methionine,
Myoinositol, Phenylalanine, Serine, Threonic Acid,
Threonine, Tyrosine, Uric acid, Urea

2-amino Butanoic acid, Acetoacetate, Alkane,
Benzoic acid, Beta-alanine, Carnitine,
Dimethylamine, Formate, Glycine, Gulonic acid,
Hexanoic acid, Leucine, Lactic acid, Pentadecane,
Pyruvic acid, Quinic acid

Banoei et al. (2017)

55 RVS vs
24 Bacterial pneumonia
vs 37 HC (children)

Urine NMR

3-Hydroxyisovalerate, 3-Indoxylsulfate,
Acetoacetate, Betaine, Blue 1.06, Ethanolamine,
Glutamate, N,N-Dimethylglycine, Pantothenate,
Succinate, Tartrate, Uracil

Hippurate, Serine, Threonine Adamko et al. (2016)

Abbreviations: CAP: community-acquired pneumonia; VAP: ventilator-associated pneumonia; HAP: hospital-acquired pneumonia; TB:
tuberculosis; RSV: respiratory syncytial virus; HC: healthy control; NMR: nuclear magnetic resonance; UPLC: ultra-performance liquid
chromatography; GC: gas chromatography; TOF: time-of-flight; QTOF: quadrupole time-of-flight; MS: mass spectrometry.
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Table 2.5 Additional patient characteristics per pathogen group.

S. pneumoniae
(N=48)

Atypical
(N=47)

Viral
(N=30) P-value

Race
Other 1 (2.1%) 1 (2.1%) 0 (0%)
White 31 (64.6%) 46 (97.9%) 30 (100%) 0.81
Missing 16 (33.3%) 0 (0%) 0 (0%)
Nursing home resident

No 46 (95.8%) 47 (100%) 25 (83.3%)
Yes 1 (2.1%) 0 (0%) 4 (13.3%) 0.07
Missing 1 (2.1%) 0 (0%) 1 (3.3%)
Altered mental status

No 43 (89.6%) 42 (89.4%) 27 (90.0%)
Yes 3 (6.2%) 5 (10.6%) 3 (10.0%) 0.85
Missing 2 (4.2%) 0 (0%) 0 (0%)
Respiratory rate

Mean (SD) 25.3 (6.64) 25.5 (6.44) 26.9 (7.32)
Median [Min, Max] 25.5 [12.0, 40.0] 26.0 [14.0, 40.0] 29.0 [12.0, 44.0] 0.81
Missing 8 (16.7%) 8 (17.0%) 6 (20.0%)
Systolic blood pressure

Mean (SD) 131 (25.3) 133 (15.8) 137 (23.2)
Median [Min, Max] 130 [88.0, 226] 130 [99.0, 161] 135 [90.0, 186] 0.81
Missing 1 (2.1%) 0 (0%) 1 (3.3%)
temperature

Mean (SD) 23.5 (8.41) 24.2 (11.5) 19.9 (9.40)
Median [Min, Max] 24.0 [6.00, 42.0] 24.0 [1.00, 41.0] 20.0 [3.00, 39.0] 0.37
Missing 1 (2.1%) 0 (0%) 0 (0%)
pulse

Mean (SD) 104 (21.6) 96.6 (18.6) 94.3 (17.9)
Median [Min, Max] 109 [60.0, 144] 93.0 [50.0, 140] 96.0 [60.0, 120] 0.28
Missing 1 (2.1%) 0 (0%) 0 (0%)
pH

Mean (SD) 12.7 (4.64) 14.5 (4.28) 12.0 (4.66)
Median [Min, Max] 14.0 [3.00, 21.0] 14.0 [3.00, 22.0] 13.0 [1.00, 19.0] 0.31
Missing 8 (16.7%) 19 (40.4%) 5 (16.7%)
BUN

Mean (SD) 38.9 (24.9) 46.0 (21.6) 46.5 (24.1)
Median [Min, Max] 35.0 [2.00, 81.0] 48.0 [1.00, 84.0] 52.0 [4.00, 82.0] 0.50
Missing 1 (2.1%) 0 (0%) 1 (3.3%)
sodium

Mean (SD) 132 (4.68) 131 (5.59) 136 (5.03)
Median [Min, Max] 132 [117, 141] 132 [119, 141] 136 [125, 152] 0
Missing 1 (2.1%) 0 (0%) 0 (0%)
glucose

Mean (SD) 34.6 (13.9) 34.7 (14.0) 36.9 (17.6)
Median [Min, Max] 35.0 [1.00, 58.0] 35.0 [5.00, 59.0] 42.0 [2.00, 59.0] 0.85
Missing 3 (6.2%) 0 (0%) 5 (16.7%)
hematocrit

Mean (SD) 11.0 (4.29) 11.5 (3.75) 10.5 (3.75)
Median [Min, Max] 11.0 [1.00, 19.0] 12.0 [1.00, 17.0] 11.5 [1.00, 16.0] 0.81
Missing 2 (4.2%) 0 (0%) 2 (6.7%)
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S. pneumoniae
(N=48)

Atypical
(N=47)

Viral
(N=30) P-value

Partial pressure of oxygen
Mean (SD) 30.6 (16.5) 31.8 (17.7) 30.1 (16.3)
Median [Min, Max] 34.5 [2.00, 56.0] 33.0 [1.00, 55.0] 37.0 [1.00, 50.0] 0.92
Missing 8 (16.7%) 19 (40.4%) 5 (16.7%)
Pleural effusion on x ray

No 39 (81.2%) 45 (95.7%) 25 (83.3%)
Yes 8 (16.7%) 2 (4.3%) 5 (16.7%) 0.31
Missing 1 (2.1%) 0 (0%) 0 (0%)
Data are presented as number (%) or mean (SD). Abbreviations: BUN: blood urea nitrogen.

Table 2.6 Overview of the number of metabolites included in the metabolomics platforms,
measured in the samples and included in the data analysis.

Measurement
platform

Number of metabolites
included in platform

Number of metabolites
measured in samples

Number of metabolites
included in data analysis

Amines 74 55 55
Acylcarnitines 48 28 28
Organic acids 28 13 13
Negative lipids 30 16 16
Signaling lipids 231 113 91
Positive lipids 185 149 144

Total 596 374 347

Table 2.7 Information on measurement platforms used, metabolite classes targeted per
platform, targeted metabolites, their abbreviations and names in R (if detected) and
identifiers (if available).

This table is available as Excel file (S4 Table) on the website of the publisher at
https://doi.org/10.1371/journal.pone.0252378.

Table 2.8 Metabolomics data after quality control.

This table is available as csv file (S5 Table) on the website of the publisher at
https://doi.org/10.1371/journal.pone.0252378.
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