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CHAPTER 1
Introduction

1.1 Community-acquired pneumonia

Community-acquired pneumonia (CAP) is a common infection of the lower respiratory
tract that results in the hospitalization of approximately 1 in every 500 adults every
year [1, 2]. CAP has the highest burden of mortality and morbidity in the elderly [3,
4] and is among the most common causes of sepsis in all age groups [5]. The most
common cause of CAP is the bacterial pathogen Streptococcus pneumoniae, followed by
Mycoplasma pneumoniae, and viral infections such as influenza [2, 6].

The clinical diagnosis of CAP is based on symptoms such as shortness of breath, cough,
fever, and new-found focal chest signs, and can be confirmed by the presence of a visible
lung infiltrate on a chest radiograph [3]. Several microbiological tests are available
to establish the microbial etiological diagnosis of CAP, including pathogen culturing,
antigen testing, and polymerase chain reaction (PCR)-based diagnostics [7]. These tests
are not applied to every CAP patient but merely those with more severe symptoms or
specific risk factors for worse outcomes. Microbial etiological diagnosis using current
laboratory techniques can take up to 48 hours and remains inconclusive often. In over
50% of CAP patients, no causative pathogen is identified because a sputum sample
cannot be obtained, or because microbiological testing yields no causative pathogen [6,
8].

1.2 Antibiotic treatment and antimicrobial resistance

Hospitalized patients with moderate to severe CAP typically receive empirical
broad-spectrum antibiotic therapy to provide broad microbial coverage prior to further
determination of potential causal pathogens. Empirical antibiotic treatment of CAP
usually consists of a beta-lactam antibiotic, which in more severe cases can be combined
with a macrolide or fluoroquinolone monotherapy [9]. If the causative pathogen
and its susceptibility profiles have been determined, more targeted narrow-spectrum
antibiotics can be selected, avoiding undesired effects on nonpathogenic commensal
bacteria. Importantly, in a subset of patients receiving empirical antibiotic therapy,
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viral pathogens such as influenza are responsible for the symptoms. In those patients,
antibiotic treatment is not useful and should be avoided as antibiotic use promotes the
emergence of antimicrobial resistance (AMR). In conclusion, the availability of rapid
and well-performing diagnostic tools to guide microbiological etiological diagnosis of
CAP is essential to ensure effective treatment with antibiotics while limiting the risks
of promoting AMR.

1.3 Treatment response biomarkers

Biomarkers predictive of treatment response in individual (hospitalized) CAP patients
are important to optimize the effectiveness of therapeutic strategies. Such longitudinal
monitoring of the treatment response can guide decisions about adapting the antibiotic
treatment if the therapy is working insufficiently or terminating the antibiotic treatment
when the infection is successfully treated. Early termination of antibiotic treatment
because the bacterial infection has been effectively treated likely reduces the risk
for development of AMR [10, 11]. Monitoring the treatment response is commonly
performed through a combination of monitoring the clinical symptoms, such as fever,
and through measurement of biochemical markers reflecting inflammation, such as
C-reactive protein (CRP) [12, 13]. While CRP is commonly used for this purpose,
it has limitations in terms of its correlation to clinical outcomes such as length of
hospitalization or mortality, its specificity towards infectious causes alone and not
towards other non-infectious inflammatory conditions, and its correlation with the
underlying disease progression dynamics. As such, an unmet need exists for additional
biomarkers that can further improve effectivemonitoring of the clinical response in CAP
patients to guide treatment strategies [14].

1.4 Metabolomics as platform for discovery of biomarkers

The field of metabolomics concerns the large-scale measurement of biomolecules, or
metabolites, with a molecular weight of <2000 Dalton in tissues, cells, or body fluids
[15]. Metabolomics allows for the identification of metabolites that are associated with
a state of health or disease. Because the metabolome is closely related to the biochemical
state of organisms, it is a relevant source of potential biomarkers for various diseases
[16]. For diagnosis and treatment response monitoring in several infectious diseases,
metabolomics approaches have been explored [17].

The measurement of metabolites as part of metabolomics workflows is performed using
mass spectrometry (MS) or nuclear magnetic resonance (NMR) based techniques [17],
where MS-based approaches are more commonly used due to improved sensitivity and
selectivity as well as increased throughput [18]. Metabolomics studies can be designed
as targeted or untargeted studies. Untargeted approaches are useful for hypothesis-free
discovery of new metabolites associated to a certain health condition, while targeted
metabolomics can help to quantify the levels of metabolites that are known to be
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involved in certain biological processes [19]. Targeted metabolomics is therefore more
relevant for the discovery of biomarkers to be used for diagnosis or treatment response
monitoring in patients.

Currently, the microbial etiological diagnosis of CAP is established through tests
focused on the causative pathogen. To identify new biomarkers for the etiological
diagnosis of CAP, the specific host-response of the patient could also be an interesting
target. The immunometabolome, which concerns the interplay betweenmetabolism and
immunology, could be a source of such biomarkers for viral or bacterial infections. The
relevance of immunometabolomics has been shown in previous studies, for example,
to separate tuberculosis patients from patients with community-acquired pneumonia
and healthy controls [20], and to separate sepsis patients from emergency room
controls [21]. Also, some small studies have shown the potential of metabolomics for
pathogen identification. For example, patients with H1N1 influenza pneumonia could
be discriminated from patients with bacterial pneumonia based on serum metabolite
profiles of CAP patients admitted to the ICU [22], and CAP patients with Streptococcus
pneumoniae could be differentiated from CAP patients with other bacterial and viral
infections based on their urinary metabolite profile [23].

For monitoring the treatment response, metabolic biomarkers could have potential
because the metabolome closely represents the current state of the patient, which
may be highly dynamic. This has been shown, for example, in patients with chronic
hepatitis B infections, of who the progression of the disease could be associated
with increased concentrations of long-chain triglycerides, together with citrulline and
ornithine [24]. Also, a study in CAP patients has demonstrated that the change in
lysophosphatidylcholines (LPC) mirrors the transition from acute illness to recovery
after the start of antibiotic treatment [25].

For biochemical and functional interpretation of metabolomics study results, published
research on individual metabolites and the biological processes they are involved in,
can be evaluated. In addition, several computational tools are available for biochemical
and functional analysis [26, 27, 28]. However, determining the relationships between
metabolism and immunological processes remains challenging because of the many
possible interactions and sparse literature on these interactions. As such, there is a
need for newmethodologies to determine associations betweenmetabolites and immune
processes to aid in the biological interpretation of metabolomics data.

1.5 Scope of this thesis

For this thesis, our central hypothesis is that changes in the host metabolome associated
with the immune response in patients with CAP may be a potential source for novel
biomarkers. To this end, the overall aim of this thesis is to assess the potential utility of
metabolomics-based biomarkers for the diagnosis and the monitoring of the treatment
response in patients with CAP.
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In Chapter 2 we aimed to investigate if predictive metabolic biomarkers for the
microbial etiological diagnosis of CAP could be identified. Serum samples from CAP
patients with confirmed microbial etiologies: S. pneumoniae, atypical bacteria, or
viral infections were analyzed using targeted mass-spectrometry-based metabolomics
techniques. In Chapter 3 we further studied the specific differences in the metabolic
host response to distinct CAP-associated pathogens. We performed a systematic
characterization of differential metabolite profiles for different pathogens, which can
support evaluation of diagnostic performance and may contribute to insights in disease
pathogenesis. In Chapter 4 we aimed to characterize longitudinal metabolite profiles
in 25 hospitalized CAP patients with S. pneumoniae to determine their potential
relationship to disease severity and treatment response, and thereby their utility as
treatment response biomarkers. Finally, in Chapter 5 we describe the development
of the Immunometabolic Atlas, which is a computational tool for the interpretation of
metabolomics data to aid in the design and interpretation of metabolomics studies.
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CHAPTER 2
Metabolomic profiling of

microbial disease etiology in
community-acquired

pneumonia

Ilona den Hartog, Laura B. Zwep, Stefan M.T. Vestjens, Amy C. Harms, G. Paul Voorn,
Dylan W. de Lange, Willem J.W. Bos, Thomas Hankemeier, Ewoudt M.W. van de Garde,
J.G. Coen van Hasselt. Metabolomic profiling of microbial disease etiology in
community-acquired pneumonia, PLoS One 16:6 (2021).
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Abstract

Diagnosis of microbial disease etiology in community-acquired pneumonia (CAP) remains
challenging. We undertook a large-scale metabolomics study of serum samples in
hospitalized CAP patients to determine if host-response associated metabolites can enable
diagnosis of microbial etiology, with a specific focus on discrimination between the major
CAP pathogen groups S. pneumoniae, atypical bacteria, and respiratory viruses. Targeted
metabolomic profiling of serum samples was performed for three groups of hospitalized
CAP patients with confirmed microbial etiologies: S. pneumoniae (n=48), atypical bacteria
(n=47), or viral infections (n=30). A wide range of 347 metabolites was targeted, including
amines, acylcarnitines, organic acids, and lipids. Single discriminating metabolites were
selected using Student’s T-test and their predictive performance was analyzed using
logistic regression. Elastic net regression models were employed to discover metabolite
signatures with predictive value for discrimination between pathogen groups. Metabolites
to discriminate S. pneumoniae or viral pathogens from the other groups showed poor
predictive capability, whereas discrimination of atypical pathogens from the other groups
was found to be possible. Classification of atypical pathogens using elastic net regression
models was associated with a predictive performance of 61% sensitivity, 86% specificity,
and anAUCof 0.81. Targeted profiling of the hostmetabolic response revealedmetabolites
that can support diagnosis of microbial etiology in CAP patients with atypical bacterial
pathogens compared to patients with S. pneumoniae or viral infections.
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2.1 Introduction

Community-acquired pneumonia (CAP) is a commonly occurring respiratory tract
infection caused by bacterial or viral pathogens that can lead to severe disease, especially
in elderly patients [4]. The predominant pathogens found in hospitalized CAP patients
are Streptococcus pneumoniae and to a lesser extent, Haemophilus influenzae, Legionella
pneumophila, and respiratory viruses [29, 30]. Patients hospitalized with severe CAP
typically receive empirical antibiotic treatment with broad-spectrum antibiotics until
the microbial etiology is determined [31, 8]. Current standard diagnostic methods for
microbial identification are pathogen-targeted and include culturing, antigen testing,
and molecular diagnostics such as PCR [8]. In over 60% of CAP patients, no causative
pathogen can be identified with these pathogen-targeted diagnostic techniques [29,
32]. As a consequence, broad-spectrum antibiotics are over-used, which facilitates the
emergence of antimicrobial resistance [1, 33]. To this end, a need exists to explore
innovativemethods to enhance the diagnostic performance for the detection ofmicrobial
pathogens in CAP.

Evaluation of differences in the host-response to CAP-associated pathogens may be
an alternative approach to improve diagnosis [34]. There is growing evidence that
the host, i.e. the patient, metabolic response to infections can be a relevant source
of novel host immune response biomarkers to infections [35, 36]. Several small
studies have reported differences in metabolite profiles in blood and urine samples in
patients with different types of infections (Table 2.4) [37, 38, 23, 20, 39, 22, 40]. For
instance, studies comparing metabolomic changes in CAP and tuberculosis (TB) patients
show increased levels of plasma lipids and decreased levels of metabolites involved
in cholesterol synthesis [37, 20]. A study comparing viral and bacterial respiratory
tract infections showed that plasma metabolite profiles of patients with influenza A
and bacterial pneumonia differed significantly [22]. In another study, urine samples of
patients with a respiratory syncytial virus (RSV) or a bacterial respiratory tract infection
showed differences in metabolite levels as well [40]. An important limitation of these
studies is that the comparisons made cannot yet support the etiological diagnosis of
CAP but merely focus on differences between diseases such as TB versus CAP. The
studies that compared viral and bacterial causative pathogen groups of CAP used an
untargeted metabolomics approach. While an untargeted approach is especially useful
for the discovery of new features and hypothesis-free analysis, a targeted approach that
can be fully quantified to clinical laboratory standards may be preferable for clinical
implementation. Furthermore, these studies have the limitation that they focus on the
comparison of pediatric patients while most hospitalized CAP patients are adults. No
studies have evaluated differences in metabolite profiles of CAP patients comparing
different microbial etiologies relevant for treatment of CAP, i.e. S. pneumoniae, atypical
pathogens, and viral infections.

In the current study, we performed extensive targeted metabolomic profiling for
three groups of hospitalized CAP patients with confirmed microbial etiologies of S.
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pneumoniae, atypical bacteria, or viral infections. We aimed to determine whether
host-response associated metabolites can enable diagnosis of microbial etiology,
focusing on discrimination between the pathogen groups S. pneumoniae, atypical
bacteria, and respiratory viruses in patients hospitalized with CAP.

2.2 Materials and methods

2.2.1 Study population

Serum samples were taken from 505 patients that were diagnosed with CAP in two
previously conducted clinical studies that were executed between October 2004 and
September 2010. [29, 30]. The samples were taken from CAP patients within 24 hours
after hospital admission. In 57% of these patient samples, the causative pathogen could
be identified using conventional diagnostic methods such as culturing, PCR, and urinary
antigen tests. The most commonly found causative pathogen in these patients was S.
pneumoniae, followed by atypical bacterial and viral pathogens. A minority of patients
was diagnosed with other bacteria.

From the selection of patients in which a causative pathogen was identified, we excluded
patients with mixed infections. Furthermore, we constructed three distinctive groups
of patients with Streptococcus pneumoniae, atypical (Coxiella burnetii, Chlamydophila
psittaci, Legionella pneumophila or Mycoplasma pneumoniae), or viral (influenza virus,
herpes simplex virus (HSV), respiratory syncytial virus (RSV), parainfluenza virus,
or another respiratory virus) infections. The number of available samples for the
patient group with confirmed viral CAP infection was limited (n=31). The patients
included in the S. pneumoniae and atypical bacterial groups were randomly drawn
from the remaining study population in an iterating fashion until the bacterial groups
were composed in such a way that three groups showed comparable means for sex
and pneumonia severity index scores. This resulted in a group of 49 patients with
S. pneumoniae and a group of 50 patients with atypical infections (Figure 2.1). No
matching of individual samples was performed. An overview of patient characteristics
is provided in Table 2.1 and Table 2.5. Patient characteristics that might be considered as
possible covariates were: age, sex, nursing home resident, renal disease, congestive heart
failure, CNS disease, malignancy, COPD, diabetes, altered mental status, respiratory
rate, systolic blood pressure, temperature, pulse, pH, BUN, sodium, glucose, hematocrit,
partial pressure of oxygen, pleural effusion on x-ray, duration of symptoms before
admission, antibiotic treatment before admission. The analyses performed in this study
were executed conform the informed consent given by the patients. The clinical data
was anonymized before use.

2.2.2 Bioanalytical procedures

Serum samples were analyzed with five liquid chromatography methods and one
gas chromatography, mass spectrometry-based, targeted, metabolomics method. The
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Table 2.1 Patient characteristics per pathogen group.

S. pneumoniae
(n=48)

Atypical
(n=47)

Viral
(n=30) P-value

Age (years)
Mean (SD) 62.2 (18.9) 54.7 (14.6) 70.1 (16.4) <0.01
Median [Min, Max] 63.5 [18.0, 98.0] 52.0 [26.0, 81.0] 74.0 [29.0, 95.0]
Sex

Male 22 (45.8%) 34 (72.3%) 21 (70.0%) 0.12
PSI score

<50 9 (18.8%) 9 (19.1%) 2 (6.7%) 0.33
51-70 7 (14.6%) 13 (27.7%) 6 (20.0%)
71-90 5 (10.4%) 10 (21.3%) 7 (23.3%)
91-130 23 (47.9%) 12 (25.5%) 11 (36.7%)
>131 4 (8.3%) 3 (6.4%) 4 (13.3%)
Liver disease

No 48 (100%) 47 (100%) 30 (100%)
Kidney disease

Yes 3 (6.2%) 1 (2.1%) 4 (13.3%) 0.30
Cardiovascular disease

Yes 6 (12.5%) 5 (10.6%) 3 (10.0%) 0.93
CNS disease

No 46 (95.8%) 44 (93.6%) 28 (93.3%) 0.66
Yes 1 (2.1%) 3 (6.4%) 2 (6.7%)
Missing 1 (2.1%) 0 (0%) 0 (0%)
Malignancy

No 44 (91.7%) 46 (97.9%) 28 (93.3%) 0.66
Yes 3 (6.2%) 1 (2.1%) 2 (6.7%)
Missing 1 (2.1%) 0 (0%) 0 (0%)
COPD

No 24 (50.0%) 44 (93.6%) 25 (83.3%) 0.16
Yes 9 (18.8%) 3 (6.4%) 5 (16.7%)
Missing 15 (31.2%) 0 (0%) 0 (0%)
Diabetes

No 26 (54.2%) 45 (95.7%) 26 (86.7%) 0.17
Yes 7 (14.6%) 2 (4.3%) 4 (13.3%)
Missing 15 (31.2%) 0 (0%) 0 (0%)
Duration of symptoms before admission (days)

Mean (SD) 4.06 (3.03) 5.83 (5.65) 4.70 (3.21) 0.33
Median [Min, Max] 3.50 [1.00, 14.0] 5.00 [1.00, 42.0] 4.00 [0.00, 14.0]
Missing 16 (33.3%) 0 (0%) 0 (0%)
Antibiotic treatment before admission

No 27 (56.2%) 29 (61.7%) 23 (76.7%) 0.17
Yes 5 (10.4%) 18 (38.3%) 7 (23.3%)
Missing 16 (33.3%) 0 (0%) 0 (0%)
Corticosteroid use before admission

No 29 (60.4%) 46 (97.9%) 29 (96.7%) 0.67
Yes 2 (4.2%) 1 (2.1%) 1 (3.3%)
Missing 17 (35.4%) 0 (0%) 0 (0%)
Data are presented as number (%) or mean (SD). Abbreviations: PSI: pneumonia severity

index; CNS: central nervous system; COPD: chronic obstructive pulmonary disease.
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Figure 2.1 Flow chart of the formation of the three studied patient groups.

metabolomics profiling covered 596 metabolite targets from 25 metabolite classes,
including amino acids, biogenic amines, acylcarnitines, organic acids, and multiple
classes of lipids (Table 2.6). Levels of 374 unique metabolites were detected in
the samples. The metabolomic profiling was performed within the Biomedical
Metabolomics Facility of Leiden University in Leiden, The Netherlands. Details of the
metabolomic analysis methods used are provided in section 2.5.

2.2.3 Data analysis

The data resulting from the metabolomic profiling was cleaned by removing patient
samples with more than 10 missing metabolite values, for example, if results from
one measurement platform were missing because of too low sample volumes, and by
removing metabolites with missing patient samples, for example, because of a sample
preparation error. The clean dataset consisted of 347 metabolite levels (Table 2.7)
for 125 patients diagnosed with the microbial etiology S. pneumoniae (n=48), atypical
(n=47), or viral (n=30). The pathogens identified in each group are shown in Table 2.2.
The resulting metabolite levels were preprocessed by applying log transformation and
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standardized to correct for heteroscedasticity. The preprocessed metabolomics dataset
was visually inspected using a principal component analysis.

Data imputation was performed for patient characteristics that were to be evaluated
as covariates in the statistical analysis and showed missingness in the data. Five times
repeated imputation using predictive mean matching was performed with the ‘mice’
package for R to impute the patient data for the covariates with less than 25% missing
data. Predictive mean matching is suitable for both numeric and binary covariates.
Patient characteristics with >25% missing data were excluded from further analysis.

We performed logistic regression and elastic net regression modeling to determine if
patients in one pathogen group could be discriminated from patients in the remaining
two groups. Also, we aimed to determine which metabolites were important for
prediction of the causative pathogen. In both methods, five-fold cross-validation was
used to make the most efficient use of the available data for estimation of the predictive
performance of the models and its associated metabolites [41]. Furthermore, the
model generation was repeated 100 times to obtain robust estimates of the predictive
performance of the models.

To identify single discriminative metabolites, Student’s T-tests with false discovery
rate (FDR) multiple testing corrections were performed (p < 0.05). Then, significant
metabolites and a combination of significant metabolites were modeled using logistic
regression. Also, models containing covariates age and sex and all covariates were
generated. The predictive logistic regression models were analyzed by comparison of
their area under the curve (AUC), sensitivity, specificity, balanced error rate (BER), and
receiver operating characteristic (ROC) curve.

Elastic net regression was performed to test if the predictive power of the metabolite
data could be increased by including correlations between metabolites in addition
to evaluating single metabolites. In elastic net regression, metabolites that have no
explanatory power can be set to zero, as in a lasso regression, and metabolites that
explain the same amount of variance can all be included with balanced coefficient sizes,
as in a ridge regression [42].

To obtain robust estimates of the predictive performance of the elastic net model,
hyperparameters were optimized in a five-fold nested-cross validation, where the
hyperparameters were selected truly independent of the calculation of the predictive
performance, as is schematically shown in Figure 2.2 [43]. In the inner cross-validation
loop, the model optimization loop, optimal values for model hyperparameters α and
λ were determined. In the outer cross-validation loop, the model performance loop,
the optimal model for the training fold was built on the set hyperparameters α and λ

(Figure 2.5). Hyperparameter selection was performed using the balanced error rate
(BER), which can be calculated from the true- and false positive (TP, FP), and true- and
false-negative rates (TN, FN, Equation 2.1). The BER accounts for different group sizes
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per model and therefore gives an accurate picture of the performance of models in the
model optimization and model performance loop.

BER = 0.5 ∗
(

FP
TN + FP

+ FN
FN + TP

)
(2.1)

The overall predictive diagnostic performance was evaluated using sensitivity and
specificity performance measures, generated from the confusion matrix that represents
the number of samples falling into each possible outcome (Equation 2.2-2.3). The average
sensitivity and specificity of all 500 generated models and its standard deviation were
used to compare the assay performance to currently used methods.

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
TP

TP + FN
(2.2)

𝑆𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐𝑖𝑡𝑦 =
TN

TN + FP
(2.3)

The relative contribution of metabolites to provide predictions of the expected pathogen
groupwere quantified using the variable importance in prediction (VIP) score, expressed
as a percentage. The VIP score was calculated per metabolite per fold or repeat as
follows:

VIP (%) =
𝛽 𝑗∑𝑝

𝑖=0 |𝛽𝑖 |
· 100% (2.4)

where 𝛽 j is the regression coefficient for fold j over the sum of all regression coefficient
values in the model. Metabolites were arranged based on their mean VIP score over all
folds and repeats. Metabolites with an absolute VIP > 1% were considered to be most
important. Furthermore, to determine the need to include age and sex, or all covariates
in the models we compared the BER for models with and without age and sex, or all
covariates included. Finally, mean AUC values and ROC curves were calculated and
generated to compare the performance of the elastic net models to the logistic regression
models.

The scripts used for the statistical analyses were deposited in Github at
http://github.com/vanhasseltlab/MetabolomicsEtiologyCAP.
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analysis.

Causative pathogen S. pneumoniae
(n=48)

Atypical bacterial
(n=47)

Viral
(n=30)

S. pneumoniae 48 (100%) 0 (0%) 0 (0%)
Legionella pneumophila 0 (0%) 18 (38.3%) 0 (0%)
Coxiella burnetii 0 (0%) 17 (36.2%) 0 (0%)
Chlamydophila psittaci 0 (0%) 7 (14.9%) 0 (0%)
Mycoplasma pneumoniae 0 (0%) 5 (10.6%) 0 (0%)
Influenza virus 0 (0%) 0 (0%) 11 (36.7%)
HSV 0 (0%) 0 (0%) 6 (20.0%)
RSV 0 (0%) 0 (0%) 4 (13.3%)
Parainfluenza virus 0 (0%) 0 (0%) 3 (10.0%)
Other viruses 0 (0%) 0 (0%) 6 (20.0%)

Data are presented as number (%). Abbreviations: S. pneumoniae: Streptococcus
pneumoniae; HSV: herpes simplex virus; RSV: respiratory syncytial virus.

Figure 2.2 Schematic representation of stratified nested cross-validation for elastic net regression
model optimization and performance [43]. Abbreviations: CV: cross-validation.
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2.3 Results

2.3.1 Metabolomics profiling and exploratory analysis of
metabolomics data

Metabolomics profiling was performed for 130 patients and 596 metabolite targets.
Preprocessing of the metabolomics dataset resulted in a reduced dataset including 125
patients and 347metabolites (Figure 2.1). The patient characteristics of these 125 patients
are displayed in Table 2.1. The patients were diagnosed with the microbial etiology
S. pneumoniae (n=48), atypical bacteria (n=47), or respiratory virus (n=30) (Table 2.2).
A list of all targeted and detected metabolites and their identifiers can be found in
Table 2.7. Unsupervised principal component analysis showed no clear separation
between pathogen groups (Figure 2.6).

2.3.2 Single discriminating metabolites for pathogen groups

Three significant metabolites were found for the discrimination of atypical pathogens
from S. pneumoniae and viral pathogens using a Student’s T-test with FDR multiple
testing correction (p < 0.05): glycylglycine, symmetric dimethylarginine (SDMA), and
lysophosphatidylinositol (18:1) (LPI (18:1)). For the other comparisons, no significantly
discriminating metabolites were found.

The significantly differentiating metabolites were included in logistic regression models
to differentiate patients with atypical pathogens from patients suffering from CAP
caused by S. pneumoniae or viral pathogens. The logistic regression models were
evaluated based on their AUC, sensitivity, specificity, BER, and ROC curve after fivefold
cross-validation with 100 repeats (Table 2.3, Figure 2.3). They show that logistic
regression models of the individual metabolites glycylglycine, SDMA, and LPI(18:1)
can differentiate atypical pathogens from S. pneumoniae and viral pathogens with
AUCs between 0.70-0.72, sensitivities between 0.32-0.36, sensitivities between 0.83-0.85,
and BERs of 0.39-0.41. A logistic regression model including all three significantly
discriminating metabolites yields a more successful separation with an AUC of 0.78,
sensitivity of 0.57, specificity of 0.83, and BER of 0.30. Addition of the covariates age
and sex to the three metabolite model, slightly improved the predictive performance of
the model resulting in a sensitivity of 0.63 and a specificity of 0.84. This model also
showed the highest AUC (0.79) and lowest BER (0.26) of the tested logistic regression
models. The addition of other covariates to the logistic regression model resulted in
lower performance, probably due to overfitting of themodel. The ROC curves emphasize
the increased model performance upon the addition of more discriminating metabolites
to the logistic regression model (Figure 2.3).
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2.3.3 Predictive metabolites for diagnosis of CAP-associated
pathogens

Elastic net models including multiple metabolites were fit to discriminate S. pneumoniae,
atypical bacterial, and viral pathogens from the remaining two groups (e.g., S.
pneumoniae versus atypical bacterial and viral pathogens). Elastic net models separating
patients with atypical bacterial pathogens from patients with S. pneumoniae and viral
infections resulted in a mean AUC of 0.81, a sensitivity of 0.61, a specificity of 0.86, and
a BER of 0.26. Prediction of S. pneumoniae or viral infection etiologies showed lower
predictive capabilities with AUC’s of 0.74 and 0.63, high sensitivities of 0.83 and 0.89,
but low specificities of 0.5 and 0.23, and BER’s of 0.33 and 0.44, respectively (Table 2.3).

We included the covariates age and sex, and all covariates in the elastic net models to
account for potential confounding effects. The addition of these covariates showed no
improved performance of the elastic net models for differentiation of atypical pathogens
or S. pneumoniae from the other groups. For the differentiation of viral pathogens from
the other two pathogen groups, a slight performance improvement was seen upon the
addition of the covariates age and sex resulting in an AUC of 0.63, a sensitivity of 0.89,
a specificity of 0.23, and a BER of 0.44 (Table 2.3).

The ROC curves for the separation of atypical pathogens from S. pneumoniae and viral
pathogens show that elastic net models perform better than the logistic regression
models for single metabolites. However, the logistic regression model including the
three significant metabolites and the covariates age and sex shows similar performance
as the elastic net regression which included 100 metabolites on average (Figure 2.3).

2.3.4 Metabolite classes predictive for atypical bacterial pathogens

Focusing on the metabolites that have shown to be predictive for atypical bacterial
pathogens, i.e., the only comparison with clinically relevant predictive performance,
we identified 26 metabolites with an absolute VIP > 1% using elastic net regression
(Figure 2.4). The metabolites originated from multiple metabolite classes. However, the
classes of biogenic amines and lysophospholipids were well represented (4-5 metabolites
per class), compared to the other classes. The number of metabolites included in the
models varied across folds without a clear correlation to the BER. Commonly, models
including all metabolites were favored, followed by models including 20-100 metabolites
(Figure 2.7). We visualized the separation of the different pathogens in the atypical
pathogen group using an unsupervised PCA analysis including all metabolites. The
PCA plot indicated that no clear sub-group is present within the atypical group that
would prominently drive the separation from the S. pneumoniae and viral infections
(Figure 2.8).
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Figure 2.3 ROC curves of the results from logistic regression and elastic net regression models
that were tested in five-fold cross-validation with 100 repeats for the comparisons: atypical versus
S. pneumoniae and viral pathogens; S. pneumoniae pathogens versus atypical and viral pathogens;
and viral versus S. pneumoniae and atypical pathogens. Abbreviations: LR: logistic regression, EN:
elastic net regression, SDMA: symmetric dimethylarginine, LPI (18:1): lysophosphatidylinositol
(18:1).

Figure 2.4 Variable importance of metabolites for the prediction of an atypical bacterial infection
versus S. pneumoniae and viral infections. Only metabolites with an absolute mean percentage of
influence > 1% are visualized.

16



Metabolomic profiling

C
ha

pt
er

2

Table 2.3 Results from the logistic regression and elastic net regression models that were
tested in a fivefold cross-validation with 100 repeats. The table displays the performance of
the models for the three comparisons: atypical versus S. pneumoniae and viral pathogens; S.
pneumoniae pathogens versus atypical and viral pathogens; and viral versus S. pneumoniae and
atypical pathogens. Logistic regression is only included for the comparison of atypical versus S.
pneumoniae and viral pathogens because no significant singlemetabolites were found for the other
comparisons. The performance is evaluated using the mean area under the curve (AUC), the mean
sensitivity, the mean specificity, and the mean balanced error rate (BER) over all folds and repeats.
All performances result from the test sets within the cross-validation. The best performing model
per comparison and evaluation measure is displayed in bold and underlined.

Model Variables AUC Sensitivity Specificity BER
Atypical – (S. pneumoniae + viral)

LR Glycylglycine 0.72 (0.094) 0.36 (0.14) 0.83 (0.110) 0.40 (0.084)
LR SDMA 0.72 (0.093) 0.36 (0.15) 0.86 (0.100) 0.39 (0.082)
LR LPI.18.1. 0.70 (0.099) 0.32 (0.14) 0.85 (0.100) 0.41 (0.082)
LR Age + sex 0.71 (0.097) 0.39 (0.15) 0.85 (0.090) 0.38 (0.071)
LR All covariates 0.65 (0.098) 0.52 (0.15) 0.68 (0.120) 0.40 (0.087)

LR Glycylglycine + SDMA
+ LPI.18.1. 0.78 (0.094) 0.57 (0.16) 0.83 (0.100) 0.30 (0.090)

LR Glycylglycine + SDMA
+ LPI.18.1. + age + sex 0.79 (0.089) 0.63 (0.16) 0.84 (0.095) 0.26 (0.085)

LR Glycylglycine + SDMA
+ LPI.18.1. + all covariates 0.75 (0.097) 0.60 (0.16) 0.78 (0.110) 0.31 (0.093)

ENR 100 (82) 0.81 (0.087) 0.61 (0.18) 0.86 (0.092) 0.27 (0.094)
ENR 110 (91) incl. age & sex 0.80 (0.094) 0.61 (0.17) 0.84 (0.096) 0.28 (0.090)
ENR 270 (140) incl. all covariates 0.69 (0.100) 0.58 (0.17) 0.70 (0.120) 0.36 (0.098)

S. pneumoniae – (atypical + viral)
ENR 210 (120) 0.74 (0.091) 0.83 (0.10) 0.50 (0.160) 0.33 (0.087)
ENR 240 (130) incl. age & sex 0.74 (0.095) 0.80 (0.10) 0.52 (0.160) 0.34 (0.084)
ENR 290 (120) incl. all covariates 0.63 (0.110) 0.69 (0.13) 0.51 (0.17) 0.40 (0.098)

Viral – (S. pneumoniae + atypical)
ENR 170 (140) 0.54 (0.120) 0.88 (0.11) 0.16 (0.170) 0.48 (0.075)
ENR 130 (130) incl. age & sex 0.63 (0.130) 0.89 (0.08) 0.23 (0.160) 0.44 (0.082)
ENR 180 (160) incl. all covariates 0.56 (0.130) 0.79 (0.11) 0.31 (0.190) 0.45 (0.099)

Data are presented as mean (SD). Variables are presented as variable names or as the
number of variables that are included in the model. Abbreviations: LR: Linear regression,

ENR: Elastic net regression, SDMA: symmetric dimethylarginine, LPI (18:1):
lysophosphatidylinositol (18:1), AUC: area under the curve, BER: balanced error rate.
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2.4 Discussion

Targeted profiling of the host metabolic response revealed metabolites that can support
the diagnosis of microbial etiology in CAP patients with atypical bacterial pathogens
compared to patients with S. pneumoniae or viral infections. CAP patients suffering
from S. pneumoniae and viral infection could not be as successfully discriminated from
the other groups based on the metabolic host-response.

The currently used clinical assays still outperform the metabolomics host-response
assays developed in this study. For atypical pathogens, the sensitivity of 63% and
specificity of 86% reported in this study are lower than the current urinary antigen tests
for detection of Legionella pneumophilawhich shows a sensitivity of approximately 70%
and a specificity up to 96% [44]. For detection of S. pneumoniae, the 83% sensitivity
reached with the metabolomics-based assay outperforms the current antigen tests that
show 70% sensitivity. However, the specificity of the metabolomics-based assay is
only 50% while antigen tests reach specificity up to 96% [45, 46]. PCR assays of
nasopharyngeal swabs for viral pathogens show sensitivities of up to 96% for influenza
viruses A and B [47]. Our viral metabolomics-based assay shows a good sensitivity
of 89% as well. However, the specificity of this assay is with 23% very low. The
expected clinical utility of the studied metabolite classes as host-response biomarkers
for etiological diagnosis of CAP may therefore be considered limited.

The combination of the metabolites glycylglycine, SDMA, and LPI (18:1) and the
covariates age and sex showed predictive capacities similar to elastic net models
including 100 metabolites in the comparison of atypical pathogens versus S. pneumoniae
and viral pathogens. This result suggests that a simple model might perform as well as
a more complex elastic net model, which is an important finding when considering the
use of these biomarkers for clinical diagnostic applications, e.g., where a limited set of 3
metabolites is preferable.

Glycylglycine, a biogenic amine, showed to be significantly contributing to the
differentiation of atypical pathogens from the other pathogens, but was not often
included in elastic net models. In contrast, SDMA and LPI (18:1) were often included
in the elastic net models as was shown in the overview of the 26 most influential
metabolites. Metabolites of the classes biogenic amines and lysophospholipids, to
which SDMA and LPI (18:1) have been assigned, were most represented in the 26
most influential metabolites compared to other metabolite classes in the comparison
of atypical versus S. pneumoniae and viral pathogens. A comparison of the most
influential metabolites in this study to metabolites of interest reported in previous
studies of metabolomics in CAP patients shows limited overlap. Major reasons for
this could be that (i) not all studies measured the same set of metabolic classes; (ii)
some other studies poorly controlled patient comparator groups; and (iii) difference
in bioanalytical methodologies, e.g. the use of NMR or MS as analytical method with
their respective (dis)advantages might provide different results [48]. For example, most
lipids found to be predictive in this study have not been reported previously, most
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likely because the applied bioanalytical methodologies did not allow their detection.
However, some overlap was found between the most influential metabolites for the
comparison of atypical versus S. pneumoniae and viral pathogens in this study, and the
metabolites of interest from other metabolomics studies involving CAP patients. The
amino acid alanine was found in multiple studies [23, 39, 22]. Ceramide (d18:1/16:0), two
diacyl-phosphatidylcholines, and diacyl-phosphatidylethanolamine (38:2) were found
in other studies as well, the latter in the form of choline and ethanolamine [20, 39,
40]. Lactic acid was identified by several other metabolomics studies to respiratory
bacterial and viral infections [37, 23, 22]. Lactic acid levels are also known to rise in
case of severe disease. However, because the three pathogen groups were balanced in
terms of disease severity and, for example, did not show significant differences in pH
levels, we hypothesize that the differences in lactate levels are, in this case, an effect
of the pathogen-specific host-response to infection. The result showed that models
including disease severity covariates do not perform better than models without these
confounders, thus supporting this hypothesis. Finally, 3-hydroxyisovaleric acid and
betaine have been reported in a previous study comparing viral and bacterial pneumonia
[40]. The overlap in these findings may provide insights into common metabolic
responses to pathogens involved in CAP.

Multiple biological processes besides infection can influence metabolic processes in
patients. Inclusion of age and sex in the models did not improve the predictive
performance of the elastic net models for atypical bacteria and S. pneumoniae but did
improve the model for viral pathogens. The average age in the viral pathogen group
was higher than in the other groups, which could explain this result. For the other
comparisons, we see that a model including age and sex or more covariates does not
outperform models without these possible confounders. This doesn’t imply there is
no metabolomic effect of age in the bacterial pathogen groups but implies that the
separation between bacterial pathogen groups is more dependent on the metabolomic
host-response to the infection than on the age-related metabolomic changes. In this
study, we included patients with mild to severe CAP, reflecting the target patient
population for which improvements in a diagnostic assay are required. However, the
combination of samples from patients with different disease severities may negatively
influence the predictive capabilities of the model because the effect from the causative
pathogen on the host-metabolism may be less pronounced for less severe disease [49].
However, separating the patients into groups with comparable disease severity scores
would decrease the power for statistical analysis. Furthermore, no standardization of
sampling times and conditions was applied, e.g., patients had not fasted before blood
sampling, which may influence the metabolite patterns found. Since variations in
sampling conditions were unknown, we were unable to consider these in our analyses.
However, we expect that the impact of not standardizing and correcting for these factors
is limited because the noise in metabolite levels introduced by these factors is expected
to be randomwith regard to the pathogen groups compared in this study. A standardized
sampling approach could improve the sensitivity of the models to detect predictive
metabolites because some noise is reduced. However, the specificity of the models with
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respect to the prediction of specific pathogens would be unchanged, since no correlation
with pathogen groups is likely.

The sample size of this study (n = 125) was relatively large compared to studies
researching metabolomic differences between causative pathogens of CAP that included
approximately 70 patients [22, 40]. The compared groups S. pneumoniae, atypical
bacteria, and viruses were chosen because antibiotic treatment strategies differ between
these three groups. Ideally, we would have further investigated differences within
studied groups, e.g. to identify metabolic responses to specific pathogens within the
atypical pathogens and viral infection groups. For example, it would be of interest to
study Legionella species more in-depth because their intracellular growth might result
in a differentiated host-response. However, this was considered not feasible in this study
due to sample size restrictions. The heterogeneous pathogen population in the atypical
bacterial and viral pathogen groups might have lowered the predictive performance of
the metabolomic analysis. Studying the individual pathogens in bigger sample sizes
might reveal more characteristic metabolite signatures. In this study, no control group
was included because the goal of the studywas to provide a faster and optimal diagnostic
method and a guide for antibiotic treatment in hospitalized CAP patients. In further
studies, it would be preferable to include patients with all causes of CAP, including the
remaining microorganisms, which were excluded in the current study because of their
low frequency, to enable a more comprehensive comparison with current clinical assays.
In this study, CAP patients with unknown pathogens were excluded. In a follow-up
study, themetabolite pattern of the patients with unknown causative pathogens could be
compared to the metabolite patterns of the distinguished pathogen groups to gain more
information about the metabolomic resemblance of the samples in which pathogens
could and could not be identified using the conventional diagnostic techniques.

Metabolomics analysis resulted in some missing data because of sample preparation
errors or the limited volume of the samples. Because the measurement platforms
covered multiple metabolites within one pathway, metabolites with missing data could
be removed without influencing the final results. Some patient samples had to be
removed because of multiple missing metabolite levels, for example, if the results from
a whole metabolomics platform were missing. Data imputation was not performed for
the metabolomics data, because the wide range of patients included in the dataset did,
in our opinion, not provide enough information for accurate data imputation.

In summary, this comprehensive analysis of the host metabolic response across multiple
metabolic classes and based on a well-balanced study cohort of CAP patients has shown
the possibility to identify atypical pathogens in CAP and limited utility of predicting S.
pneumoniae and viral infection disease etiologies.
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2.5 Supporting information

Details on metabolomic sample analysis

Batch design: Aliquoted samples were run in a randomized fashion in several batches
together with quality control (QC) samples (every 10 samples), sample replicates (every
7 samples), internal standards (ISTDs), blanks, and calibration lines.

Quality control: Blank samples were used to determine the blank effect. Replicate
samples were used to check the instrument for repeatability. In-house developed
algorithms were applied using the pooled QC samples to compensate for shifts in the
sensitivity of the mass spectrometer over the batches.

Reported results: After quality control correction the metabolites that complied with
the acceptance criteria of a relative standard deviation of the quality control samples
(RSDqc) <15% were reported. The data was reported as relative response ratio (analyte
signal area / ISTD area; unit free) of the metabolites after QC correction. Metabolites
that did not comply with the acceptance criteria of the quality control, but have been
included in the results present RSDs up to 30% and should be handled with caution.

Amine profiling: Amine profiling was performed according to the validated amine
profiling analytical platform with minor optimization [50]. The amine platform covers
amino acids and biogenic amines employing anAccq-Tag derivatization strategy adapted
from the protocol supplied by Waters. 5,0 𝜇L sample was spiked with an internal
standard solution. Protein precipitation was performed by addition of MeOH and
the sample was dried in a speedvac. The residue was reconstituted in borate buffer
(pH 8.5) with AQC reagent. The prepared samples were transferred to autosampler
vials and placed in an autosampler tray. The vials were cooled at 4oC upon injection.
1,0 𝜇L prepared sample was injected in a UPLC-MS/MS system. Chromatographic
separation was achieved by an Agilent 1290 Infinity II LC System on an Accq-Tag
Ultra column (Waters) with a flow of 0.7 mL/min over an 11 min gradient. The UPLC
was coupled to electrospray ionization on a triple quadrupole mass spectrometer (AB
SCIEX Qtrap 6500). Analytes were detected in the positive ion mode and monitored
in Multiple Reaction Monitoring (MRM) using nominal mass resolution. Acquired
data was evaluated using MultiQuant Software for Quantitative Analysis (AB SCIEX,
Version 3.0.2), by the integration of assignedMRMpeaks and normalization using proper
internal standards. For analysis of amino acids, their 13C15N-labeled analogs were used.
For other amines, the closest-eluting internal standard was employed. After quality
control correction 48 amines complied with the acceptance criteria of RSDqc <15%.
Additionally, 7 amines presented an RSDqc between 15 and 30%. They are included
in the results but these compounds should be considered with caution.

Acylcarnitine profiling: The acylcarnitine platform covers acylcarnitines as well as
trimethylamine-N-oxide, choline, betaine, deoxycarnitine, and carnitine. 10 µL sample
was spiked with an internal standard solution. Protein precipitation was performed by
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addition of MeOH. The supernatant was transferred to an autosampler vial and placed
into an autosampler. The vials were cooled at 10◦Cupon injection. 1.0µL of the prepared
sample was injected into a triple quadrupole mass spectrometer. Chromatographic
separation was achieved by UPLC (Agilent 1290, San Jose, CA, USA) on an Accq-Tag
Ultra column (Waters) with a flow of 0.7 mL/min over an 11min gradient. The UPLCwas
coupled to electrospray ionization on a triple quadrupole mass spectrometer (Agilent
6460, San Jose, CA, USA). Analytes were detected in the positive ionmode andmonitored
in Multiple Reaction Monitoring (MRM) using nominal mass resolution. Acquired
data was evaluated using Agilent MassHunter Quantitative Analysis software (Agilent,
Version B.05.01), by integration of assigned MRM peaks and normalization using proper
internal standards. The closest-eluting internal standard was employed. After quality
control correction 24 acylcarnitines complied with the acceptance criteria of RSDqc
<15%. Additionally, 4 acylcarnitines presented an RSDqc between 15 and 30%. They
are included in the results but these compounds should be considered with caution.

Organic acid profiling: The organic acid platform covers 28 organic acids. 50
µL sample was spiked with an internal standard solution. Protein precipitation
was performed by addition of MeOH. After centrifugation, the supernatant was
transferred and the sample was dried using a speedvac. Then, two-step
derivatization procedures were performed on-line: oximation using methoxyamine
hydrochloride (MeOX, 15 mg/mL in pyridine) as the first reaction and silylation
using N-Methyl-N-(trimethylsilyl)- trifluoroacetamide (MSTFA) as the second reaction.
1 µL of each sample was directly after its derivatization injected on GC-MS. Gas
chromatography was performed on an Agilent Technologies 7890A equipped with an
Agilent Technologies mass selective detector (MSD 5975C) and MultiPurpose Sampler
(MPS, MXY016-02A, GERSTEL). Chromatographic separations were performed on an
HP-5MS UI (5% Phenyl Methyl Silox), 30 m × 0.25 m ID column with a film thickness of
25 µm, using helium as the carrier gas at a flow rate of 1,7 mL/min. A single-quadrupole
mass spectrometer with electron impact ionization (EI, 70 eV) was used. The mass
spectrometer was operated in SCAN mode mass range 50-500. Acquired data was
evaluated using Agilent MassHunter Quantitative Analysis software (Agilent, Version
B.05.01). After quality control correction and considering blank effects, 9 organic acid
compounds complied with the acceptance criteria RSDqc <15% and blank effect <20%.
4 organic acids reported an RSDqc between 15 and 30% and should be considered with
caution.

Negative lipid profiling: The negative lipid platform is a semi-target methodology for
the identification of 30 fatty acids. 50 µL sample was spiked with 50 𝜇L of an internal
standard solution. Protein precipitation was performed by addition of 550 𝜇L MeOH.
After centrifugation, 600 𝜇L supernatant was transferred and the sample was dried
using a speedvac. The residue was reconstituted in 300 𝜇L of isopropanol with 0,1%
formic acid. The prepared samples were transferred to autosampler vials and placed in
an autosampler tray. 8,0 µL of the prepared sample was injected into an LC-MS. The
analysis was performed on an ACQUITY UPLC™ (Waters, the Netherlands) coupled
to a high-resolution mass spectrometer with a Synapt G2 Q-TOF system (Waters, the
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Netherlands) using reference lock mass correction. Lipids were detected in full scan
in the negative ion mode. Chromatographic separation was achieved using an HSS T3
column (1.8 µm, 2.1 * 100 mm) with a flow of 0.4 mL/min over a 16-minute gradient.
Acquired data was preprocessed using Targetlynx software (Masslynx, V4.1, SCN916).
After quality control correction, 10 compounds complied with the acceptance criteria
RSDqc <15%. 6 compounds reported an RSDqc between 15 and 30% and should be
considered with caution.

Positive lipid profiling: The positive lipid platform covers 185 compounds including
triglycerides (TGs, n=85) and non-triglycerides (non-TGs, n=100). 10 µL preprocessed
sample was spiked with 1000 µL IPA containing internal standards and vortexed for
30 sec. Prepared samples were transferred to autosampler vials for LC-MS analysis. In
total 2.5 µL prepared sample was injected for analysis. Chromatographic separation
was achieved on an ACQUITY UPLC™ (Waters, Ettenleur, the Netherlands) with an
HSS T3 column (1.8 µm, 2.1 * 100 mm) with a flow of 0.4 mL/min over a 16 min
gradient. The lipid analysis is performed on a UPLC-ESI-Q-TOF (Agilent 6530, Jose,
CA, USA) high-resolution mass spectrometer using reference mass correction. Lipids
were detected in full scan in the positive ion mode. The raw data were preprocessed
using Agilent MassHunter Quantitative Analysis software (Agilent, Version B.04.00).
After quality control correction, 56 TGs and 39 non-TGs compounds complied with the
acceptance criteria RSDqc<15% and blank effect <40 %. 1 TG and 53 non-TGs reported
an RSDqc between 15 and 30% and should be considered with caution.

Signaling lipid profiling: The signaling lipids platform covers various isoprostane
classes together with their respective prostaglandin isomers from different poly
unsaturated fatty acids (PUFA), including n-6 and n-3 PUFAs such as dihomo-γ-linoleic
acid (DGLA) and arachidonic acid (both n-6) and eicosapentaenoic acid (EPA)
and docosahexaenoic acid (DHA) (both n-3). Also included in this platform are
endocannabinoids, bile acids, and signaling lipids from the sphingosine and sphinganine
classes and their phosphorylated forms, as well as three classes of lysophosphatidic
acids. The three lysophosphatidic acid classes include lysophosphatidic acids (LPAs),
lysophosphatidylglycerol (LPG), lysophosphatidylinositol (LPI), lysophosphatidyserine
(LPS), lysophosphatidylethanolamines (LPE), cyclic-phosphatidic acids(cLPA), and
fatty acid all ranging from C14 to C22 chain length species. The signaling and
peroxidized lipids platform is divided into two chromatographic methods: low and
high pH. In the low pH method, isoprostanes, prostaglandins, nitro-fatty acids,
lyso-sphingolipids, endocannabinoids, and bile acids are analyzed. The high pH
method covers lyso-sphingolipids, lysophosphatidic acids, lysophosphatidylglycerol,
lysophosphatidylinositol, lysophosphatidyserine, lysophosphatidylethanolamines,
cyclic-phosphatidic acids, and fatty acid. Each sample was spiked with antioxidant
and internal standard solution. The extraction of the compounds is performed via
liquid-liquid extraction (LLE) with butanol and methyl tert-butyl ether (MTBE). After
collection, the organic phase is concentrated by first drying followed by reconstituted
in a smaller volume. After reconstitution, the extract is transferred into amber
autosampler vials and used for high and low pH injection. A Shimadzu system, formed
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Figure 2.5Optimization of α and λ in the inner cross-validation (CV) to reach a minimal balanced
error rate (BER) in the outer CV. (A) Shows allα and λ values tested in inner CV against mean BER
of the inner CV. (B) A plot of the optimal α and λ combinations chosen in the inner CV against
their BER in the outer CV shows a variety of favorable α and λ concentrations. (C) A plot of
the number of variables selected in the elastic net model in outer CV shows that with increasing
alpha, the number of variables decreases as is expected in an elastic net model. The data shown
in the figure is a result of the comparison Atypical – (S. pneumoniae + viral).

by three high-pressure pumps (LC-30AD), a controller (CBM-20Alite), an autosampler
(SIL-30AC), and an oven (CTO-30A) from Shimadzu Benelux, was coupled online
with an LCMS-8050 triple quadrupole mass spectrometer (Shimadzu) for high pH
measurements. An LCMS-8060 triple quadrupole mass spectrometer (Shimadzu) was
coupled to the Shimadzu system for low pHmeasurements. Both systems were operated
using LabSolutions data acquisition software (Version 5.89, Shimadzu). The samples
were analyzed by UPLC-MS/MS. An Acquity UPLC BEH C18 column (Waters) was
used to measure the samples in the low pH method. For the high pH method, a Kinetex
EVO column by Phenomenex was used. The triple quadrupole mass spectrometer was
used in polarity switching mode and all analytes were monitored in dynamic Multiple
Reaction Monitoring (dMRM). The acquired data was evaluated using LabSolutions
Insight software (Version 3.1 SP1, Shimadzu), by integration of assigned MRM peaks
and normalization using accordingly selected internal standards. When available, a
deuterated version of the target compound was used as an internal standard. For the
other compounds, the closest-eluting internal standard was employed. For low pH
mode, after quality control correction, 46 metabolites complied with the acceptance
criteria of RSDqc <15% and blank effect <40%. 6 compounds reported an RSDqc between
15 and 30% and should be considered with caution. For high pH mode, after quality
control correction, 43 metabolites complied with the acceptance criteria of RSDqc <15%
and blank effect <40%. Additionally, 18 compounds reported an RSDqc between 15 and
30% and should be considered with caution.
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Figure 2.6 Unsupervised principal component analysis (PCA) plot of all pathogen groups.
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Figure 2.7 Boxplot of BER per number of variables selected shows no clear relation between the
number of variables selected and model performance. (B) Histogram of the number of variables
selected shows that a model with all metabolites included is favored, followed bymodels including
34, 49, 82, 24, or 45 metabolites. Both Figs contain the data of all folds and repeats (n=500) for the
comparison between atypical versus S. pneumoniae and viral infections.
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Figure 2.8 Principal component analysis (PCA) of the atypical pathogen group (log-transformed
and standardized data) shows that there is no clear subgroup within the atypical group that would
prominently drive the separation from the S. pneumoniae and viral infections.
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Table 2.4 Summary of previous studies focusing on bacterial and viral respiratory tract infections and related metabolites.

Compared groups Matrix Analytical method Significantly altered metabolites Reference
Upregulated Downregulated

30 CAP vs 30 HC Plasma NMR 1-methylhistidine lactate, ketone bodies Zhou et al. (2015)

30 CAP vs 38 TB Plasma NMR lactate, pyruvate, lipids, ketone bodies amino acids[leucine, isoleucine, valine],
1-methylhistidine, glucose, nicotinate, GPC Zhou et al. (2015)

11 pneumonia vs
11 HC (children) Plasma UPLC-TOF-MS uric acid, hypoxanthine, glutamic acid L-tryptophan, adenosine-diphosphate Laiakis et al. (2010)

11 pneumonia vs
11 HC (children) Urine UPLC-TOF-MS uric acid, L-histidine Laiakis et al. (2010)

47 pneumonia vs 47 HC Urine NMR

glucose, lactate, ketone bodies, amino acids
[alanine, asparagine, isoleucine, leucine, lysine,
serine, threonine, tryptophan, tyrosine, valine],
carnitine, acetylcarnitine, hypoxanthine, fucose,
myo-inositol, taurine, quinolinate, adipate,
dimethylamine, creatine, 2-oxoglutarate, fumarate

citrate, trigonelline, 1-methylnicotinamide,
succinate, levoglucosan, 1-methylhistidine Slupsky et al. (2009)

30 CAP vs 46 TB Plasma UPLC-QTOF-MS
12(R)-hydroxyeicosatetraenoic acid, ceramide
(d18:1/16:0), cholesterol sulfate,
4a-formyl-4b-methyl-5a-cholesta-8-en-3b-ol

Lau et al. (2015)

42 Influenza A vs
30 Bacterial CAP Plasma NMR, GC-MS

3-Methyl-2-Isovalerate, 3-Methyl-2-oxovalerate,
4-Hydroxybutyrate, Adipate, Alanine, Arabinonic
acid, Asparagine, Aspartic Acid, Citrate, Citric acid,
Fumerate, Histidine, Lysine, Methionine,
Myoinositol, Phenylalanine, Serine, Threonic Acid,
Threonine, Tyrosine, Uric acid, Urea

2-amino Butanoic acid, Acetoacetate, Alkane,
Benzoic acid, Beta-alanine, Carnitine,
Dimethylamine, Formate, Glycine, Gulonic acid,
Hexanoic acid, Leucine, Lactic acid, Pentadecane,
Pyruvic acid, Quinic acid

Banoei et al. (2017)

55 RVS vs
24 Bacterial pneumonia
vs 37 HC (children)

Urine NMR

3-Hydroxyisovalerate, 3-Indoxylsulfate,
Acetoacetate, Betaine, Blue 1.06, Ethanolamine,
Glutamate, N,N-Dimethylglycine, Pantothenate,
Succinate, Tartrate, Uracil

Hippurate, Serine, Threonine Adamko et al. (2016)

Abbreviations: CAP: community-acquired pneumonia; VAP: ventilator-associated pneumonia; HAP: hospital-acquired pneumonia; TB:
tuberculosis; RSV: respiratory syncytial virus; HC: healthy control; NMR: nuclear magnetic resonance; UPLC: ultra-performance liquid
chromatography; GC: gas chromatography; TOF: time-of-flight; QTOF: quadrupole time-of-flight; MS: mass spectrometry.
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Table 2.5 Additional patient characteristics per pathogen group.

S. pneumoniae
(N=48)

Atypical
(N=47)

Viral
(N=30) P-value

Race
Other 1 (2.1%) 1 (2.1%) 0 (0%)
White 31 (64.6%) 46 (97.9%) 30 (100%) 0.81
Missing 16 (33.3%) 0 (0%) 0 (0%)
Nursing home resident

No 46 (95.8%) 47 (100%) 25 (83.3%)
Yes 1 (2.1%) 0 (0%) 4 (13.3%) 0.07
Missing 1 (2.1%) 0 (0%) 1 (3.3%)
Altered mental status

No 43 (89.6%) 42 (89.4%) 27 (90.0%)
Yes 3 (6.2%) 5 (10.6%) 3 (10.0%) 0.85
Missing 2 (4.2%) 0 (0%) 0 (0%)
Respiratory rate

Mean (SD) 25.3 (6.64) 25.5 (6.44) 26.9 (7.32)
Median [Min, Max] 25.5 [12.0, 40.0] 26.0 [14.0, 40.0] 29.0 [12.0, 44.0] 0.81
Missing 8 (16.7%) 8 (17.0%) 6 (20.0%)
Systolic blood pressure

Mean (SD) 131 (25.3) 133 (15.8) 137 (23.2)
Median [Min, Max] 130 [88.0, 226] 130 [99.0, 161] 135 [90.0, 186] 0.81
Missing 1 (2.1%) 0 (0%) 1 (3.3%)
temperature

Mean (SD) 23.5 (8.41) 24.2 (11.5) 19.9 (9.40)
Median [Min, Max] 24.0 [6.00, 42.0] 24.0 [1.00, 41.0] 20.0 [3.00, 39.0] 0.37
Missing 1 (2.1%) 0 (0%) 0 (0%)
pulse

Mean (SD) 104 (21.6) 96.6 (18.6) 94.3 (17.9)
Median [Min, Max] 109 [60.0, 144] 93.0 [50.0, 140] 96.0 [60.0, 120] 0.28
Missing 1 (2.1%) 0 (0%) 0 (0%)
pH

Mean (SD) 12.7 (4.64) 14.5 (4.28) 12.0 (4.66)
Median [Min, Max] 14.0 [3.00, 21.0] 14.0 [3.00, 22.0] 13.0 [1.00, 19.0] 0.31
Missing 8 (16.7%) 19 (40.4%) 5 (16.7%)
BUN

Mean (SD) 38.9 (24.9) 46.0 (21.6) 46.5 (24.1)
Median [Min, Max] 35.0 [2.00, 81.0] 48.0 [1.00, 84.0] 52.0 [4.00, 82.0] 0.50
Missing 1 (2.1%) 0 (0%) 1 (3.3%)
sodium

Mean (SD) 132 (4.68) 131 (5.59) 136 (5.03)
Median [Min, Max] 132 [117, 141] 132 [119, 141] 136 [125, 152] 0
Missing 1 (2.1%) 0 (0%) 0 (0%)
glucose

Mean (SD) 34.6 (13.9) 34.7 (14.0) 36.9 (17.6)
Median [Min, Max] 35.0 [1.00, 58.0] 35.0 [5.00, 59.0] 42.0 [2.00, 59.0] 0.85
Missing 3 (6.2%) 0 (0%) 5 (16.7%)
hematocrit

Mean (SD) 11.0 (4.29) 11.5 (3.75) 10.5 (3.75)
Median [Min, Max] 11.0 [1.00, 19.0] 12.0 [1.00, 17.0] 11.5 [1.00, 16.0] 0.81
Missing 2 (4.2%) 0 (0%) 2 (6.7%)
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S. pneumoniae
(N=48)

Atypical
(N=47)

Viral
(N=30) P-value

Partial pressure of oxygen
Mean (SD) 30.6 (16.5) 31.8 (17.7) 30.1 (16.3)
Median [Min, Max] 34.5 [2.00, 56.0] 33.0 [1.00, 55.0] 37.0 [1.00, 50.0] 0.92
Missing 8 (16.7%) 19 (40.4%) 5 (16.7%)
Pleural effusion on x ray

No 39 (81.2%) 45 (95.7%) 25 (83.3%)
Yes 8 (16.7%) 2 (4.3%) 5 (16.7%) 0.31
Missing 1 (2.1%) 0 (0%) 0 (0%)
Data are presented as number (%) or mean (SD). Abbreviations: BUN: blood urea nitrogen.

Table 2.6 Overview of the number of metabolites included in the metabolomics platforms,
measured in the samples and included in the data analysis.

Measurement
platform

Number of metabolites
included in platform

Number of metabolites
measured in samples

Number of metabolites
included in data analysis

Amines 74 55 55
Acylcarnitines 48 28 28
Organic acids 28 13 13
Negative lipids 30 16 16
Signaling lipids 231 113 91
Positive lipids 185 149 144

Total 596 374 347

Table 2.7 Information on measurement platforms used, metabolite classes targeted per
platform, targeted metabolites, their abbreviations and names in R (if detected) and
identifiers (if available).

This table is available as Excel file (S4 Table) on the website of the publisher at
https://doi.org/10.1371/journal.pone.0252378.

Table 2.8 Metabolomics data after quality control.

This table is available as csv file (S5 Table) on the website of the publisher at
https://doi.org/10.1371/journal.pone.0252378.
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Abstract

Background: Metabolic changes induced by the host immune response to pathogens
found in patients with community-acquired pneumonia (CAP) may provide insight into
its pathogenesis. In this study, we characterized differences in the host metabolic response
to common CAP-associated pathogens.
Method: Targetedmetabolomic profilingwas performed on serum samples obtained from
hospitalized CAP patients (n=119) at admission. We quantified 347 unique metabolites
across multiple biochemical classes, including amines, acylcarnitines, and signaling
lipids. We evaluated if unique associations between metabolite levels and specific
CAP-associated pathogens could be identified.
Results: Several acylcarnitines were found to be elevated in C. burnetii and herpes
simplex virus (HSV), and lowered in M. pneumoniae as compared to other pathogens.
Phenylalanine and kynurenine were found elevated in L. pneumophila as compared to
other pathogens. S-methylcysteine was elevated in patients with M. pneumoniae, and
these patients also showed lowered cortisol levels in comparison to almost all other
pathogens. For the herpes simplex virus, we observed a unique elevation of eicosanoids
and several amines. Many lysophosphatidylcholines showed an altered profile in C.
burnetii versus S. pneumoniae, L. pneumophila, and respiratory syncytial virus. Finally,
phosphatidylcholines were negatively affected by the influenza virus in comparison to S.
pneumoniae.
Conclusions: In this exploratory analysis, metabolites from different biochemical classes
were found to be altered in serum samples from patients with different CAP-associated
pathogens, which may be used for hypothesis generation in studies on differences in
pathogen host response and pathogenesis of CAP.
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3.1 Introduction

Community-acquired pneumonia (CAP) is a common infection of the lower respiratory
tract, caused by bacterial or viral pathogens [51]. Causative pathogens that are
commonly found in CAP patients include Streptococcus pneumoniae, respiratory viruses,
Haemophilus influenzae, and, to a lesser extent Mycoplasma pneumoniae and Legionella
pneumophila [51, 29, 30]. CAP is associatedwith highmortality andmorbidity, especially
in the elderly [3, 31], and with distinct differences in clinical outcomes between different
CAP-associated pathogens [52, 53].

There is an increasingly recognized role of the patient-associated host metabolic
response to infection and its association with overall innate immune system activation
and clinical outcomes [17, 34, 54]. Previous studies have found distinct effects of this host
metabolic response in COVID-19 and sepsis[55, 56, 57, 58]. We previously evaluated the
discriminatory power of host-associated metabolites to support the microbial diagnosis
of CAP and identifiedmetabolic biomarkers to support the diagnosis of atypical bacterial
pathogens [59].

In this study, we aimed to further characterize the differential metabolic host response
associated with distinct CAP-associated pathogens, which may support understanding
the role of metabolic changes in the pathogenesis associated with specific pathogens. To
this end, we quantified 347 unique metabolites in 119 serum samples taken at hospital
admission from patients with CAP and studied their association with the pathogens
found in these patients.

3.2 Materials and methods

3.2.1 Study population

We analyzed previously collected serum samples obtained from 119 hospitalized patients
with CAP, obtained as part of two previously conducted clinical studies executed
between October 2004 and September 2010 and collected within 24 hours after hospital
admission [29, 30]. For all patients, microbial disease etiology was confirmed using
conventional diagnostic methods such as culturing, PCR, and urinary antigen tests.
Inflammatory markers such as CRP and leukocyte counts were also available. Most
patients (80%) were diagnosedwith bacterial infections and the sample size per pathogen
varied between 3 to 48 samples. Pathogen groups, a group of patients in which the
same pathogen was found, including only one patient were excluded. None of the
included patients had received treatment with corticosteroids. The patient distribution
per pathogen showed no significant differences in sex and pneumonia severity index
(PSI) score. However, the mean age differed significantly between pathogen groups (p
< 0.05). All patients that participated in the previous clinical studies provided informed
consent for the secondary use of their materials. Data were handled in an anonymized
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way. An overview of the patient characteristics is provided in Table 3.1 and additional
information is available in Table 3.2.

36



D
ifferentialm

etabolic
hostresponse

Chapter 3

Table 3.1 Patient characteristics per CAP-associated pathogen.

Patient characteristic S. pneumoniae L. pneumophila C. burnetii C. psittaci M. pneumoniae Influenza virus HS virus RS virus Parainfluenza virus
(n=48) (n=18) (n=17) (n=7) (n=5) (n=11) (n=6) (n=4) (n=3)

Age (years) *
Mean (SD) 62.2 (18.9) 62.9 (12.5) 47.4 (10.0) 62.6 (14.5) 38.8 (10.4) 67.0 (15.9) 71.3 (18.6) 69.3 (25.9) 83.3 (5.77)
Sex

Male 22 (45.8%) 13 (72.2%) 14 (82.4%) 5 (71.4%) 2 (40.0%) 9 (81.8%) 5 (83.3%) 2 (50.0%) 2 (66.7%)
PSI score

<50 9 (18.8%) 0 (0%) 5 (29.4%) 1 (14.3%) 3 (60.0%) 1 (9.1%) 0 (0%) 1 (25.0%) 0 (0%)
51-70 7 (14.6%) 3 (16.7%) 9 (52.9%) 0 (0%) 1 (20.0%) 3 (27.3%) 1 (16.7%) 0 (0%) 0 (0%)
71-90 5 (10.4%) 6 (33.3%) 1 (5.9%) 2 (28.6%) 1 (20.0%) 1 (9.1%) 1 (16.7%) 1 (25.0%) 0 (0%)
91-130 23 (47.9%) 7 (38.9%) 1 (5.9%) 4 (57.1%) 0 (0%) 6 (54.5%) 2 (33.3%) 1 (25.0%) 2 (66.7%)
131> 4 (8.3%) 2 (11.1%) 1 (5.9%) 0 (0%) 0 (0%) 0 (0%) 2 (33.3%) 1 (25.0%) 1 (33.3%)
Duration of symptoms before admission *

Mean (SD) 4.06 (3.03) 5.11 (1.23) 5.06 (1.71) 4.14 (2.04) 13.4 (16.1) 4.45 (2.34) 5.17 (4.45) 6.50 (5.07) 4.00 (2.65)
CRP upon admission

Mean (SD) 265 (166) 306 (90.8) 233 (115) 272 (110) 145 (86.0) 207 (87.9) 271 (121) 289 (135) 220 (142)
Leukocyte count upon admission*

Mean (SD) 16.9 (5.99) 13.0 (4.24) 9.49 (1.56) 10.7 (5.03) 10.5 (3.29) 10.1 (4.93) 15.3 (4.89) 14.2 (7.94) 13.7 (9.30)
* Significant difference between pathogens (p-value < 0.05). Abbreviations: HS: herpes simplex; RS: respiratory syncytial; PSI: pneumonia

severity index; CRP: C-reactive protein; SD: standard deviation.
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3.2.2 Bioanalytical procedures

Metabolomic profiling was performed by the Biomedical Metabolomics Facility of
Leiden University (BMFL), Leiden, The Netherlands. Details of the bio-analytical
procedures are described elsewhere [59]. Briefly, the serum samples were quantitatively
analyzed using five liquid- and one gas- chromatography methods coupled to mass
spectrometry detectors, with a total coverage of 596 metabolite targets from 25
biochemical metabolite classes such as organic acids, amino acids, biogenic amines,
acylcarnitines, and lipids. Following data integration and quality control steps, 374
unique metabolites were reported and underwent statistical analysis.

3.2.3 Data analysis

Themetabolite levels were log-transformed and standardized prior to statistical analysis.
Biological and biochemical relevant sums and ratios of metabolites (Table 3.3) were
calculated from the raw metabolite data and were added as variables to the dataset,
undergoing the same analysis together with metabolites.

Exploratory data analysis was performed using principal component analysis (PCA).
To identify differences in metabolite levels between pathogens, we performed analysis
of variance (ANOVA) with a false discovery rate (FDR) multiple testing correction.
P-adjusted significant metabolites (q < 0.1) were tested with Tukey’s posthoc test to
identify which pathogen groups the metabolite was able to distinguish between. In
addition to the significance threshold, we applied a cutoff of >20% fold change between
the medians of the raw metabolite levels of each group.

All data analysis was performed using R. The scripts used for the data analysis are
available on GitHub at http://github.com/vanhasseltlab/MetabolicHostResponseToCAP.

3.3 Results and discussion

3.3.1 Metabolic markers differentiate between pathogens

The metabolomics analysis of the patient serum samples yielded 347 quantifiable
unique metabolites from different biochemical metabolite classes. No visible separation
between samples obtained from patients infected by the various pathogens was
apparent using PCA (Figure 3.6). Systematic analysis of individual metabolites for a
specific pathogenic species yielded 64 unique metabolites that were significantly altered
(ANOVA, q < 0.1 and FC > 20%) as compared to other pathogenic species (Figure 3.1-3.5).
All significant results are shown together in Figure 3.8 and Table 3.4. Large variation in
group size for specific pathogenic species (n=3-48) and large within pathogen species
group variation was present (Figure 3.7), limiting the ability to identify associations
between metabolites and specific pathogenic species. Nonetheless, although often not
statistically significant, trends between groups of metabolites and specific pathogenic
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species were apparent, which is why we have maintained these in visualization for
each metabolic class (Figure 3.1-3.4). The discriminating metabolites belong to different
biochemical classes. The results are reported by biochemical class to allow focused
biochemical discussion. A comprehensive qualitative overview of the main associations
between pathogen species and metabolites identified has been summarized in Figure 3.5.

3.3.2 Carnitine and acylcarnitines

We identified significant differences in carnitines between serum samples of CAP
patients that carried the pathogens C. burnetii, herpes simples virus (HSV), or M.
pneumoniae compared to CAP patients with other pathogens (Figure 3.1). The most
consistent and statistically significant differences were found in patients with C. burnetii
compared to patients with L. pneumophila or S. pneumoniae infections. Patients with C.
burnetii showed 60-80% elevated long-chain acylcarnitines (LCAC), leading to a 2-fold
lower ratio of free carnitine/total acylcarnitines. Changes in acylcarnitines can be
related tomitochondrial energy production shifts between glycolysis and beta-oxidation
of long-chain fatty acids [60, 61]. Naturally, such shifts depend on the glucose stores and
the availability of carnitine as a limiting factor.

We observed increased levels of carnitine and short-chain acylcarnitines (SCAC) for L.
pneumophila vs. C. burnetii and M. pneumophila. Elevated carnitine and short-chain
acylcarnitines suggest successful fatty acid beta-oxidation. Conversely, we also saw
elevated mid-chain acylcarnitines (MCAC), most pronounced in patients with herpes
simplex virus versus C. burnetii. MCAC could indicate incomplete beta-oxidation of
long-chain fatty acids and may be related to mitochondrial dysfunction in the diseased
state [62]. In contrast, LCAC were elevated mainly in patients with C. burnetii infection,
suggesting a low rate of beta-oxidation rather than an incomplete process. It is
unknown how well the levels of circulating acylcarnitines reflect the cellular levels,
however, accumulation of long-chain acylcarnitines in lung cells indicated a defective
beta-oxidation process, increasing oxidative stress and potentially leading to epithelial
cell death [63]. Moreover, LCAC accumulation in the air-fluid interface of the lung can
reduce lung function due to the inhibition of pulmonary surfactant [64].

It has been reported that impaired utilization of acylcarnitines for energy production
can be caused by various viruses, including influenza and respiratory syncytial virus
[63], although the latter two did not show any significant results in our study.

Overall, for acylcarnitines high within-pathogen group variance was present
(Figure 3.7), which limited identifying further metabolite-pathogen associations.
Acylcarnitine levels are associated with food consumption, certain medications such
as valproic acid, and carnitine supplementation [65, 66, 67].
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Figure 3.1 Fold changes of carnitine and acylcarnitines as median values per pathogen group
compared to CAP patients with other pathogens. Significant differences (q < 0.1 and FC > 20%)
are marked with a green star.

3.3.3 Organic acids, amino acids, and related compounds

Significant differences in serum amino acids and derivatives were found in all groups
of patients infected by CAP-associated pathogens (Figure 3.2). Several significantly
different metabolites were only found in infections by specific pathogens. For example,
patients with L. pneumophila had elevated kynurenine (1.5-1.7 fold) and phenylalanine
(1.4-1.6 fold), while M. pneumoniae showed elevated S-methylcysteine (1.3-1.7 fold).
Also, glutamate was elevated in C. burnetii compared to L. pneumophila (1.8 fold). Most
of the stronger findings can be related to inflammation and oxidative stress and were
associated with negative health outcomes in studies of various infections.

Elevated kynurenine was observed in patients with CAP and sepsis [68, 69],
and severe COVID-19 [56, 70, 71]. Kynurenine increases due to enhanced IDO
(Indoleamine-2,3-dioxygenase) conversion of tryptophan during the inflammatory
response. IDO is expressed in the lungs and blood cells, and its activity and expression
are induced by pro-inflammatory cytokines, viral proteins, and lipopolysaccharides [72,
73, 74]. Kynurenine acts as an immune suppressor via binding to the aryl-hydrocarbon
receptor (AHR) [75], and also inhibits nitric oxide synthase (NOS), thereby increasing
oxidative stress. Kynurenine also contributes to vasodilation and hypotension in sepsis
[58, 76] and increases endothelial activation which leads to impaired microvascular
reactivity [68, 77].

Elevated phenylalanine was associated with immune activation and negative outcome in
patients with COVID-19 [55, 56], post-trauma, or sepsis [57, 58]. A possible explanation
for elevated phenylalanine in the inflammatory environment is ROS-induced oxidation
of the cofactor tetrahydrobiopterin (BH4) which is essential for the conversion
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Figure 3.2 Fold changes of organic acids, amino acids, and derivatives as median values per
pathogen group compared to CAP patients with other pathogens. Significant differences (q <
0.1 and FC > 20%) are marked with a green star.

of phenylalanine to tyrosine and the downstream catecholamines by the enzyme
phenylalanine 4-hydroxylase [57, 78].

Glutamate, a neurotransmitter in the CNS, also modulates the activity of immune cells
via the NMDA receptor, and excessive production was related to damaged endothelial
cells [79, 80, 81].

We found elevated uracil in patients with influenza and herpes simplex virus compared
to patients with C. psittaci (1.2-1.9 fold). Patients with S. pneumoniae and L. pneumophila
showed higher 3-hydroxyisobutyric acid (1.5-1.6 fold) and lower isoleucine (1.4 fold
lower) compared to C. burnetii.

3.3.4 Signaling lipids

The signaling lipids covered in the applied platforms included oxylipins,
endocannabinoids, their precursor fatty acids, and also cortisol. Metabolites that
showed significant results were included in Figure 3.3.

Although we did not find significant differences in fatty acids in this study, the
oxylipin profile of patients with herpes simplex virus was unique in comparison to
other infections, showing significantly higher (all FC > 1.8) prostaglandin F2 alpha
(PGF2a), 9,10,13-TriHOME (TriHOME), and thromboxane B2 (TXB2). Oxylipins are
immune modulators produced by the peroxidation of C20 or C22 polyunsaturated fatty
acids (PUFA). The omega-6 PUFA oxylipins exhibit mainly pro-inflammatory action
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during the acute phase of inflammation. Some of these oxylipins also aid in the
transition from innate to adaptive immune response. The arachidonic acid-produced
PGF2-alpha is a direct metabolite of PGE2 and its increase aligns with the existing
evidence that prostaglandin synthesis reactivates the herpes virus and increases its
spread [82]. Although fluctuating along the course of inflammation, low levels of
prostanoids (PGE2 and TXB2) are characteristic of sepsis non-survivors [83, 84] and
COVID-19 [85]. TriHOMEs were reported to be dysregulated in respiratory diseases
such as asthma and COPD [86, 87].

Of the covered endocannabinoids, several fatty acyl ethanolamides (EAs) were
significantly different between patients with various infections. Docosatetraenoyl
ethanolamide (DEA), which is the ethanolamide of the omega-6 adrenic acid (22:4)
docosatetraenoic acid, was elevated in patients with C. psittaci compared to patients
with S. pneumoniae or influenza virus (1.3-1.4 fold). Patients with the influenza virus
showed the lowest levels of both DEA and dihomo-gamma-linolenoyl ethanolamide
(DGLEA), the ethanolamide of the omega-6 (20:3) dihomo-gamma-linolenic acid. In
comparison to other pathogens, patients with herpes simplex virus showed trends of
elevated palmitoleoyl ethanolamide (POEA) and alpha-linolenoyl ethanolamide (aLEA),
which are the ethanolamides of the omega-7 (16:1) palmitoleic acid, and the omega-3
(18:3) alpha-linolenic acid, respectively. A 2-fold significant elevation of POEA was
measured in comparison to patients with C. burnetii and a 1.4-fold aLEA elevation in
comparison to M. pneumoniae. Endocannabinoids do not only act as CNS modulators
but are also peripheral immune mediators. Their pro- or anti-inflammatory activity
varies and depends on their acyl group, the type of cells (immune; endothelial, etc.),
and the receptors they bind to. In times of increased demand, for example during
an acute immune response, and depending on diet and fat reserves, increased levels
of endocannabinoids may reflect accelerated catabolism of cellular lipids, to serve as
precursors for free fatty acids and oxylipins. It is also possible to see a shift towards
the synthesis of fatty acyl EAs from fatty acids that occurs without medication [88],
or due to treatment with corticosteroids and NSAIDs, that inhibit PLA2 and COX
enzymes [89, 90]. The last significant signaling lipid, cortisol, was lower in patients
with M. pneumoniae compared to all other pathogens (2-3.3 fold lower), and lower for
C. burnetii patients in comparison to S. pneumoniae and L. pneumophila patients (1.6
fold lower, Figure 3.8). Reduced excretion of cortisol indicates lower activation of the
hypothalamic-pituitary-adrenal (HPA) axis in response to stress and innate immune
activation following any infection. Cortisol stimulates gluconeogenesis and reduces
inflammation, therefore its levels also affect (directly or indirectly) other metabolites
measured in this study. In multiple studies on infections of the lower respiratory system,
higher cortisol levels at hospital admission were predictive of mortality [91], indicating
its relation to acute inflammation and disease severity.

3.3.5 Phospholipids and derivatives

Phospholipids form cell membranes and are hydrolyzed into lysophospholipids and
long-chain fatty acids by various phospholipase A2 (PLA2) enzymes. The host’s innate
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Figure 3.3 Fold changes of oxylipin, endocannabinoid, and cortisol as median values per pathogen
group compared to CAP patients with other pathogens. Significant differences (q < 0.1 and FC >
20%) are marked with a green star.

immune response to infection, as well as the pathogen itself, can induce the activity
of PLA2 [92]. Patients with S. pneumoniae infection showed the lowest levels of any
lysophospholipids (LPCs) compared to other pathogens, alongside the highest levels of
intact phosphatidylcholines (PCs), suggesting reduced activity of PLA2. Such a profile
was also characteristic of sepsis [91, 93], possibly due to the varying degree of expression
and activities of different PLA2 enzymes. Many LPCs and the total LPC/PC ratio were
significantly higher in C. burnetii compared to S. pneumoniae, L. pneumophila, and RS
virus (1.5-4 fold, Figure 3.4). Bacteria can use host lipids as building blocks for bacterial
membrane formation and as an energy source. Also, host lipids are crucial for the entry
of bacteria, viruses or toxins into cells. For example, C. burnetii has been found to use
phospholipase A to integrate lipids into its membrane. [94]. L. pneumophila increased
its virulence by secretion of PLA2 that destructed alveolar surfactant phospholipids
[95]. Conversely, many intact PCs showed significantly lower levels in patients with the
influenza virus in comparison to those with S. pneumoniae. The M protein of viruses like
the influenza virus can interact with lipids and phosphatidylcholine vesicles allowing
membrane fusion [96, 97, 98, 99].

Regarding lysophosphatidyls with serine or inositol functional groups (LPS and LPI),
patients with parainfluenza virus showed 3-5 fold higher LPS (22:6) compared to S.
pneumoniae, C. psittaci, and herpes simplex virus. Patients with L. pneumophila infection
showed 30-90% higher LPIs compared to S. pneumoniae, influenza, and herpes simplex
virus.
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Figure 3.4 Fold changes of phospholipids including (lyso)phosphatidylcholines median values
per pathogen group as median values per pathogen group compared to CAP patients with other
pathogens. Significant differences (q < 0.1 and FC > 20%) are marked with a green star.
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3.3.6 Summary of metabolic findings per pathogen

The consolidation of the obtained results associates specific bacterial and viral CAP
infections with metabolic perturbations related to inflammation, oxidative stress, lipids
utilization, and energy production (Figure 3.5). Patients with S. pneumoniae infection
showed high levels of the stress hormone cortisol that can be excreted as an HPA
axis response to pro-inflammatory cytokines and hypoxia. Moreover, patients with S.
pneumoniae infections consistently showed the highest PCs in comparison to all other
pathogen groups, and very low lysophospholipids, suggesting lower activation of PLA2
enzymes, as described before in studies on sepsis [58, 91]. The lowest levels of LPCswere
found in patients with L. pneumophilia infection, who also showed the highest levels
of cortisol, kynurenine, and phenylalanine, all characteristic of acute inflammatory
response. Possibly indicating signs of oxidative stress and potentially also mitochondrial
dysfunction [100], these patients had increased production of energy via beta-oxidation
of fatty acids, evidenced by the elevated end-products of free carnitine and short-chain
acylcarnitines. In comparison, patients with C. burnetii infection showed inhibition
of fatty acid beta-oxidation, suggested by high levels of long-chain acylcarnitines,
which are associated with increased ROS. These patients also had elevated glutamate
accompanied by the highest levels of lysophospholipids, all can be linked to either
inflammation, oxidative stress, or endothelial dysfunction [80, 81, 91, 98, 101]. Patients
with C. psittaci infection possibly suffered from metabolic defects causing incomplete
beta-oxidation of long-chain fatty acids, suggested by the elevated mid-chain fatty
acids. This interrupted metabolism may be related to their relatively high levels of
omega-6 fatty acyl ethanolamides, and high kynurenine, indicating acute inflammation.
Despite the small sample size, patients with herpes simplex infection showed unique
disruption in lipid metabolism. This included accumulation of long- and medium-chain
acylcarnitines, elevated non-omega-6 fatty acyl ethanolamides, and very high levels of
certain oxylipins, that possibly support the spread of the infection.

3.3.7 Study limitations and future perspectives

In this study, the sample size of patient groups with different CAP-associated pathogenic
species was unbalanced and in several cases low (Table 3.1). Furthermore, a large
within-group variance of metabolite levels was observed, which may impact our
findings, especially in small sample size pathogen groups. Finally, the mean age of
patients was unbalanced across the cohort, possibly acting as an additional confounder,
since many aspects of metabolism change with age [102]. Overall, these factors limit
the power to detect statistically significantmetabolite-pathogen associations and require
careful consideration of the relationships identified and further validation in a larger and
more balanced study cohort. Nonetheless, several of the identified relationships are in
line with expectations and other literature reports, supporting the biological relevance
of our analysis.

Our study only considered metabolite levels at a single time point, even though patients
will enter the clinical at different stages of their infection. The use of longitudinal
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Figure 3.5Overview of differential metabolic host response associations for community-acquired
pneumonia-associated pathogens inferred from the current analysis. A pathogen symbol indicates
that this patient group had the highest levels of metabolite(s) in the red box. Metabolites that
were either not detected or detected without significant results are in white boxes. Enzymes are
in ellipses, full lines are part of a metabolic pathway or transformation, and broken lines indicate
an inducing or inhibiting effect. Abbreviations: see the abbreviation list. This figure was created
with BioRender.com.
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metabolite levels measured in patients represents an important next step to help to
correct for such differences, and, to elucidate the relationship between changes in
metabolite levels and biochemical or cellular biomarkers for immunological and/or
inflammatory response markers, e.g. C-reactive protein levels, cytokines, and leukocyte
cell counts [12].

Importantly, we have made available the full raw dataset underlying this study, which
could be of interest for further bioinformatics analyses of the immune-metabolic
responses reported [103].

3.4 Conclusion

In this study, we identified metabolites associated with the host response to specific
CAP-associated pathogens, which is of relevance to further elucidate the pathogenesis
of specific pathogens. We identified 64 metabolites that were significantly different
between several pathogens. Specific bacterial and viral pathogens could be associated
with metabolic perturbations that can be related to inflammation, oxidative stress, lipids
utilization, and energy production. Further research should be conducted to validate our
results and to further unravel themechanisms of themetabolic host response to different
pathogens causing CAP.
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3.5 Supplementary data

Figure 3.6 Principal component analysis (PCA) plot of all pathogens. The percentages denote the
percentage of variance explained by each principal component. Data were log-transformed and
standardized prior to analysis.
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Figure 3.7 Box-scatter plots of selected metabolites from different biochemical classes, that
showed significant differences between pathogen patient groups. The box shows the lower
quartile, the median, and the upper quartile of the metabolite ratios for each pathogen, with the
whiskers denoting the minimum and maximum metabolite ratios within the interquartile range.
Individual samples are shown as grey dots. Different letters above each bar represent significant
differences between the groups.
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Figure 3.8 Fold change of metabolite levels for all comparisons and all biochemical classes. Fold change values are shown only for metabolites with a
significance of q < 0.1 & FC > 20%.
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Table 3.2 Extended patient characteristics

This table is available as pdf file (Table A.1) on the website of the publisher at
https://doi.org/10.1016/j.metop.2023.100239

Table 3.3Metabolite ratios and sums

Metabolite sum or ratio name in R Metabolite sum or ratio formula
BCAA_sum isoleucine + leucine + valine
TCA_cycle_sum Citric acid + lactic acid + malic acid + fumaric acid
urea_cycle_sum Citrulline + arginine + ornithine + fumaric acid

lc_Carnitines_sum
Myristoilcarnitine + Hexadecenoylcarntine + Palmitoylcarnitine + Stearoylcarnitine +
Dodecenoylcarnitine + Tetradecenoylcarnitine + Linoleylcarnitine + Oleylcarnitine +
Tetradecadienylcarntine

mc_Carnitines_sum Hexanoylcarnitine + Octanoylcarnitine + Octenoylcarnitine + Decanoylcarnitine +
Lauroylcarnitine + Nonaylcarnitine + Pimeylcarnitine + Decenoylcarnitine

sc_Carnitines_sum Acetylcarnitine + Propionylcarnitine + Isobutyrylcarnitine + Butyrylcarnitine +
Tiglylcarnitine + Methylbutyroylcarnitine + Isovalerylcarnitine

Cer_sum Cer(d18:1/22:1) + Cer. (d18:1/24.1. + Cer(d18:1/24:0) + Cer(d18:1/16:0) +
Cer(d18:1/23:0) + Cer(d18:1/24:0)

SM_sum

Sphingomyelin (d18:1/14:0) + (d18:1/15:0) + (d18:1/16:0) + (d18:1/16:1) +
(d18:1/17:0) + (d18:1/18:0) + (d18:1/18:1) + (d18:1/18:2) + (d18:1/20:0) +
(d18:1/20:1) + (d18:1/21:0) + (d18:1/22:0) + (d18:1/22:1) + (d18:1/23:0) +
(d18:1/ 23:1) + (d18:0/24:0) + (d18:0/24:1) + (d18:0/24:2) + (d18:0/25:0) +
(d18:0/25:1)

LPC_sum Lysophosphatidylcholine (14:0) + (16:0) + (16:1) + (18:0) + (18:1) + (18:2) +
(18:3) + (20:4) + (20:5) + (22:6) + (O-16:1) + (O-18:1)

PC_sum

Diacyl-phosphatidylcholine (32:0) + (32:1) + (32:2) + (34:1) + (34:2) + (34:3) +
(34:4) + (36:1) + (36:2) + (36:3) + (36:4) + (36:5) + (36:6) + (38:2) + (38:3) +
(38:4) + (38:5) + (38:6) + (38:7) + (40:4) + (40:5) + (40:6) + (40:7) + (40:8) +
(O-34:1) + (O-34:2) + (O-34:3) + (O-36:2) + (O-36:3) + (O-36:4) + (O-36:5) +
(O-36:6) + (O-38:4) + (O-38:5) + (O-38:6) + (O-38:7) + (O-40:6) + (O-42:6) +
(O-44:5)

HT5_Trp_ratio Serotonine / Tryptophan
ADMA_Arg_ratio ADMA / Arginine
SDMA_Arg_ratio SDMA / Arginine
Carnitine_sum_lc_Carnitines_ratio Carnitine / LCAC sum
Carnitine_sum_mc_Carnitines_ratio Carnitine / MCAC sum
Carnitine_sum_sc_Carnitines_ratio Carnitine / SCAC sum
DCA_CA_ratio DCA / CA
FA_14.1_14.0 FA (14:1) / FA (14:0)
FA_16.1_16.0 FA (16:1) / FA(16:0)
Gln_Glu Glutamine / Glutamic acid
Kyn_Trp Kynurenine / Tryptophan
sum_BCAA_sum_Phe_Tyr_ratio BCAA sum / (Phenylalanine + Tyrosine)
sum_CER_sum_SM_ratio Cer sum / SM sum
sum_LPC_sum_PC_ratio LPC sum / PC sum

Table 3.4 Significant metabolites for the host response to different CAP pathogens (q < 0.1, FC >
20%)

This table is available as Excel file (Table A.3) on the website of the publisher at
https://doi.org/10.1016/j.metop.2023.100239

51





CHAPTER 4
Longitudinal metabolite
profiling of Streptococcus
pneumoniae-associated
community-acquired

pneumonia

Ilona den Hartog∗, Laura B. Zwep∗, Thomas Hankemeier, Jacqueline J. Meulman,
Ewoudt M.W. van de Garde, J.G. Coen van Hasselt. Longitudinal metabolite profiling of
Streptococcus pneumoniae-associated community-acquired pneumonia. Metabolomics
(2024). (∗ Shared first authors)

53



Chapter 4

Abstract

Introduction: Longitudinal biomarkers in patients with community-acquired
pneumonia (CAP) may help in monitoring of disease progression and treatment
response. The metabolic host response could be a potential source of such biomarkers
since it closely associates with the current health status of the patient.
Objectives: In this study we performed longitudinal metabolite profiling in patients with
CAP for a comprehensive range of metabolites.
Methods: Previously collected serum samples from CAP patients with confirmed
Streptococcus pneumoniae infection (n=25) were used. Samples were collected at multiple
time points, up to 30 days after admission. A wide range of metabolites was measured,
including amines, acylcarnitines, organic acids, and lipids. The associations between
metabolites and C-reactive protein (CRP), procalcitonin, CURB disease severity score at
admission, and total length of stay were evaluated.
Results: Distinct longitudinal profiles of metabolite profiles were identified,
including cholesteryl esters, diacyl-phosphatidylethanolamine, diacylglycerols,
lysophosphatidylcholines, sphingomyelin, and triglycerides. Positive correlations
were found between CRP and phosphatidylcholine (34:1) (cor=0.63) and negative
correlations were found for CRP and nine lysophosphocholines (cor=-0.57 to -0.74). The
CURB disease severity score was negatively associated with six metabolites, including
acylcarnitines (tau=-0.64 to -0.58). Negative correlations were found between the length
of stay and six triglycerides (TGs), especially TGs (60:3) and (58:2) (cor=-0.63 and -0.61).
Conclusion: The identified metabolites may provide insight into biological mechanisms
underlying disease severity and may be of interest for exploration as potential treatment
response monitoring biomarker.
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4.1 Introduction

Community-acquired pneumonia (CAP) is a lower respiratory tract infection with a
high incidence and is associated with the hospitalization of approximately one million
adults per year [104]. The most common cause of CAP is Streptococcus pneumoniae
[105]. In hospitalized CAP patients, there is a need to monitor the antibiotic treatment
response to optimize the treatment strategy [106]. In addition, there is a need for
guidance on decisions about earlier termination of antibiotic treatment to minimize the
risk of antimicrobial resistance. Monitoring of treatment response is currently achieved
through observation of clinical symptoms and with inflammatory markers such as
C-reactive protein (CPR) and procalcitonin (PCT) [13, 12]. In particular, PCT is relevant
for informing early treatment termination decisions but lacks predictive performance
for CAP prognosis [107, 108]. Therefore, there is a need for biomarkers that give early
insights into the clinical course of CAP.

Biomarkers that reflect the current physiological state of the patient have the potential
to accurately monitor and predict the treatment response in CAP patients. Because
the metabolome closely represents this physiological state, metabolomics-techniques
may enable discovery of relevant novel biomarkers. Indeed, for CAP and sepsis, the
potential for metabolomics-based biomarkers measured at a static time point has been
demonstrated [109]. However, the longitudinal monitoring of metabolic changes within
patients may allow for an improved characterization of treatment response [14]. For
example, CAP patients show a change in lysophosphatidylcholines that mirrors the
transition from acute illness to recovery after starting antibiotic treatment [25]. Further
systematic characterization of longitudinal metabolic changes in CAP patients may thus
be of relevance for identification of metabolic biomarkers that can predict and monitor
the treatment response in these patients.

To this end, in this study, we aimed to comprehensively characterize the change
of longitudinal metabolite profiling in hospitalized CAP patients with a confirmed
S. pneumoniae infection using metabolomite profiling and evaluate how metabolic
changes relate to disease severity based on CURB scores, established inflammation
markers, and clinical treatment response quantified using the length of stay in the
hospital.

4.2 Materials and methods

4.2.1 Patient cohort

We utilized serum samples collected at multiple time points during hospitalization from
25 hospitalized CAP patients with an S. pneumoniae infection. These samples were
previously collected as part of a larger clinical study that was performed between
November 2007 and September 2010 [29]. The causative pathogen was identified
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using culturing or a urinary antigen test. We selected samples from patients with
a confirmed S. pneumoniae infection. We excluded patients with a mixed infection
involving additional pathogen(s) and one patient that died during the study period.
Samples were collected at five time points: at the day of admission (day 0), and at days
1, 2, 4, and 30 after admission. CRP and creatinine were measured in the hospital at the
same time points as the blood samples used for metabolite profiling obtained. Samples
were stored at -80 degrees Celsius, andwent through amaximumof 2 freeze-thaw cycles,
so stable metabolites were preserved in the samples [110, 111]. Not all time points were
available for each patient, resulting in 115 samples over the 25 patients. On the day of
admission, disease severity was determined using the CURB score, which is a scoring
system based on confusion, blood urea > 7 mmol/l, respiratory rate (RR) ≥ 30/min;
systolic BP < 90 mmHg or diastolic BP ≤ 60 mmHg [112]. A score of two or higher
is classified as severe CAP.

4.2.2 Bio-analytical procedures

Serum samples were analyzed using five targeted LCMS methods and one targeted
GCMS method by the Biomedical Metabolomics Facility of Leiden University, Leiden,
The Netherlands, as described previously [59]. The metabolomics profiling covered 596
metabolite targets from 25 metabolite classes, including amino acids, biogenic amines,
acylcarnitines, organic acids, and multiple classes of lipids. Details of the metabolomic
analysis methods used are provided in section 4.5. A total of 369 unique metabolites
was measured as relative levels, of which 6 metabolites were removed due to high
missingness (≥ 20%), resulting in 363 metabolites being evaluated in data analysis.
Biochemically-selected sums and ratios of metabolites were calculated and added to the
data (Table 4.2).

PCT was measured in the same serum samples used for the metabolomite profiling
analysis. PCT analysis was performed using the human procalcitonin CLIA kit from
Abbexa (abx190129). Samples were measured in duplicate if sample volumes were
sufficient (95% of samples).

4.2.3 Data analysis

The metabolite levels were scaled through log-transformation and standardization. To
explore the variability of the high-dimensional metabolomite profiling dataset, principal
component analysis (PCA) was used. The PCA was used on the scaled metabolite
profiling data over the different time points, with the metabolites as variables and each
observation being a sample from a patient for a specific time point [113]. As part of
the PCA, missing values were imputed through multiple imputation using expectation
maximization (EM-PCA), which iteratively calculates the principal components and
imputes the missing values [114].

To evaluate how much of the variation in the metabolites could be explained by the
change over time, the first two principal components were related to time using a
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polynomial regressionmodel. The importance of themetabolites to explain the variation
between the patients over time was evaluated by evaluating the squared variable
loadings. Specifically, the squared variable loadings within and between biochemical
metabolite classes were evaluated to study similarities within classes and see which
biochemical classes vary more between the patients.

To characterize the metabolic time profiles and profiles of current inflammation markers
for different patients, we estimated the correlations between the scaled metabolite levels
and CRP, PCT and creatinine levels over time. Next, we evaluated which metabolites
could be of interest for the prediction of the clinical course, by estimating the Kendall’s
Tau correlation between the scaled metabolite levels and a clinical disease severity
marker, the CURB score [112] at hospital admission, and estimating Pearson correlation
between the scaled metabolite levels and the outcome length of stay (LOS) in the
hospital. Since the CURB and LOS are static values, while the metabolites changed
over time, the correlations between these outcomes and the change in metabolite levels
from baseline (mt=k - mt=0) at each time point (k) were calculated. Due to the large
number of correlations calculated and the small sample size, the correlations were
not tested for significance, to prevent multiple testing problems. In our analysis we
focused on metabolites with the largest (positive or negative) correlation, as exploratory
analysis. The metabolites with the largest correlations were further evaluated in
literature research to assess their biological function.

All analyses were performed in R. The scripts used for the analyses were deposited on
GitHub (http://github.com/vanhasseltlab/LongitudinalMetabolomicsCAP/tree/manuscript).

4.3 Results

4.3.1 Metabolite time profiles

Metabolite profiling was performed for 25 patients and resulted in 363 metabolite levels
on five time points (Table 4.3). The patient characteristics are displayed in Table 4.1.
Comorbidities present in patients included kidney disease (n = 1), cardiovascular disease
(n = 4), malignancy (n = 2), COPD (n=1, nmissing = 15), diabetes (n=3, nmissing = 15). No
patients were using corticosteroids before admission (nmissing = 15).

Metabolite profiles within all CAP patients shifted over time, as shown in the PCA over
all time points (Figure 4.1). The close relationship between metabolite levels and time
is reflected in the results from the polynomial regression model which indicated that
45% of the metabolite variation captured in these first two principal components could
be explained by time. Due to the large age range, we tested whether age was a large
explanatory factor for the metabolite differences between individuals, but did not find a
significant contribution of age (section 4.5).
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Table 4.1 Patient characteristics

Patient characteristics CAP patients
(n=25)

Age (years)
Median [Min, Max] 67.0 [18.0, 98.0]
Sex

Male 12 (48.0%)
Female 13 (52.0%)
CURB score

Median [Min, Max] 1.00 [0, 3.00]
Duration of symptoms before admission (days)
Median [Min, Max] 3.00 [1.00, 14.0]
Missing 15 (60.0%)
Antibiotic treatment before admission

No 8 (32.0%)
Yes 2 (8.0%)
Missing 15 (60.0%)
Length of stay (days)

Median [Min, Max] 7.50 [2.50, 24.5]

Figure 4.1 PCA scores for patient metabolite profiles over time. Every point represents the scores
of an individual patient at a certain time point, in two dimensions based on the metabolite values.
The panels show a trend over time of the metabolite profiles.
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The metabolites that were targeted in this study were categorized into different
biochemical classes. Metabolites from different biochemical classes showed distinct
contributions to the total variation between the patients over time as was expressed
in the variable loadings and directionality of the principal components (Figure 4.2).
The squared PCA loadings represent the weight that the different metabolites in the
biochemical class have in explaining the variation between patients over time. Of the
variation in principal component one and two, 48% was explained by metabolites of the
classes of cholesteryl esters, LPC’s, sphingomyelins, diacylglycerols, and triglycerides
(Figure 4.2A). The metabolites were categorized in classes based on their biochemistry
and not based on their biological functions. The PCA indicate that metabolites that
are categorized in the same class do not necessarily behave similarly (Figure 4.2B).
For example, amino acids behave very differently from each other. Metabolites
that do behave similarly in their biochemical class are for example triglycerides and
sphingomyelins.

For each patient, the metabolic time profiles were shown as the two first components
from the PCA (Figure 4.3, Figure 4.7). Generally, a shift from low to high principal
component values was seen over time, corresponding to the shift in metabolite levels for
the different metabolites (Figure 4.2B). The large variability in the time profiles indicates
a large interpatient variability in metabolic levels and changes over time.

4.3.2 Inflammation marker associations

To explore associations between metabolite profiles and inflammation, the metabolite
values were compared to currently used inflammation biomarkers. Correlations were
found between CRP and PCT and several metabolites. For example, phosphocholine
(PC) (34:1) showed a positive correlation with CRP (cor = 0.63). Several individual
lysophosphocholines (LPCs) and the sum of all LPCs showed a negative correlation
with CRP (cor = -0.57 to -0.74, Figure 4.4A). PC (34:1) was found to decrease over
time and several LPCs showed an increase over time, thereby mirroring the clinical
disease progression (Figure 4.4B). Positive correlations with CRP and PCTwere reported
for the short-chain acylcarnitines (SCACs) tiglylcarnitine, 2-methylbutyroylcarnitine,
and isovalerylcarnitine (cor with PCT = 0.61, 0.58, and 0.57; cor with CRP = 0.54,
0.64, and 0.51, respectively). Negative correlations were seen between the long-chain
acylcarnitine (LCAC) stearoylcarnitine and CRP (cor = 0.62). This trend for decreasing
SCACs over time is also represented by the positive correlation of CRP and PCT with
the sum of all SCACs (cor = 0.55 and 0.53, respectively).

Correlations between metabolite levels and creatinine, a marker of renal failure, were
also identified. The same trends were seen for creatinine as for CRP and PCT (Figure 4.8).
Strong positive correlations were observed between creatine and 1-Methylhistidine,
SDMA, inositol, homoserine, methionine sulfone, and octanoylcarnitine (cor > 0.7)
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Figure 4.2 Metabolite contributions to the two dimensions of the PCA as variable loadings. a)
The importance of each biochemical class for the different principal components (PCs), expressed
by their squared metabolite loadings. Each box represents the squared loadings of the metabolites
within a metabolic class. High squared loadings indicate a larger contribution to explaining the
variation between patients. b) The loading plots for each biochemical metabolite class. The arrows
indicate the importance (length) and direction of themetabolites in the principal component space.
For example, high PC1 values correspond to high metabolite levels for metabolites with right
pointing arrows, and lowmetabolite levels for metabolites with left pointing arrows. Arrows with
a similar direction have similar metabolite patterns. Abbreviations: PC: principal component.

60



Longitudinal metabolomics

C
ha

pt
er

4

Figure 4.3 Individual time profiles over PC1 and PC2. The lines PC1 (solid) and PC2 (dashed),
indicate the change in the corresponding principal component over time. Changes in PC values
correspond to changes in metabolite levels according to their respective loadings. Abbreviations:
PC: principal component. Abbreviations: PC: principal component.
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Figure 4.4 Correlations between inflammation markers CRP and PCT, and metabolites. A) The
correlations between metabolites and CRP or PCT. Metabolites with a correlation >0.55 or <-0.55
for at least one marker are shown. A positive correlation (orange) indicates that a higher CRP or
PCT level corresponds to an increase of that metabolite over time, while a negative correlation
(blue) indicates a decrease over time for patients with a higher CRP or PCT level. B) Average CRP,
PCT, PC (34:1), and LPC levels over time over all patients. Metabolite and CRP data were scaled.
Abbreviations: see the abbreviation list.

4.3.3 Disease severity score associations

To identify possible metabolic biomarkers for indication of disease severity, associations
between the CURB disease severity score at admission and the change in metabolite
levels on from day 0 to days 1, 2, 4, and 30 were evaluated (Figure 4.8). Negative
associations were found between the CURB score and the change of metabolite levels
(m) between day 0 and day 30 (mt=30 – mt=0) of tiglylcarnitine, isovalerylcarnitine,
3-hydroxyisovaeric acid, carnitine, N6,N6,N6-trimethyl-lysine, and isobutyryl carnitine
(tau = -0.64 to -0.58, Figure 4.5). Patients with higher CURB scores showed decreasing
levels of these metabolites.

4.3.4 Hospital length of stay associations

We evaluated the association between metabolites and clinical outcomes using the
length of stay (LOS) as a potential surrogate endpoint. The strongest negative
correlations to LOS were reported for the metabolite change over the first two days
of admission (mt=2 – mt=0, Figure 4.6), especially for the triglycerides (TGs) (60:3) and
(58:2) (cor = -0.63 and -0.61 respectively). The correlations of these metabolites to LOS
were much stronger than to CRP and PCT (cor = -0.08 and -0.25 respectively). Positive
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Figure 4.5 The correlation between the CURB score and six metabolites with highest associations.
The change in metabolite level is the difference between the scaled metabolite level at day 30 and
scaled metabolite level at admission (y-axis). These six metabolites all show a negative correlation
with the CURB score (tau). This means, for patients with a CURB score of 0 the metabolite change
between day 30 and day 0 is positive, so their metabolite levels were increasing over time. For
patients with a CURB score of 2, the metabolite levels decreased over time.

correlations were most pronounced when analyzing the metabolite change from the day
of admission to day 30 (mt=30 – mt=0). In the case of fatty acid (FA) (22:1) the day after
admission (mt=1 – mt=0) was the most strongly positively correlated to the LOS (cor =
0.58).

4.4 Discussion

In this study, we characterized the dynamics of the serum metabolites in pneumococcal
CAP patients. We found that a large part of the variation in the metabolite values
was associated with time-varying changes in metabolites within the patients. We
furthermore found that several groups of metabolites were found to correlate with
inflammation markers, CURB score, and length of hospital stay. These findings both
support the potential relevance ofmetabolite-based biomarkers tomonitor the treatment
response or disease progression in CAP.
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Figure 4.6 a) The correlations between the length of stay and metabolite change from baseline at
days 1, 2, 4, and 30 after admission (mt=k - mt=0). CRP and PCT are added as a reference. A positive
correlation (orange) indicates that a longer stay in the hospital corresponds to an increase of that
metabolite over time, while a negative correlation (blue) indicates a decrease over time for patients
with longer stay. b) Metabolite levels over time for individual patients for metabolites with large
negative correlations (cor < -0.55) over the first two days after admission. Abbreviations: see the
abbreviation list.

We found that length of stay in the hospital was negatively correlated with the
triglycerides TG (60:3) and TG (58:2). . Interestingly, these TGs are not highly correlated
to CRP, PCT, or the CURB score, which suggests that they can explain a part of the
variability of disease progression in patients not explained by established biomarkers
for inflammation. We previously found that TGs do not contribute to the etiological
prediction of pathogenic in CAP [59]; as such TGs may be of interest as potential
biomarker beyond pneumococcal CAP studied in this analysis. Further studies should
however consider the potential impact of diet on TGs, as a potential confounding factor
[115].

Phosphatidylcholine (PC) (34:1) and lysophosphatidylcholines (LPCs) (14:0), (16:0),
(16:1), (18:0), (18:1), (18:2), (18:3) and (20:4) correlated to inflammatory markers, which
also corresponds to previous findings [25, 116]. PC (34:1), a ligand of nuclear receptor
PPARα30, showed a positive correlation with CRP, which was previously associated
with an anti-inflammatory response [117]. LPC 14:0 has been recently identified as a
biomarker for disease severity in CAP patients [118]. Due the correlation with CRP,
these metabolites could be of interest as treatment response biomarkers, also beyond
pneumococcal CAP patients [34].

The CURB score was negatively associated with six metabolites, including several
acylcarnitines. One of these acylcarnitines, tigylcarnitine, has previously been found
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to be increased in non-survivors of CAP and could be considered a marker for disease
severity [116]. Isovalerylcarnitine and isobutyrylcarnitine have, to our knowledge, not
been studied as disease severity marker before, but may show a comparable performance
to tigylcarnitine as their direction on the first principal component is similar.

In this analysis we demonstrated which biochemical metabolite classes explain most of
the variation in metabolite patterns between individuals and over time. Triglycerides
and LPCs were important for explaining the variation over time in the principal
component analysis (PCA) and correlated with LOS and inflammatory markers. Within
the biochemical classes, not all metabolites showed similar patterns, indicating that
metabolites in some biochemical classes behave similarly during the infection, while
metabolites in other classes behave differently (Figure 4.2B). The amino acids behave
very differently, which could be expected since they are involved in a wide variety of
biological functions [119].

The longitudinal analysis of the metabolomite profiling data enabled us to gain
insight into acute and longer-term changes in the metabolome during the clinical
course of CAP. Since patients are admitted to the hospital in different stages of the
disease, interpretation of the metabolite profile at one time point can be challenging.
The longitudinal metabolite profiles that were measured in this study give more
information about the state of the patient and elucidate the effect of comorbidities and
co-medications. The principle component analysis (Figure 4.3) showed large variability
between different patients, indicating the importance of considering changes within
patients, instead of evaluating the metabolite profile at one timepoint. We found that the
differences in metabolite levels were largely explained by changes over time and were,
therefore, related to the treatment response.

This studywas conducted in a well-characterized set of CAP patients with S. pneumoniae
infections. S. pneumoniae is a common cause of CAP, but other bacterial or viral
pathogens can also be the cause of CAP. A previous study did not show significant
differences in metabolic profiles between common causes of CAP [59]. The results of
the current study may apply to CAP patients with these other causative pathogens,
but this is still unsure because the previous study does not cover changes over time.
Especially metabolites associated with length of stay should be validated in CAP cohorts
with various causative pathogens, since they are not related to the general inflammatory
response.

In further research, the addition of patients with other causes of CAP is of interest to
compare metabolic time profiles for different treatment strategies based on the causative
pathogen. Early recognition of a pathogen-drug mismatch using metabolite profiling
couldmake antibiotic therapies more targeted and shorter. This study shows that mainly
TGs, LPCs, PCs, and acylcarnitines are of interest for the disease severity and the length
of stay for patients with CAP. By focusing on these metabolite classes, the number of
metabolites that has to be measured for every patient can be reduced.
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In conclusion, we find that that metabolomics-based biomarkers have potential for
treatment response monitoring in CAP patients. The triglycerides found in this study
could potentially complement the currently available biomarkers such as CRP and PCT
as they yield additional information about the clinical course in these patients. This
study furthermore supports the relevance for collecting longitudinal data to follow
the highly dynamic metabolite profiles in patients, which can further enable the
development of personalized treatment strategies.

4.5 Supplementary Information

Details on metabolite profiling methods

Batch design: Aliquoted samples were run in a randomized fashion in several batches
together with quality control (QC) samples (every 10 samples), sample replicates (every
7 samples), internal standards (ISTDs), blanks, and calibration lines.

Quality control: Blank samples were used to determine the blank effect. Replicate
samples were used to check the instrument for repeatability. In-house developed
algorithms were applied using the pooled QC samples to compensate for shifts in the
sensitivity of the mass spectrometer over the batches.

Reported results: After quality control correction the metabolites that complied with
the acceptance criteria of a relative standard deviation of the quality control samples
(RSDqc) <15% were reported. The data was reported as relative response ratio (analyte
signal area / ISTD area; unit free) of the metabolites after QC correction. Metabolites
that did not comply with the acceptance criteria of the quality control, but have been
included in the results present RSDs up to 30% and should be handled with caution.

Amine profiling : Amine profiling was performed according to the validated amine
profiling analytical platform with minor optimization [50] . The amine platform covers
amino acids and biogenic amines employing anAccq-Tag derivatization strategy adapted
from the protocol supplied by Waters. 5,0 𝜇L sample was spiked with an internal
standard solution. Protein precipitation was performed by addition of MeOH and the
sample was dried in a speedvac. The residue was reconstituted in borate buffer (pH
8.5) with AQC reagent. The prepared samples were transferred to autosampler vials
and placed in an autosampler tray. The vials were cooled at 4o C upon injection.
1,0 𝜇L prepared sample was injected in a UPLC-MS/MS system. Chromatographic
separation was achieved by an Agilent 1290 Infinity II LC System on an Accq-Tag
Ultra column (Waters) with a flow of 0.7 mL/min over an 11 min gradient. The UPLC
was coupled to electrospray ionization on a triple quadrupole mass spectrometer (AB
SCIEX Qtrap 6500). Analytes were detected in the positive ion mode and monitored
in Multiple Reaction Monitoring (MRM) using nominal mass resolution. Acquired
data was evaluated using MultiQuant Software for Quantitative Analysis (AB SCIEX,
Version 3.0.2), by the integration of assignedMRMpeaks and normalization using proper
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internal standards. For analysis of amino acids, their 13C15N-labeled analogs were used.
For other amines, the closest-eluting internal standard was employed. After quality
control correction the amines that complied with the acceptance criteria of RSDqc <15%
were included in the results. Additionally, the amines that presented an RSDqc between
15 and 30% were included in the results but these compounds should be considered with
caution.

Acylcarnitine profiling: The acylcarnitine platform covers acylcarnitines as well as
trimethylamine-N-oxide, choline, betaine, deoxycarnitine, and carnitine. 10 µL sample
was spiked with an internal standard solution. Protein precipitation was performed by
addition of MeOH. The supernatant was transferred to an autosampler vial and placed
into an autosampler. The vials were cooled at 10◦Cupon injection. 1.0µL of the prepared
sample was injected into a triple quadrupole mass spectrometer. Chromatographic
separation was achieved by UPLC (Agilent 1290, San Jose, CA, USA) on an Accq-Tag
Ultra column (Waters) with a flow of 0.7 mL/min over an 11min gradient. The UPLCwas
coupled to electrospray ionization on a triple quadrupole mass spectrometer (Agilent
6460, San Jose, CA, USA). Analytes were detected in the positive ionmode andmonitored
in Multiple Reaction Monitoring (MRM) using nominal mass resolution. Acquired
data was evaluated using Agilent MassHunter Quantitative Analysis software (Agilent,
Version B.05.01), by integration of assigned MRM peaks and normalization using proper
internal standards. The closest-eluting internal standard was employed. After quality
control correction the compounds that complied with the acceptance criteria of RSDqc
<15% were included in the results. Additionally, the compounds that presented an
RSDqc between 15 and 30% were included in the results but these compounds should
be considered with caution.

Organic acid profiling: The organic acid platform covers 28 organic acids. 50
µL sample was spiked with an internal standard solution. Protein precipitation
was performed by addition of MeOH. After centrifugation, the supernatant was
transferred and the sample was dried using a speedvac. Then, two-step
derivatization procedures were performed on-line: oximation using methoxyamine
hydrochloride (MeOX, 15 mg/mL in pyridine) as the first reaction and silylation
using N-Methyl-N-(trimethylsilyl)- trifluoroacetamide (MSTFA) as the second reaction.
1 µL of each sample was directly after its derivatization injected on GC-MS. Gas
chromatography was performed on an Agilent Technologies 7890A equipped with an
Agilent Technologies mass selective detector (MSD 5975C) and MultiPurpose Sampler
(MPS, MXY016-02A, GERSTEL). Chromatographic separations were performed on an
HP-5MS UI (5% Phenyl Methyl Silox), 30 m × 0.25 m ID column with a film thickness of
25 µm, using helium as the carrier gas at a flow rate of 1,7 mL/min. A single-quadrupole
mass spectrometer with electron impact ionization (EI, 70 eV) was used. The mass
spectrometer was operated in SCAN mode mass range 50-500. Acquired data was
evaluated using Agilent MassHunter Quantitative Analysis software (Agilent, Version
B.05.01). After quality control correction and considering blank effects, the organic acid
compounds that complied with the acceptance criteria RSDqc <15% and blank effect
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<20% were included in the results. Also, the organic acids that reported an RSDqc
between 15 and 30% were included and should be considered with caution.

Negative lipid profiling: The negative lipid platform is a semi-target methodology for
the identification of 30 fatty acids. 50 µL sample was spiked with 50 𝜇L of an internal
standard solution. Protein precipitation was performed by addition of 550 𝜇L MeOH.
After centrifugation, 600 𝜇L supernatant was transferred and the sample was dried
using a speedvac. The residue was reconstituted in 300 𝜇L of isopropanol with 0,1%
formic acid. The prepared samples were transferred to autosampler vials and placed in
an autosampler tray. 8,0 µL of the prepared sample was injected into an LC-MS. The
analysis was performed on an ACQUITY UPLC™ (Waters, the Netherlands) coupled
to a high-resolution mass spectrometer with a Synapt G2 Q-TOF system (Waters, the
Netherlands) using reference lock mass correction. Lipids were detected in full scan
in the negative ion mode. Chromatographic separation was achieved using an HSS T3
column (1.8 µm, 2.1 * 100 mm) with a flow of 0.4 mL/min over a 16-minute gradient.
Acquired data was preprocessed using Targetlynx software (Masslynx, V4.1, SCN916).
After quality control correction, the compounds that complied with the acceptance
criteria RSDqc <15% were included in the results. Additionally, the compounds that
reported an RSDqc between 15 and 30% were included in the results and should be
considered with caution.

Positive lipid profiling: The positive lipid platform covers 185 compounds including
triglycerides (TGs, n=85) and non-triglycerides (non-TGs, n=100). 10 µL preprocessed
sample was spiked with 1000 µL IPA containing internal standards and vortexed for
30 sec. Prepared samples were transferred to autosampler vials for LC-MS analysis. In
total 2.5 µL prepared sample was injected for analysis. Chromatographic separation
was achieved on an ACQUITY UPLC™ (Waters, Ettenleur, the Netherlands) with an
HSS T3 column (1.8 µm, 2.1 * 100 mm) with a flow of 0.4 mL/min over a 16 min
gradient. The lipid analysis is performed on a UPLC-ESI-Q-TOF (Agilent 6530, Jose, CA,
USA) high-resolution mass spectrometer using reference mass correction. Lipids were
detected in full scan in the positive ion mode. The raw data were preprocessed using
Agilent MassHunter Quantitative Analysis software (Agilent, Version B.04.00). After
quality control correction, the TGs and non-TGs compounds that complied with the
acceptance criteria RSDqc <15% and blank effect <40 % were included in the results. The
TG and non-TGs that reported an RSDqc between 15 and 30% were also included and
should be considered with caution.

Signaling lipid profiling: The signaling lipids platform covers various isoprostane
classes together with their respective prostaglandin isomers from different poly
unsaturated fatty acids (PUFA), including n-6 and n-3 PUFAs such as dihomo-γ-linoleic
acid (DGLA) and arachidonic acid (both n-6) and eicosapentaenoic acid (EPA)
and docosahexaenoic acid (DHA) (both n-3). Also included in this platform are
endocannabinoids, bile acids, and signaling lipids from the sphingosine and sphinganine
classes and their phosphorylated forms, as well as three classes of lysophosphatidic
acids. The three lysophosphatidic acid classes include lysophosphatidic acids (LPAs),
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lysophosphatidylglycerol (LPG), lysophosphatidylinositol (LPI), lysophosphatidyserine
(LPS), lysophosphatidylethanolamines (LPE), cyclic-phosphatidic acids(cLPA), and
fatty acid all ranging from C14 to C22 chain length species. The signaling and
peroxidized lipids platform is divided into two chromatographic methods: low and
high pH. In the low pH method, isoprostanes, prostaglandins, nitro-fatty acids,
lyso-sphingolipids, endocannabinoids, and bile acids are analyzed. The high pH
method covers lyso-sphingolipids, lysophosphatidic acids, lysophosphatidylglycerol,
lysophosphatidylinositol, lysophosphatidyserine, lysophosphatidylethanolamines,
cyclic-phosphatidic acids, and fatty acid. Each sample was spiked with antioxidant
and internal standard solution. The extraction of the compounds is performed via
liquid-liquid extraction (LLE) with butanol and methyl tert-butyl ether (MTBE). After
collection, the organic phase is concentrated by first drying followed by reconstituted
in a smaller volume. After reconstitution, the extract is transferred into amber
autosampler vials and used for high and low pH injection. A Shimadzu system, formed
by three high-pressure pumps (LC-30AD), a controller (CBM-20Alite), an autosampler
(SIL-30AC), and an oven (CTO-30A) from Shimadzu Benelux, was coupled online
with an LCMS-8050 triple quadrupole mass spectrometer (Shimadzu) for high pH
measurements. An LCMS-8060 triple quadrupole mass spectrometer (Shimadzu) was
coupled to the Shimadzu system for low pHmeasurements. Both systems were operated
using LabSolutions data acquisition software (Version 5.89, Shimadzu). The samples
were analyzed by UPLC-MS/MS. An Acquity UPLC BEH C18 column (Waters) was
used to measure the samples in the low pH method. For the high pH method, a Kinetex
EVO column by Phenomenex was used. The triple quadrupole mass spectrometer was
used in polarity switching mode and all analytes were monitored in dynamic Multiple
Reaction Monitoring (dMRM). The acquired data was evaluated using LabSolutions
Insight software (Version 3.1 SP1, Shimadzu), by integration of assigned MRM peaks
and normalization using accordingly selected internal standards. When available, a
deuterated version of the target compound was used as an internal standard. For
the other compounds, the closest-eluting internal standard was employed. For low
pH mode, after quality control correction, the metabolites that complied with the
acceptance criteria of RSDqc <15% and blank effect <40% were included in the results.
Additionally, the compounds that reported an RSDqc between 15 and 30% were included
in the results and should be considered with caution. For high pH mode, after quality
control correction, the metabolites that complied with the acceptance criteria of RSDqc
<15% and blank effect <40% were included in the results. Additionally, the compounds
that reported an RSDqc between 15 and 30% were included in the results and should be
considered with caution.

Testing the influence of age on metabolite profiles

To test whether the age is a factor to take into account in the correlation analysis between
the change in metabolite values and the CURB score and hospitalization time, we tested
the whether the interindividual variance of the metabolite profiling was explained by
age, to decide whether age should be a confounder in the analysis. To test this, we
did an anova test to compare a mixed effect model on the principal components, which
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represent the metabolite profiles in a lower dimension, in two models: one with only
an patient specific random effect and one model that included both a patient specific
random effect and a parameter for age. The anova was done two times, with the first and
second principle component scores as outcomes respectively. The code and outcomes
of the anova are shown below, where subject.id denotes the patient and age is the age
variable. The p-values for principle component 1 and 2 were 0.18 and 0.09 respectively
and did not indicate a significant improvement of the model including age over the
model not including age, which motivated the correlation analysis without adding age
as confounder or using it to stratify the analysis. The small sample size could be a reason
for not finding significance, but this is also a reason for not stratifying the analysis.

lmer_age_pc1 <- lmer(PC1 ~ age + (1|subject.id),
data = pca_data, REML = F)

lmer_pc1 <- lmer(PC1 ~ (1|subject.id),
data = pca_data, REML = F)

anova(lmer_pc1, lmer_age_pc1)

npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
lmer_pc1 3 768.60 776.83 -381.30 762.60
lmer_age_pc1 4 768.82 779.80 -380.41 760.82 1.7827 1 0.1818

lmer_age_pc2 <- lmer(PC2 ~ age + (1|subject.id),
data = pca_data, REML = F)

lmer_pc2 <- lmer(PC2 ~ (1|subject.id),
data = pca_data, REML = F)

anova(lmer_pc2, lmer_age_pc2)

npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
lmer_pc2 3 770.96 779.19 -382.48 764.96
lmer_age_pc2 4 770.10 781.08 -381.05 762.10 2.8589 1 0.09087
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Figure 4.7 PCA score plots for each patient. For each patient, the time points are labelled and
connected with lines. Abbreviations: PC: principal component
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Figure 4.8 The correlations between metabolites and creatinine, CRP, and PCT over time; and the
correlations of the CURB score and length of stay with a change of the metabolites between day
k and day 0, where the change in metabolite levels is denoted by mt=k mt=0.
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Table 4.2Metabolite ratios and sums

Metabolite sum or ratio name in R Metabolite sum or ratio formula
BCAA_sum isoleucine + leucine + valine
TCA_cycle_sum Citric acid + lactic acid + malic acid + fumaric acid
urea_cycle_sum Citrulline + arginine + ornithine + fumaric acid

lc_Carnitines_sum
Myristoilcarnitine + Hexadecenoylcarntine + Palmitoylcarnitine + Stearoylcarnitine
+ Dodecenoylcarnitine + Tetradecenoylcarnitine + Linoleylcarnitine + Oleylcarnitine
+ Tetradecadienylcarntine

mc_Carnitines_sum Hexanoylcarnitine + Octanoylcarnitine + Octenoylcarnitine + Decanoylcarnitine
+ Lauroylcarnitine + Nonaylcarnitine + Pimeylcarnitine + Decenoylcarnitine

sc_Carnitines_sum Acetylcarnitine + Propionylcarnitine + Isobutyrylcarnitine + Butyrylcarnitine
+ Tiglylcarnitine + Methylbutyroylcarnitine + Isovalerylcarnitine

Cer_sum Cer(d18:1/22:1) + Cer. (d18:1/24.1. + Cer(d18:1/24:0) + Cer(d18:1/16:0)
+ Cer(d18:1/23:0) + Cer(d18:1/24:0)

SM_sum

Sphingomyelin (d18:1/14:0) + (d18:1/15:0) + (d18:1/16:0) + (d18:1/16:1) + (d18:1/17:0)
+ (d18:1/18:0) + (d18:1/18:1) + (d18:1/18:2) + (d18:1/20:0) + (d18:1/20:1) + (d18:1/21:0)
+ (d18:1/22:0) + (d18:1/22:1) + (d18:1/23:0) + (d18:1/ 23:1) + (d18:0/24:0) + (d18:0/24:1)
+ (d18:0/24:2) + (d18:0/25:0) + (d18:0/25:1)

LPC_sum Lysophosphatidylcholine (14:0) + (16:0) + (16:1) + (18:0) + (18:1) + (18:2) + (18:3)
+ (20:4) + (20:5) + (22:6) + (O-16:1) + (O-18:1)

PC_sum

Diacyl-phosphatidylcholine (32:0) + (32:1) + (32:2) + (34:1) + (34:2) + (34:3) + (34:4)
+ (36:1) + (36:2) + (36:3) + (36:4) + (36:5) + (36:6) + (38:2) + (38:3) + (38:4) + (38:5)
+ (38:6) + (38:7) + (40:4) + (40:5) + (40:6) + (40:7) + (40:8) + (O-34:1) + (O-34:2)
+ (O-34:3) + (O-36:2) + (O-36:3) + (O-36:4) + (O-36:5) + (O-36:6) + (O-38:4)
+ (O-38:5) + (O-38:6) + (O-38:7) + (O-40:6) + (O-42:6) + (O-44:5)

HT5_Trp_ratio Serotonine / Tryptophan
ADMA_Arg_ratio ADMA / Arginine
SDMA_Arg_ratio SDMA / Arginine
Carnitine_sum_lc_Carnitines_ratio Carnitine / LCAC sum
Carnitine_sum_mc_Carnitines_ratio Carnitine / MCAC sum
Carnitine_sum_sc_Carnitines_ratio Carnitine / SCAC sum
DCA_CA_ratio DCA / CA
FA_14.1_14.0 FA (14:1) / FA (14:0)
FA_16.1_16.0 FA (16:1) / FA(16:0)
Gln_Glu Glutamine / Glutamic acid
Kyn_Trp Kynurenine / Tryptophan
sum_BCAA_sum_Phe_Tyr_ratio BCAA sum / (Phenylalanine + Tyrosine)
sum_CER_sum_SM_ratio Cer sum / SM sum
sum_LPC_sum_PC_ratio LPC sum / PC sum
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Table 4.3Metabolite ratios and sums

Biochemical class Metabolite Biochemical class Metabolite

Acylcarnitines Acetylcarnitine Betaines Betaine
Acylcarnitines Butyrylcarnitine Bile acids and other steroids Cholic acid
Acylcarnitines Decanoylcarnitine Bile acids and other steroids Cortisol
Acylcarnitines Decenoylcarnitine Bile acids and other steroids Deoxycholic acid
Acylcarnitines Dodecanoylcarnitine Bile acids and other steroids GCA
Acylcarnitines 9-Hexadecenoylcarnitine Bile acids and other steroids GCDCA
Acylcarnitines Hexanoylcarnitine Bile acids and other steroids GDCA
Acylcarnitines Isobutyryl-carnitine Bile acids and other steroids GLCA
Acylcarnitines Isovalerylcarnitine Bile acids and other steroids GUDCA
Acylcarnitines Lauroylcarnitine Bile acids and other steroids TCA
Acylcarnitines Linoleylcarnitine Biogenic amines ADMA
Acylcarnitines Myristoylcarnitine Biogenic amines Anserine
Acylcarnitines Nonaylcarnitine Biogenic amines Beta-Alanine
Acylcarnitines 2-Octenoylcarnitine Biogenic amines Cystathionine
Acylcarnitines Octanoylcarnitine Biogenic amines 3-Aminoisobutyric acid
Acylcarnitines Oleylcarnitine Biogenic amines Ethanolamine
Acylcarnitines Palmitoylcarnitine Biogenic amines N2-gamma-Glutamylglutamine
Acylcarnitines Pimeylcarnitine Biogenic amines gamma-Glutamylalanine
Acylcarnitines Propionylcarnitine Biogenic amines Glutathione
Acylcarnitines Stearoylcarnitine Biogenic amines Glycylglycine
Acylcarnitines Tetradecadienylcarntine Biogenic amines Glycylproline
Acylcarnitines Tetradecanoylcarnitine Biogenic amines Homocitrulline
Acylcarnitines Tiglylcarnitine Biogenic amines Homocysteine
Acylcarnitines 2-Methylbutyroylcarnitine Biogenic amines 5-Hydroxylysine
Amino acids Citrulline Biogenic amines Aminoadipic acid
Amino acids Cysteine Biogenic amines Alpha-aminobutyric acid
Amino acids Glycine Biogenic amines Homoserine
Amino acids 4-Hydroxyproline Biogenic amines Kynurenine
Amino acids Alanine Biogenic amines Methionine sulfoxide
Amino acids Arginine Biogenic amines Methionine sulfone
Amino acids Asparagine Biogenic amines N6, N6, N6-Trimethyl-lysine
Amino acids Aspartic acid Biogenic amines O-Acetylserine
Amino acids Glutamic acid Biogenic amines Putrescine
Amino acids Glutamine Biogenic amines Methylcysteine
Amino acids Histidine Biogenic amines Saccharopine
Amino acids Isoleucine Biogenic amines Sarcosine
Amino acids Leucine Biogenic amines SDMA
Amino acids Lysine Biogenic amines Serotonin
Amino acids Methionine Biogenic amines Taurine
Amino acids Phenylalanine Biogenic amines 1-Methylhistidine
Amino acids Proline Biogenic amines 3-Methoxytyramine
Amino acids Serine Biogenic amines 5-Aminolevulinic acid
Amino acids Threonine Carnitines Carnitine
Amino acids Tryptophan Ceramides Ceramide (d18:0/24:0)
Amino acids Tyrosine Ceramides Ceramide (d18:1/16:0)
Amino acids Valine Ceramides Ceramide (d18:1/22:1)
Amino acids Ornithine Ceramides Ceramide (d18:1/23:0)

Ceramides Ceramide (d18:1/24:0)
Ceramides Ceramide (d18:1/24:1)
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Biochemical class Metabolite Biochemical class Metabolite

Cholesteryl esters CE (18:3) Diacyl-phosphatidylethanolamine PE (34:2)
Cholesteryl esters CE (18:2) Diacyl-phosphatidylethanolamine PE (36:3)
Cholesteryl esters CE (18:1) Diacyl-phosphatidylethanolamine PE (36:4)
Cholesteryl esters CE (20:5) Diacyl-phosphatidylethanolamine PE (38:2)
Cholesteryl esters CE (22:6) Diacyl-phosphatidylethanolamine PE (38:4)
Cholines Choline Diacyl-phosphatidylethanolamine PE (38:6)
Diacylglycerols DG (36:2) Diacyl-phosphatidylethanolamine PE (O-36:5)
Diacylglycerols DG (36:3) Diacyl-phosphatidylethanolamine PE (O-38:5)
Diacylglycerols DG (36:4) Diacyl-phosphatidylethanolamine PE (O-38:7)
Diacyl-phosphatidylcholine PC (32:0) Endocannabinoids alpha-LEA
Diacyl-phosphatidylcholine PC (32:1) Endocannabinoids AEA
Diacyl-phosphatidylcholine PC (32:2) Endocannabinoids DEA
Diacyl-phosphatidylcholine PC (34:1) Endocannabinoids DGLEA
Diacyl-phosphatidylcholine PC (34:2) Endocannabinoids DHEA
Diacyl-phosphatidylcholine PC (34:3) Endocannabinoids LEA
Diacyl-phosphatidylcholine PC (34:4) Endocannabinoids O-AEA
Diacyl-phosphatidylcholine PC (36:1) Endocannabinoids PEA
Diacyl-phosphatidylcholine PC (36:2) Endocannabinoids POEA
Diacyl-phosphatidylcholine PC (36:3) Endocannabinoids SEA
Diacyl-phosphatidylcholine PC (36:4) Endocannabinoids 1-/2-Arachidonoyl Glycerol (20:4)
Diacyl-phosphatidylcholine PC (36:5) Endocannabinoids 1-Linoleoyl Glycerol (18:2)
Diacyl-phosphatidylcholine PC (36:6) Fatty acids FA (14:0)
Diacyl-phosphatidylcholine PC (38:2) Fatty acids FA (14:1)
Diacyl-phosphatidylcholine PC (38:3) Fatty acids FA (15:0)
Diacyl-phosphatidylcholine PC (38:4) Fatty acids FA (16:0)
Diacyl-phosphatidylcholine PC (38:5) Fatty acids FA (16:1)
Diacyl-phosphatidylcholine PC (38:6) Fatty acids FA (17:0)
Diacyl-phosphatidylcholine PC (38:7) Fatty acids FA (17:1)
Diacyl-phosphatidylcholine PC (40:4) Fatty acids FA (18:1)
Diacyl-phosphatidylcholine PC (40:5) Fatty acids FA (20:0)
Diacyl-phosphatidylcholine PC (40:6) Fatty acids FA (20:1)
Diacyl-phosphatidylcholine PC (40:7) Fatty acids FA (20:2)
Diacyl-phosphatidylcholine PC (40:8) Fatty acids FA (22:1)
Diacyl-phosphatidylcholine PC (O-34:1) Fatty acids FA (22:4)
Diacyl-phosphatidylcholine PC (O-34:2) Fatty acids FA (22:5)-w6
Diacyl-phosphatidylcholine PC (O-34:3) Fatty acids FA (22:6)
Diacyl-phosphatidylcholine PC (O-36:2) Fatty acids FA (24:1)
Diacyl-phosphatidylcholine PC (O-36:3) Free fatty acids FA (18:1)
Diacyl-phosphatidylcholine PC (O-36:4) Free fatty acids FA (18:2)
Diacyl-phosphatidylcholine PC (O-36:5) Free fatty acids FA (20:5)
Diacyl-phosphatidylcholine PC (O-36:6) Free fatty acids FA (22:4)-w6
Diacyl-phosphatidylcholine PC (O-38:4) Free fatty acids FA (22:5)-w3
Diacyl-phosphatidylcholine PC (O-38:5) Free fatty acids FA (22:5)-w6
Diacyl-phosphatidylcholine PC (O-38:6) Free fatty acids FA (22:6)
Diacyl-phosphatidylcholine PC (O-38:7)
Diacyl-phosphatidylcholine PC (O-40:6)
Diacyl-phosphatidylcholine PC (O-42:6)
Diacyl-phosphatidylcholine PC (O-44:5)
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Biochemical class Metabolite Biochemical class Metabolite

Lysophosphatidylcholine LPC (14:0) Lysophospholipids LPS (18:0)
Lysophosphatidylcholine LPC (16:0) Lysophospholipids LPS (18:1)
Lysophosphatidylcholine LPC (16:1) Lysophospholipids LPS (20:4)
Lysophosphatidylcholine LPC (18:0) Lysophospholipids LPS (22:4)
Lysophosphatidylcholine LPC (18:1) Lysophospholipids LPS (22:6)
Lysophosphatidylcholine LPC (18:2) Nitro-Fatty Acids 10-NO2(OA9)NO2(OA)
Lysophosphatidylcholine LPC (18:3) Organic acids Inositol
Lysophosphatidylcholine LPC (20:4) Organic acids 2-hydroxybutyric acid
Lysophosphatidylcholine LPC (20:5) Organic acids Citric acid
Lysophosphatidylcholine LPC (22:6) Organic acids Glutamic acid
Lysophosphatidylcholine LPC (O-16:1) Organic acids Lactic acid
Lysophosphatidylcholine LPC (O-18:1) Organic acids Malic acid
Lysophosphatidylethanolamines LPE(22:6) Organic acids Fumaric acid
Lysophospholipids LPA (14:0) Organic acids Pyroglutamic acid
Lysophospholipids LPA (16:0) Organic acids 3-Hydroxybutyric acid
Lysophospholipids LPA (16:1) Organic acids Aspartic acid
Lysophospholipids LPA (18:0) Organic acids 3-Hydroxyisobutyric acid
Lysophospholipids LPA (18:1) Organic acids 3-Hydroxyisovaleric acid
Lysophospholipids LPA (18:2) Organic acids Uracil
Lysophospholipids LPA (20:3) Oxylipins PGF2a
Lysophospholipids LPA (20:4) Oxylipins TXB2
Lysophospholipids LPA (20:5) Oxylipins 10-HDoHE
Lysophospholipids LPA (22:4) Oxylipins 11,12-DiHETrE
Lysophospholipids LPA (22:6) Oxylipins 11-HETE
Lysophospholipids LPE (14:0) Oxylipins 12,13-DiHODE
Lysophospholipids LPE (16:0) Oxylipins 12,13-DiHOME
Lysophospholipids LPE (16:1) Oxylipins 12-HETE
Lysophospholipids LPE (18:0) Oxylipins 12S-HEPE
Lysophospholipids LPE (18:1) Oxylipins 12S-HHTrE
Lysophospholipids LPE (18:2) Oxylipins 13-HODE
Lysophospholipids LPE (20:3) Oxylipins 14,15-DiHETrE
Lysophospholipids LPE (20:4) Oxylipins 14-HDoHE
Lysophospholipids LPE (20:5) Oxylipins 15-HETE
Lysophospholipids LPE (22:4) Oxylipins 15S-HETrE
Lysophospholipids LPE (22:5) Oxylipins 16-HDoHE
Lysophospholipids LPE (22:6) Oxylipins 17,18-DiHETE
Lysophospholipids LPG (16:0) Oxylipins 19,20-EpDPE
Lysophospholipids LPG (16:1) Oxylipins 19,20-DiHDPA
Lysophospholipids LPG (18:0) Oxylipins 20-HETE
Lysophospholipids LPG (18:1) Oxylipins 5,6-DiHETrE
Lysophospholipids LPG (18:2) Oxylipins 5-HETE
Lysophospholipids LPG (20:3) Oxylipins 5S-HEPE
Lysophospholipids LPG (20:4) Oxylipins 8,9-DiHETrE
Lysophospholipids LPI (16:0) Oxylipins 8-HETE
Lysophospholipids LPI (16:1) Oxylipins 9,10,13-TriHOME
Lysophospholipids LPI (18:0) Oxylipins 9,10-DiHOME
Lysophospholipids LPI (18:1) Oxylipins 9,12,13-TriHOME
Lysophospholipids LPI (20:4) Oxylipins 9-HODE
Lysophospholipids LPI (22:4) Oxylipins 9-HOTrE
Lysophospholipids LPS (16:0) Platelet activating factor PAF(18:2)-adduct
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Biochemical class Metabolite Biochemical class Metabolite

Sphingolipids S1P (16:1) Triglycerides TG (54:1)
Sphingolipids S1P (18:0) Triglycerides TG (54:2)
Sphingolipids S1P (18:1) Triglycerides TG (54:3)
Sphingolipids S1P (18:2) Triglycerides TG (54:4)
Sphingomyelin SM (d18:1/14:0) Triglycerides TG (54:5)
Sphingomyelin SM (d18:1/15:0) Triglycerides TG (54:6)
Sphingomyelin SM (d18:1/16:0) Triglycerides TG (54:7)
Sphingomyelin SM (d18:1/16:1) Triglycerides TG (55:2)
Sphingomyelin SM (d18:1/17:0) Triglycerides TG (55:3)
Sphingomyelin SM (d18:1/18:0) Triglycerides TG (56:2)
Sphingomyelin SM (d18:1/18:1) Triglycerides TG (56:3)
Sphingomyelin SM (d18:1/18:2) Triglycerides TG (56:4)
Sphingomyelin SM (d18:1/20:0) Triglycerides TG (56:5)
Sphingomyelin SM (d18:1/20:1) Triglycerides TG (56:6)
Sphingomyelin SM (d18:1/21:0) Triglycerides TG (56:7)
Sphingomyelin SM (d18:1/22:0) Triglycerides TG (55:1)
Sphingomyelin SM (d18:1/22:1) Triglycerides TG (58:1)
Sphingomyelin SM (d18:1/23:0) Triglycerides TG (58:10)
Sphingomyelin SM (d18:1/ 23:1) Triglycerides TG (58:2)
Sphingomyelin SM (d18:0/24:0) Triglycerides TG (58:3)
Sphingomyelin SM (d18:0/24:1) Triglycerides TG (58:4)
Sphingomyelin SM (d18:0/24:2) Triglycerides TG (58:5)
Sphingomyelin SM (d18:0/25:0) Triglycerides TG (58:6)
Sphingomyelin SM (d18:0/25:1) Triglycerides TG (58:8)
Triglycerides TG (44:2) Triglycerides TG (58:9)
Triglycerides TG (46:1) Triglycerides TG (60:2)
Triglycerides TG (46:2) Triglycerides TG (60:3)
Triglycerides TG (48:0) Trimethylamine-N-oxides TMAO
Triglycerides TG (48:1)
Triglycerides TG (48:2)
Triglycerides TG (48:3)
Triglycerides TG (O-50:2)
Triglycerides TG (50:1)
Triglycerides TG (50:2)
Triglycerides TG (50:3)
Triglycerides TG (50:4)
Triglycerides TG (51:1)
Triglycerides TG (51:2)
Triglycerides TG (51:3)
Triglycerides TG (51:4)
Triglycerides TG (52:1)
Triglycerides TG (52:2)
Triglycerides TG (52:3)
Triglycerides TG (52:4)
Triglycerides TG (52:5)
Triglycerides TG (52:6)
Triglycerides TG (53:1)
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Abstract

Immunometabolism, which concerns the interplay between metabolism and the immune
system, is increasingly recognized as a potential source of novel drug targets and
biomarkers. In this context, the use of metabolomics to identify metabolic characteristics
associated with specific functional immune response processes is of value. Currently,
there is a lack of tools to determine known associations between metabolites and
immune processes. Consequently, interpretation of metabolites in metabolomics studies
in terms of their role in the immune system, or selection of the most relevant metabolite
classes to include in metabolomics studies, is challenging. Here, we describe the
Immunometabolic Atlas (IMA), a public web application and library of R functions to infer
immune processes associated with specific metabolites and vice versa. The IMA derives
metabolite-immune process associations utilizing a protein-metabolite network analysis
algorithm that associates immune system-associated annotated proteins inGeneOntology
to metabolites. We evaluated IMA inferred metabolite-immune system associations
using a text mining strategy, identifying substantial overlap, but also demonstrating
a significant chemical space of immune system-associated metabolites that should be
confirmed experimentally. Overall, the IMA facilitates the interpretation and design
of immunometabolomics studies by the association of metabolites to specific immune
processes.
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5.1 Introduction

Immunometabolism, or the interplay of immunology and metabolism, has received
increasing interest because of its role in the function and regulation of immune system
processes in health and disease. Metabolites with e.g., pro- or anti-inflammatory
functions may be of interest as biomarkers or drug targets for inflammation and immune
system-associated pathologies such as infection, cancer, and various auto-immune
diseases [120, 121, 14]. Significant knowledge gaps related to the relationship between
metabolism and immune function remain to be elucidated. To this end, metabolomics
technologies can facilitate the identification and quantification of metabolites in relation
to the immune system in experimental models and clinical studies.

For biochemical and functional interpretation of metabolomics study results, different
computational tools can be used: biochemical pathways analysis can be executed using
tools such as MetaboAnalyst or KEGG, and for functional analysis, STITCH can be
employed [27, 26, 28]. However, inferring the relationship of metabolites with immune
system processes remains challenging. In contrast, for the analysis of genes, gene
expression, and proteins, such biological interpretation is straightforward through the
use of high-quality annotated ontologies such as Gene Ontology [122, 123].

For hypothesis-driven metabolomics studies that require absolute quantification of
measured metabolites, targeted metabolomics methods are preferred over untargeted
metabolomics methods. However, targeted mass spectrometry-based metabolomics
studies measure by design only a subset of metabolites and metabolite classes at once.
Guidance in the selection of the most relevant subset of metabolites for the immune
process of interest is therefore of relevance. However, tools to facilitate the design of
targeted metabolomics studies by pre-selection of metabolites of interest are lacking.

To address the current hurdles of hypothesis generation and biological interpretation
of metabolomics studies, we developed the Immunometabolic Atlas (IMA). The
IMA enables inference of immune system associated functions, and vice versa,
to determine relevant metabolites with specific immune system processes. We
infer metabolite-immune process associations utilizing a protein-metabolite network
analysis algorithm that associates immune system-associated annotated proteins
(Figure 5.1), leveraging protein-metabolite interaction databases [124, 125] and protein
annotations of immune system processes in Gene Ontology (GO). We then characterize
the global metabolite-immune process coverage and perform validation through
text mining-derived immune system associations. The application of the IMA is
demonstrated in a case study and is made available as an R package and public web
application.
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Figure 5.1 A conceptual overview of the Immunometabolic Atlas (IMA). The IMA provides
associations between metabolites and immune processes of interest through the generation and
evaluation of a protein-metabolite interaction network.

5.2 Methods

5.2.1 Assembly of immune process-metabolite interaction network

We constructed a database that contains associations between specific immune process
terms, proteins, and metabolites through the integration of publicly available databases
(Figure 5.2A). Through the integration of these resources, we constructed an interaction
network to associate metabolites with immune processes. In the following paragraphs,
the development of the immune process-metabolite interaction network is described.

5.2.1.1 Immune processes

Immune processes were retrieved as GO terms fromGeneOntology. The associated gene
names that were descendants of “Immune System Process” (GO:0002376) were acquired
using the EBI QuickGo application programming interface (API, version 2021-05-24)
[122, 123, 126].

5.2.1.2 Proteins and protein-immune process associations

Human proteins (Swiss-Prot) were retrieved from the UniProt database [127]. The
requested UniProt data included: entry (UniProt identifiers), protein name, cofactors,
EC number, transporter protein (TCDB), Ensembl transcript, and GO immune processes.
The reference to GO immune processes in the UniProt data was used to identify immune
system-related proteins.
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5.2.1.3 Metabolites

Metabolite names and associated metadata were obtained from the Human Metabolome
Database (HMDB, version 4.0). We only included metabolites that were known to either
have a biological role and/or were part of a naturally occurring process to exclude any
synthetic drugs. We also excluded any inorganic compounds. The retrieved HMDB data
included: name, class, superclass, accession (HMDB identifiers), ChEBI ID, UniProt ID,
biospecimen, cellular locations, and metabolic pathways.

5.2.1.4 Protein-protein interactions

Protein-protein interactions were obtained from STRING’s functional protein
association networks version 11.0 [124]. Ensembl transcripts from the UniProt data
were converted to Ensembl Protein IDs using the Ensembl API [128]. Subsequently,
STRING was parsed using these IDs to extract protein-protein interactions.

5.2.1.5 Metabolite-protein interactions

The UniProt identifiers in the HMDB data were used to connect the metabolites to the
proteins in the UniProt data, obtainingmetabolite-protein interactions. Proteins without
immune system-related GO terms were excluded from further analysis.

5.2.1.6 Metabolite-metabolite interactions

Metabolite-metabolite interactions for the obtained metabolites from HMDB were
retrieved using the Rhea-Annotated reactions database (RheaDB, release 118) [125].
We cross-referenced HMDB with ChEBI to extract interactions stored in Rhea. We
applied an all-versus-all method, where each reactant-product combination results in
an individual interaction.

5.2.1.7 Building the interaction network

To construct the interaction network for each immune process extracted from GO, first,
proteins involved in the immune processes were identified. Then, protein-metabolite,
protein-protein, and metabolite-metabolite interactions were added to the network. To
build an interaction network for metabolites of interest, proteins associated with the
metabolites of interest were identified. Related protein-metabolite, protein-protein, and
metabolite-metabolite interactions were then added to the network (Figure 5.2B). For
metabolites with only metabolite-metabolite interactions, no interaction network can be
constructed, because at least one protein-metabolite interaction is necessary to inherit
immune processes.
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Figure 5.2 Overview of (A) information and associations retrieved from available databases,
and (B) the study flow to build protein-metabolite interaction networks to associate metabolites
and immune processes of interest. First, the proteins that are associated with the immune
processes of interest are added to the network. Then, protein-protein, protein-metabolite, and
metabolite-metabolite interactions are added to the network to generate the final interaction
network for the immune processes of interest.

5.2.1.8 Inheritance of immune processes by metabolites

To associate metabolites to immune processes, an inheritance methodology was applied
(Figure 5.3B). In the default, first-order inheritance method, metabolites inherit the
immune processes of the directly neighboring proteins only. For second-order and
third-order inheritance, metabolites inherit both the immune processes of their direct
neighboring proteins and the first neighbors of that protein, two or three interaction
steps away, respectively. The preferred inheritance order can be defined by the user.

5.2.2 Evaluation of network-inferred metabolite and immune
processes

5.2.2.1 Overrepresentation analysis

We test for the overrepresentation of metabolites and immune processes in the
interaction network using Fisher’s exact test with multiple testing correction, using
the IMA metabolites and immune processes as background. Based on this, we rank
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by p-value to identify the most significant metabolites or immune processes associated
with either an immune process or metabolite set. The p-value for Fisher’s exact test was
computed as follows (Equation 5.1)

𝑝 − value Fishe𝑟 ′𝑠 exact 𝑡𝑒𝑠𝑡 =
(𝑎 + 𝑏)! (𝑐 + 𝑑)! (𝑎 + 𝑐)! (𝑏 + 𝑑)!

𝑎!𝑏!𝑐!𝑑! (𝑎 + 𝑏 + 𝑐 + 𝑑)! (5.1)

Here, for metabolite-based overrepresentation analysis, a is the number of
associations of a specific metabolite to a specific immune process in the interaction
network (via multiple proteins), b is the number of associations of other immune
processes to the specific metabolite in the network, c is the total number of
associations of the specific metabolite to the specific immune process in the database
minus the number of associations of the specific metabolite to the specific immune
process in the network , and d is the total number of immune process associations
to the specific metabolite in the database minus the number of associations of other
immune processes to the specific metabolite in the network. For immune process-based
overrepresentation analysis, a is the number of appearances of a specific immune
process in the interaction network, b is the number of the immune process appearances
in the IMA database, c is the number of other immune processes in the network, and
d is the number of other immune processes appearances in the IMA database.

5.2.2.2 Metabolite centrality

We calculated metabolite centrality to determine the position of a metabolite in the
interaction network. A metabolite could be on the edge of a network with minimal
interactions, in the center of a network with a lot of interactions, or somewhere
in between. The centrality was calculated as harmonic closeness, which is a
distance-based centrality metric that is suitable for disconnected graphs, in contrast to
classical closeness. A high harmonic closeness value indicates a central position of the
metabolite in the network. For node i , the harmonic closeness is calculated by taking
the sum of all reciprocals of distance d to other node j (Equation 5.2). The centrality
was determined for each metabolite in the network separately.

Harmonic closeness (𝑖)
∑︁
𝑗≠𝑖

1
𝑑𝑖, 𝑗

(5.2)

5.2.2.3 Metabolite precision

Metabolite precision was computed to quantify how specific a metabolite is for a
certain immune process. The precision scorewas computed for eachmetabolite-immune
process association to allow discrimination between metabolites that are contributing
either to a single process or to multiple processes and between common and rare
metabolites that have comparable centrality scores. The precision of a metabolite for

85



Chapter 5

an immune process of interest is determined by the ratio of the metabolite associations
with the process of interest, compared to all its associations remaining in the IMA
database (Equation 5.3). A high metabolite precision value indicates that most of the
immune process associations the metabolite could have, according to the IMA database,
are present in the immune process network.

Precision score (𝑖, 𝑗) =
𝑁𝑖, 𝑗

𝑁𝑖 ·𝑉𝑗

(5.3)

Here, for metabolite i in process j , with N being the number of interacting nodes
of metabolite i and V the number of nodes in process j . The precision score is
corrected by the number of nodes in the process.

5.2.3 Evaluation of IMA metabolite-immune process association
performance through text mining

To evaluate the evidence available formetabolite-immune process associations identified
by the IMA, an external validation dataset was created using text mining. We selected
papers including one or more metabolites and immune processes that were also present
in the IMA database using the EuropePMC API on 6 March 2021 [129]. We included
EuropePMC-listed journal articles in which a metabolite and immune process term from
the IMA database was detected in the abstract, methods, results, supplement, figures,
and/or tables. Introduction and discussion sections were excluded since comparisons to
results of other studies are often made in these sections, possibly leading to biased text
mining results. Also, papers were only included if they were related to humans.

The text mining resulted in a list of PubMed identifiers (PMIDs) which were used
to find associations between metabolites and immune processes. These associations
were included in the quantitative text mining validation dataset. Metabolite-immune
process associations with only one occurrence in the text mining dataset were removed
to limit false positives. We excluded the superclass lipids and lipid-like molecules as
defined within HMDB from the validation because the complex nomenclature of these
metabolites made text mining unfeasible.

We characterized the IMA database by cross-referencing metabolites and processes
with the text mining database. Metabolites were grouped according to their presence
or absence in the IMA database. Furthermore, we evaluated the quality of the IMA
database by calculating the specificity, sensitivity, precision, accuracy, and F1-score
(Equation 5.4-5.8). The F1-score focuses on the positive predictions and leaves out the
True Negatives. The F1-score represents the performance of the IMA better than other
evaluation measures because it evaluates howwell associations are made instead of how
well associations are excluded.
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𝑆𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐𝑖𝑡𝑦 =
True Negatives

True Negatives + False Positives
(5.4)

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
True Positives

True Positives + False Negatives
(5.5)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
True Positives

True Positives + False Positives
(5.6)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
True Negatives + True Positives

True Negatives + True Positives + False Negatives + False Positives
(5.7)

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
True Positives

True Positives + 1
2 (False Positives + False Negatives)

(5.8)

5.2.4 R package and Shiny application

We implemented the IMA in the R package IMatlas, which facilitates users to create
various graph-based analyses. The package includes an interactive R shiny application
that allows for a user-friendly interpretation of our interaction database. The app
adds extensions that are useful for additional analyses, including metadata from
HMDB and UniProt, and allows networks to be built using either one or multiple
immune processes, or by one or multiple metabolites. If one or multiple immune
processes are used as input, all connected metabolites that are in the Immunometabolic
Atlas database will be included in the graphical network. The app also features
two additional versions of interaction datasets, which allows users to determine the
strictness of the app. These datasets include proteins that are unrelated to the immune
system but do have an interaction with an immune system-related protein. The first
dataset includes neighbors of immune system-related proteins, whereas the second
dataset includes the second neighbors of an immune system-related protein. The
package and all other scripts used for analysis are available in our Github repository
https://github.com/vanhasseltlab/IMatlas.

5.3 Results

5.3.1 Development of the IMA database and metabolite-immune
process algorithm

The IMA database includes all child processes of the immune system process
(GO:0002376) and contains 97 525 metabolites, 3 101 proteins, 1 712 immune processes,
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664 metabolite-metabolite interactions, 172 291 protein-metabolite interactions, and
411 286 protein-protein interactions (Table 5.3).

We associated immune processes and metabolites in a stepwise process (Figure 5.3).
Immune processes were assigned to metabolites using a first, second, or third-order
inheritance strategy (Figure 5.3B). By default, first-order inheritance of immune
processes is used, in which metabolites only inherit immune processes from their
directly interacting protein. To determine if a metabolite of interest plays a central
role in the metabolite-immune process interaction network, a centrality score was
calculated (Figure 5.3C). Metabolites with a high centrality score are typically located
in a central point in the network and have multiple interactions with surrounding
metabolites and proteins, while metabolites with a low centrality score are less closely
connected to other metabolites or proteins in the network and are typically located
towards the edges of a network. To indicate how specific a metabolite is for a certain
immune process, the precision score was calculated (Figure 5.3D). The precision of a
metabolite for an immune process of interest is determined by the ratio of the metabolite
associations with the process of interest, compared with all its associations remaining
in the database. Metabolites with a high precision score are typically committed to a
smaller number of immune processes. To rank metabolites and immune processes in
the interaction network, we calculated a p-value that signifies the overrepresentation
of the metabolites and immune processes in the network in comparison to the ones in
the database using Fisher’s exact test (Figure 5.3E). This resulted in a performance table
with significance values for every metabolite and immune process within the network.
The significance value for overrepresentation of the immune process for a specific
metabolite is indicative of the strength of metabolite-immune process association.
The network-based significance value that indicates the overrepresentation of an
immune process within the entire network indicates the importance of the collection of
metabolites for the immune process. In summary, themetabolites and immune processes
in the network are ranked based on their metabolite centrality, precision and p-value,
and the immune process p-value (Figure 5.3A).

5.3.2 Overview of metabolism-immune response associations

To provide an overview of IMA-inferred metabolite-immune response process
associations, we categorized GO terms according to main high-level immune response
processes as defined in the standard textbook Janeway’s Immunobiology [130]. We
determined for each of these immune response processes the biochemical metabolite
superclasses of identified metabolites (Figure 5.4). We found significant differences in
metabolite classes associated with unique immune response processes (Figure 5.4A). The
average number of immune processes per protein is in the same order of magnitude for
all superclasses except for benzenoids (Table 5.4). Metabolites of the superclass of lipids
and lipid-like molecules, here referred to as ‘lipids’, were abundantly present with 90
280 occurrences (92.6%) but interacted with a relatively small portion of proteins (5.1%).
Excluding lipids from the analysis shows a lower average number of metabolites that
were associated with a specific immune process. There were 18,995 unique metabolites
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Figure 5.3 Overview of the IMA network-based interaction analysis. (A) Flowchart of the data
analysis of an interaction network using a first-order inheritance strategy. (B) The metabolite of
interest can inherit immune processes directly (1st order, default) or indirectly (2nd or 3rd order)
from neighboring proteins based on the order of inheritance chosen by the user. (C) The centrality
of a protein ormetabolite in a graphical network is determined using the harmonic closeness score.
This topology-based score is the highest for metabolites with multiple connections in a central
point in the network. (D) The precision of a metabolite for a process of interest is determined by
the ratio of its interactions within the process compared to all its interactions and represents the
commitment of a metabolite to the process of interest. (E) The overrepresentation of an immune
process (GO term) in an interaction network is evaluated using a Fisher’s Exact Test with FDR
multiple testing correction. The resulting significance levels can be used to rank immune processes
in a network.

89



Chapter 5

Figure 5.4 Overview of immune process and metabolite associations. (A) Distribution of the
biochemical metabolite classes identified for common immune processes in the IMA classified
according to the standard textbook Janeway’s Immunobiology, either including (left) or excluding
(right) lipids. (B) Distribution of the number of metabolites associated with specific immune
processes inferred from the IMA, using first-order inheritance, either for excluding lipids (orange)
or including all metabolites including lipids (blue).

associated with the main immune processes when lipids were included and 342 when
they were excluded. A large variation of the number of metabolites associated with
immune processes was present (Figure 5.4B). Excluding lipids results in a shift from
manymetabolites to smaller numbers of metabolites that are associated with an immune
process. The exclusion of the superclass of lipids and lipid-like molecules from these
results excludes several metabolite classes including fatty acyls, glycero(phospho)lipids,
and prenol lipids.

5.3.3 Validation of the metabolite-immune process associations

The methodology was validated by comparing the results from an interaction analysis
of all metabolites and immune processes in the IMA database to metabolite-immune
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process associations found in literature for the same metabolites and immune processes.
The immune system process interaction network was built using 1st order immune
process inheritance and resulted in 432 metabolites associated with 767 immune
processes.

Associations of metabolites and immune processes related to the immune system
process in literature were collected using a text mining approach. We identified 1 046
metabolites that were associated with 565 immune system processes (Table 5.5). The
overlap between associations found by the IMA and found in literature was 31.5% (290
metabolites in 398 processes, Figure 5.5).

Of all associations found in text mining and by the IMA, 58.7% of the metabolites
involved in metabolite-immune process associations were only found in literature
and not by the IMA (n = 614 metabolites). Of these, 398 metabolites were lacking
any interaction according to the IMA database and therefore remained undetected
using the IMA methodology. The 216 remaining metabolites with known interactions
could be classified as having either only metabolite-metabolite interactions and/or
protein-protein interactions. Metabolites that were only interacting with other
metabolites, and not with proteins, could not be detected because immune processes are
only inherited through proteins in the current IMA methodology. Metabolites that were
only interacting with proteins that were not in the immune system process (according
to GO), were also not included in the IMA database. Finally, 13.6% of the metabolites
that inherited an immune system process were only found using the IMA and not in
literature (n = 142). Of these, 55metabolites were identified in literature but were lacking
a link to the immune system. The remaining 87 metabolites were not found in any
immune-related studies through text mining.

The metabolite-immune process associations found in literature were considered as
the gold standard for the evaluation of the performance of different orders of immune
process inheritance. By default, the inheritance of processes was done through direct
protein interactions (first-order), but inheritance through indirect protein interactions
was also evaluated (second and third-order). Therefore, specificity, sensitivity, precision,
F1-score, and accuracy were calculated (Table 5.1). All methods of inheritance yielded
high specificity and accuracy values, indicating that the IMA is strict in linking processes
to metabolites. Relatively low values for precision and sensitivity were reported,
indicating discrepancies between the associations found in literature and made by the
IMA. Comparing direct- and indirect inheritance showed a higher precision for direct
inheritance, while indirect inheritance showed higher sensitivity. Since the IMA gives
high numbers of True Negatives, also the F1-score, which does not take the number
of true negatives into account, was calculated to quantify the difference between the
methods of inheritance. The F1-score favoured direct inheritance.
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Figure 5.5 Comparison of metabolites in IMA database and text mining dataset for validation.
(A) Text mining was used to identify co-occurrences of GO-terms and metabolites present in
the IMA database. Metabolites obtained from co-occurrences were compared with associations
found using IMA. (B) Sankey diagram of metabolites found in both IMA and text mining. 290
of 1 046 metabolites found are present in both IMA and text mining datasets. The portion
of non-overlapping metabolites can be explained based on exclusion criteria for the atlas. 614
metabolites were only found in literature, of which 398 have no known interaction to any proteins
or metabolites in the IMA. There were interactions found of the metabolites to other metabolites
(n=81), metabolites and proteins (42) or proteins (160), but these did not have an association to an
immune process in the IMA database. Of the 142 metabolites that were only found in the atlas, 87
could not be found in literature and 55 were found in literature but missed any connection to an
immune process.

Table 5.1 Absolute performance measure results of first, second, and third-order inheritance.

Order of inheritance Specificity Sensitivity Precision Accuracy F1-score
First order 0.99 0.11 0.29 0.97 0.16
Second order 0.85 0.43 0.07 0.84 0.12
Third order 0.73 0.49 0.04 0.73 0.08

5.3.4 Identification of possible biomarkers using network-based
interaction analysis

To identify which metabolites could be of interest for a specific immune process, we
reported the position of a metabolite in the network (centrality) and the exclusivity
of the metabolite for a certain immune process (precision, Figure 5.6B-C). Metabolites
with high centrality and precision scores might be of interest as biomarkers for the
associated immune process. Therefore, all metabolite-immune process associations
made by the IMAwere analyzed on centrality and precision. Only statistically significant
metabolite-immune process associations after FDR multiple testing correction were
included in the results (p < 0.05, Figure 5.6A, Table 5.6). To identify specific metabolic
biomarkers, we selected metabolite-immune process associations that were above the
set threshold of the mean plus two standard deviations for both centrality and precision.
After analysis of the associations in the current IMA association dataset, 48 metabolites
were found to be of interest as a potential biomarker in 47 immune processes. Several
metabolites were found to be involved in antigen processing viaMHC class 1B, including
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Figure 5.6 Precision-centrality plot of the significant metabolite-immune process associations in
the IMA excluding lipids. (A) For each metabolite in each immune process, the centrality and
precision were calculated and normalized to the network size. Metabolites with high centrality
and precision scores might be of interest as biomarkers for the associated immune process (B) The
centrality represents the position of a metabolite in the network. (C) The precision represents the
exclusivity of the metabolite for a certain immune process.

sphingosine, sphinganine, and dihydroceramide. Furthermore, we identified strong
relationships between several pyruvic acids and positive regulation of prostaglandin
secretion.

5.3.5 Positive regulation of T cell-mediated immunity

As an example, the interplay between metabolites and proteins for the immune process
of positive regulation of T cell-mediated immunity is demonstrated (GO:0002711,
Figure 5.7). The interaction network that was built for this process shows one big cluster
of proteins and metabolites, and some unconnected proteins (not shown). Unconnected
proteinsmay interact with non-immune-related proteinswhich are not considered in the
current IMAmethodology and indicate the current knowledge gap. Of the 8 metabolites
in the network, 5 were found to be significant for the immune process (p<0.05, Table 5.2).
These molecules are highly related as they interact with the same proteins. This results
in the same centrality value for each molecule; however, the precision varies as they can
interact with proteins in other processes. The exception here is 3-Dehydrospinganine,
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Figure 5.7 The interaction network of positive regulation of T cell-mediated immunity
(GO:0002711) shows the interplay between metabolites (green) and proteins (orange).

Table 5.2 Metabolites associated with positive regulation of T cell-mediated immunity. Fisher’s
exact test with FDRmultiple testing correction was used to calculate p-values, while centrality and
precision values are indicators of the importance of the metabolites in this process. Themetabolite
number in the table corresponds to the number in the interaction network in Figure 5.7.

Metabolite Metabolite superclass Centrality Precision P-value
Metabolite
number

in network
3-Dehydrosphinganine Organic oxygen compounds 0.30 0.63 <0.001 6
Phytosphingosine Organic nitrogen compounds 0.30 0.56 <0.001 7
Sphinganine Organic nitrogen compounds 0.30 0.45 <0.001 2
Sphingosine Organic nitrogen compounds 0.30 0.39 <0.001 1
Dihydroceramide Organicacids and derivatives 0.30 0.31 <0.001 8
S-Adenosylmethionine Nucleosides, nucleotides, and analogues 0.22 0.07 1.00 4
ADP Nucleosides, nucleotides, and analogues 0.22 0.01 0.58 5
ATP Nucleosides, nucleotides, and analogues 0.22 0.01 0.58 3

which only interacts with proteins involved in positive regulation of T cell-mediated
immunity, resulting in a precision of 1.00.

Several significant metabolites form a primary component for sphingolipids.
Sphingolipids are membrane lipids that function as ligands for sphingosine-1-phosphate
receptors (S1PR) and are especially associated with the determination of T cell
phenotypes [131]. Previous studies have shown that deficiency in S1PR can cause
failure in mature T cells leaving the thymus [132]. Finally, it has been shown
to be an important factor for coordinating adaptive immune responses through the
S1P1-Akt-mTOR pathway [133].
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Figure 5.8 IMA Rshiny application concept. (A) The application allows users to enter processes,
metabolites, proteins, or identifiers from a list to produce networks and calculate statistics.
This flexibility of input possibilities enables to obtain metabolites from immune processes and
vice versa. (B) Several visualizations have been included to visualize associations between
metabolites and processes. Here, we zoomed in on the connected part of the interaction network
of T cell-mediated immunity. (C, D) Example outputs for metabolites associated with positive
regulation of T cell-mediated immunity including centrality, precision, and p-values.

5.3.6 IMatlas R package and R shiny application

We have implemented the IMA as an R package and R shiny module. The IMA supports
several search modes to facilitate the construction of networks, using either immune
processes or metabolites as input (Figure 5.8). An interaction network is built and
evaluation metrics such as metabolite centrality and p-value are calculated. The IMA
supports bulk input of HMDB identifiers or GO terms to produce graphs that can be
adjusted using several thresholds using the settings panel. For example, confidence
thresholds used by STRING for protein-protein interactions can be increased to include
only very well-curated interactions. Other features include generating neighborhood
graphs of a given set of metabolites and the ability to search using (super)classes and/or
biochemical pathways. In summary, the application contains useful features to construct
network graphs for non-programmatic applications.
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5.4 Discussion

We describe the development of the Immunometabolic Atlas (IMA), which leverages
protein-metabolite interaction analysis to identify metabolites associated with immune
processes, and vice versa, and which can be used to interpret and design metabolomics
studies.

The IMA is based onmetabolites included on theHumanMetabolomeDatabase (HMDB),
which is a large, comprehensive, and well-annotated database of metabolites found
in humans, and is more complete than alternative human metabolite databases [134].
HMDB contains a large number of lipid metabolites, which were found to be associated
with many immune processes. Lipids are highly biologically relevant in various
biological functions as is also extensively studied within the field of lipidomics [135,
136]. In this study, the superclass of lipids and lipid-like molecules was excluded from
the validation and the example shown because the complex nomenclature of these
metabolites made text mining unfeasible. However, inclusion of the superclass lipids
and lipid-like molecules is available for researchers using the IMA. Not all lipids were
removed by excluding this superclass. For example, sphingolipids were included in the
example in Figure 5.7. Depending on the method of classification that is used, some
lipid metabolites will be classified as such, and some will be classified further into other
categories. The method of classification of metabolites by HMDB could be debated but
is considered to be out of the scope of this study.

Association between metabolites and immune processes was based on the inferred
protein-metabolite network, where proteins were associated with GO-associated
immune processes either through direct or higher-order inheritance based on
protein-protein interactions present. The rationale for this strategy is based on the
assumption that metabolites and proteins commonly interact: e.g., as enzyme-substrate
or co-factor [137]. Of course, the majority of proteins are not limited to a single
biological process. Evaluation of association strength of metabolite-immune processes
through classical over-representation analysis is important to identify those metabolites
or immune processes of primary interest [105]. Of note, the absolute p-value obtained
from the over-representation analysis should be interpreted with caution because in
the IMA not the whole metabolome for all human biological processes are used as
a background, but only the metabolites and immune system processes in the IMA
database.

To further interpret metabolites for their value as specific and selective biomarkers
or drug targets we have included computation of precision and centrality
network-structure inferred metrics. Centrality concerns the position of a metabolite
in a network and has been proposed before [138]. The precision score assesses how
specific the metabolite is for the associated process within the network. These metrics
may help to identify metabolites of increased interest as a biomarker for the specific
immune process, e.g. because they are more likely to have a specific function, as
inferred from the underlying network structure.
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We evaluated immune response-metabolite associations through a comparison of
literature text mining derived metabolite-immune process associations. We found that
a substantial part (67%) of the IMA associations overlapped with the associations found
in literature. Overall, the text mining approach identified a two times higher number of
associations than the IMA. We expect that this is related to the nature of methodology
used to identify associations, because of its intrinsic high likelihood of identifying
false-positive associations, which we attempted to reduce through applying several
filtering steps. Ultimately we found that the IMA yields a specificity of 73-99% and
sensitivity of 11-49% depending on the inheritance method used, which indicates our
method shows sufficient performance to be used as a tool for hypothesis generation or
to guide metabolomics study design.

A similar tool for the functional interpretation of metabolomics study results is STITCH
[28], which is a database incorporating known and predicted interactions between
metabolites and proteins. STITCH assigns processes to metabolites based on direct
interactions and a clustering-based algorithm. STITCH does not include topological
measurements, whereas in the IMA this is applied for easier interpretation of larger
networks. In contrast to the IMA, associations between GO biological processes and
metabolites can only be made in the direction of metabolites to processes, but not from
(immune) processes to metabolites.

Limitations of the current IMA include the lack of directionality of associations
in the protein-metabolite network, which could help in identifying biochemical
interactions that are most relevant and plausible. In addition, incorporation of data on
cell-type-specific as well as (sub-) cellular locations of metabolites or metabolite-protein
associations may help in refining metabolite-immune system associations inferred, in
particular, because of the complex and multi-cellular nature of the immune response.

We conclude that the developed IMA can be a relevant tool to guide researchers in the
field of immunometabolomics in the interpretation of immune-metabolomics data from
experiments or clinical studies and to guide the design of prospective metabolomics
studies in the field of immunology, which we facilitate by making our tool available
both as R package and user-friendly web-application. Finally, we expect that the
conceptual approach and developed algorithms for inferringmetabolite-immune process
associations through protein-metabolite interaction networks can be expanded towards
complete biological ontologies, and is not just limited to immune processes.
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5.5 Supporting information

Table 5.3 Contents of IMA database.

Type of data Number included in the IMA
Immune processes 1 712
Proteins 3 101
Metabolites 97 525
Immune process-protein associations 69 641
Protein-protein interactions 411 286
Protein-metabolite interactions 172 291
Metabolite-metabolite interactions 664
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Table 5.4 Summary of superclass characteristics in the IMA

Superclass Number of
metabolites

Number of
proteins

Number of
unique immune processes

Metabolite / protein
ratio

Number of
immune processes

per protein

Number of
unique immune processes

per protein
Organic acids and derivatives 714 138 386 5 57 3
Organic nitrogen compounds 134 29 148 5 74 5
Organic oxygen compounds 1278 162 431 8 84 3
Benzenoids 966 24 166 40 116 7
Lipids and lipid-like molecules 90309 164 467 551 95 3
Nucleosides, nucleotides, and analogues 152 436 639 0 78 1
Organoheterocyclic compounds 1786 72 291 25 52 4
Phenylpropanoids and polyketides 1915 9 74 213 62 8
Alkaloids and derivatives 113 1 16 113 16 16
Organosulfur compounds 174 9 77 19 42 9

99



Chapter 5

Table 5.5 Text mining results listing papers that mention both metabolite and immune process
that is present in the IMA database.

This table is available as zip file (S3 Table) on the website of the publisher at
https://doi.org/10.1371/journal.pone.0268408

Table 5.6 All significant metabolite-immune process associations in the IMA.

This table is available as zip file (S4 Table) on the website of the publisher at
https://doi.org/10.1371/journal.pone.0268408
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CHAPTER 6
General discussion and

summary

Community-acquired pneumonia (CAP) is a lower respiratory tract infection with a
high incidence [1, 2]. Hospitalized patients with moderate to severe CAP typically
receive empirical broad-spectrum antibiotic therapy, that can be switched to targeted
therapy when the microbial etiology is determined. To optimize patient care and to
reduce the risk for development of antimicrobial resistance (AMR) in treatment of CAP,
there is a need for additional biomarkers to support microbial diagnosis and treatment
monitoring of CAP. Metabolomics is a key technology of relevance as a potential
source of new biomarkers for CAP. In this thesis, in Chapter 1, we first introduced
current challenges in diagnosis and treatment of CAP, the basic concepts in the use of
metabolomics for biomarkers discovery, and our central hypothesis that changes in the
host metabolome in patients with CAP may be a potential source for novel biomarkers.
We then described our studies to assess the potential utility of metabolomics-based
biomarkers for diagnostic purposes (Chapter 2 & Chapter 3) and for the monitoring
of the treatment response (Chapter 4) in patients with CAP. Finally, we described
the development of a computational tool which can help in the design and analysis of
metabolomics studies investigating the host immune response (Chapter 5)

6.1 Diagnosis of CAP

Currently used approaches for the etiological diagnosis of pathogens in CAP are based
on several techniques, including culturing, antigen testing, and PCR [44, 45, 46, 47]. The
adoption of PCR-based assays has expanded over the past few years. Due to the high
sensitivity and short turnaround times, PCR point-of-care assays have great value for the
diagnosis of CAP. Using multiplex PCR respiratory panels, a large number of potential
pathogens can be detected [139, 140]. Respiratory PCR assays are typically performed
on sputum, which can be a limitation for CAP patients, who are often unable to
produce a sputum sample. Nasal or nasopharyngeal swab PCR tests that could overcome
this challenge have been proven effective in the diagnosis of Methicillin-resistant

103



Chapter 6

Staphylococcus aureus (MRSA) and COVID-19 [141, 142]. However, the identified
pathogens in these PCR tests may not be conclusively the cause of CAP because the
sample does not originate from the lower respiratory tract [143]. Blood-based diagnostic
assays investigated in this thesis that address these limitations are therefore of potential
relevance for diagnosis or prognosis of CAP. Another potential limitation of PCR-based
assays relates to their targeted nature, i.e., pathogens for which the associated target
sequences are not included, can also not be detected. Potentially, assays which consider
the host immune response to specific pathogens could address this limitation.

Evaluation of metabolic biomarkers for etiological diagnosis of CAP

In Chapter 2, we aimed to determine if predictive metabolomics-derived biomarkers
could be identified to discriminate between key pathogens or pathogen groups in CAP.
To this end, we performed extensive metabolomics profiling of serum samples from
CAP patients collected at the time of hospitalization. Specifically, we assessed whether
patients with a confirmed infection of Streptococcus pneumoniae, atypical bacterial
pathogens, or viral pathogens could be identified usingmetabolomics-based biomarkers.
The choice for these pathogen groups was made because the identification of either one
of these groups drives clinical treatment decision-making. The increased number of
patients per group also enhanced the statistical power to detect potential biomarkers.

In our analyses, no metabolites were found to discriminate Streptococcus pneumoniae or
viral pathogens from the other pathogen groups. However, patients with atypical CAP
pathogens, such as Coxiella burnetii, Chlamydophila psittaci, Legionella pneumophila,
and Mycoplasma pneumoniae, could be discriminated from patients with Streptococcus
pneumoniae or viral infections using a predictive model. This model included three
metabolites: glycylglycine, symmetric dimethylarginine, and lysophosphatidylinositol
(18:1). Themodel showed a predictive performance of 63% sensitivity and 84% specificity.
This performance is not superior to the predictive performance of established clinical
assays based on culturing, antigen testing, or PCR [44, 45, 46, 47]. Potentially, the use
of the identified metabolite-based biomarkers could, however, be further explored to
complement established clinical assays, e.g., through combined consideration of both
pathogen- and host-response associated characteristics.

Uncovering metabolic differences to CAP-associated pathogens

Whereas in Chapter 2 we focused on groups in pathogens, in Chapter 3 we further
characterized the differential metabolic host response to distinct CAP-associated
pathogens. The goal of the analysis was to enhance our understanding of host (or
patient)-associated metabolic changes in the pathogenesis of specific pathogens. To this
end, we studied associations between metabolite levels and CAP-associated pathogens.
While in chapter 2 we did not find metabolites that could discriminate patients with
S. pneumoniae from all other patients, in chapter 3 we found that patients with
Streptococcus pneumoniae infections showed high levels of the stress hormone cortisol,
high phosphatidylcholines (PCs), and low lysophospholipids (LPCs) in comparison to all
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other pathogens, all of which are associated to inflammation [92]. From these results,
we can conclude that the pathogens within the viral and atypical pathogen group in
chapter 2, are so different from each other, that we should study them individually.

This need for individual assessment of the different pathogens is confirmed by our
findings in the group that we defined in chapter 2 as atypical pathogens. In patients with
Legionella pneumophilia infections, we found the lowest levels of LPCs, the highest levels
of cortisol, kynurenine, and phenylalanine, and elevated free carnitine and short-chain
acylcarnitines in comparison to the other pathogen groups, and which could be related
to inflammation [95] and oxidative stress [100]. In patients with a Coxiella burnetii
infection, high levels of long-chain acylcarnitines and LPCs, and elevated glutamate
compared to other pathogen groups were observed, which can be linked to either
inflammation, oxidative stress, or endothelial dysfunction [91, 81, 80, 101, 98].

Within the group of viral pathogens, we found a singular profile for the herpes simplex
virus. Despite the small sample size, patients with herpes simplex infection showed a
unique disruption in their lipid metabolism. An important limitation of this analysis
was the limited sample size per group, the differences in patient age, and the substantial
within-group variance of metabolite levels, which could have confounded the results. As
such, we view these results as preliminary findings which require further confirmation,
but which can still drive hypothesis generation and inform the design of follow-up
studies. Also, a larger number of individuals per group would increase the power and
change of finding significant differences.

Clinical utility of metabolomics-based biomarkers for etiological diagnosis of CAP

Based on our findings in Chapters 2 and 3 we conclude that the added value of
metabolomics-based blood-based assays for the etiological diagnosis of CAP may be
limited. This is because the predictive performance for key pathogens in CAP is so
far inferior or, at best similar to current diagnostic assays (Chapter 2), and with
limitations in pathogen-specificity (Chapter 3). However, the information yielded in
metabolomics assays could potentially be used to complement information gained from
established clinical assays, i.e., through combination of diagnostic assays for host- and
pathogen-associated characteristics and/or blood- and sputum-based matrices [144],
such as recently has been explored in sepsis patients where combined host and pathogen
data improved diagnostic sensitivity to 97-100% [145].

Alternative omics-based biomarkers

Over the last few years, other molecular profiling or “omics” technologies have been
explored for the diagnosis of CAP. For example, recent studies suggest potential value of
metagenomics next-generation sequencing [146], transcriptomics [147], and proteomics
[148] approaches to further enhance the detection rate in pneumonia. Ultimately,
we expect that diagnostic strategies which combine several of these technologies and
thereby combining predictive biochemical host- and pathogen-associated features may
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be most effective in the identification of predictive biomarkers for CAP, and which may
be combined in combinatory diagnostic biomarker panels for CAP.

6.2 Monitoring of treatment response in CAP

Monitoring the course of disease progression and treatment response in CAP is
essential to inform optimal clinical treatment strategies, including the use of effective
antimicrobial therapies. To this end, patients are currently monitored based on their
clinical symptoms, such as fever. In addition, inflammatory biomarkers in blood, such as
C-reactive protein (CRP) or procalcitonin (PCT), are commonly measured longitudinally
in patients to determine whether an antimicrobial treatment strategy appears to be
effective and to guide when antimicrobial treatment can be terminated, which is
relevant to control the risk of AMR emergence. However, current biomarkers have key
limitations, i.e., even though CRP is commonly used, it is not specific to infection, and
its kinetics are delayed in relationship to the underlying infection, and as such do not
directly reflect the current state of the patient [12].

Longitudinal metabolic biomarkers for treatment response monitoring of CAP patients

InChapter 4,we explored the potential of longitudinal metabolomics-based biomarkers
for treatment response monitoring in CAP patients. To this end, we measured
metabolite profiles in 25 CAP patients with a confirmed S. pneumoniae infection during
treatment. We aimed to comprehensively characterize the change in longitudinal
metabolite profiles of these patients and investigated associations with disease severity,
inflammation markers, and treatment response outcomes, quantified using the length
of hospital stay. We found that a large part of the variation in the metabolite values
could be explained due to the changes over time within the patients. Several groups
of metabolites were found to correlate with inflammation markers, CURB score, and
length of hospital stay. The results showed that the inflammation marker C-reactive
protein (CRP) correlated positively with phosphatidylcholine and negatively with nine
LPCs. The CURB disease severity score was negatively associated with six metabolites,
including three acylcarnitines. Length of stay correlated negativelywith six triglycerides
(TGs), and especially with TG (60:3) or TG (58:2). Since these TGs are not highly
correlated to CRP, PCT, or the CURB score, they explain a part of the variability of the
disease progression that is not captured by conventional treatment response biomarkers
and are therefore of interest as new additional biomarkers associated with length of
hospital stay.

To further evaluate the potential of TGs, LPCs, and PCs for treatment response
monitoring, a prospective follow-up study is warranted to further characterize the
predictive value of these biomarkers and their relationship with disease severity (CURB)
and treatment outcomes such as length of stay (LOS). For such a study, the collection
of additional frequent blood samples until hospital discharge would be optimal. In
this study we have made a deliberate choice to only focus on S. pneumoniae-associated
infections as the predominant CAP-associated pathogen, and to ensure that a controlled
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analysis of the longitudinal profiles could be performed. However, in follow-up studies,
assessment of the causative pathogens will be essential to determine whether the
identified biomarkers are generalizable to other pathogens besides S. pneumoniae.

Beyond the analysis described in this chapter, only very limited research has so
far been done investigating longitudinal, treatment response, metabolic biomarkers
in CAP. In this context, previous studies investigating procalcitonin in CAP and/or
sepsis are the most prominent [149, 108]. When considering the discovery of novel
biomarker candidates, several recent studies in CAP patients have focused on prognostic
biomarkers for treatment outcome or disease severity, such as studies for serum
surviving and Cysteine-rich 61 [150, 151]. However, such prognostic biomarkers which
have been determined only at the start of treatment cannot be directly applied as a
clinical decision-making tool to adjust treatment strategy during the course of treatment.

6.2 Improving metabolomics study design and interpretation
with the Immunometabolic Atlas

The biological interpretation of metabolomics data can be challenging because it is often
unclear how certain metabolic biochemical changes associate with immunobiological
or inflammatory processes. In addition, during the design of metabolomics studies,
choices often need to be made regarding the specific chemical classes of metabolites
to be measured, i.e., those which are likely associated with the (immuno-) biological
process of interest. There are currently not many computational tools available to guide
this association between known metabolic pathways and immune-biological processes.

In Chapter 5, we describe the development of the Immunometabolic Atlas (IMA),
which can support the interpretation and design of metabolomics studies. In the
IMA, we integrated information on metabolites, metabolite-protein interactions and
immunobiological processes available in large-scale public databases. Based on these
databases, we established a metabolite-immune process interaction network with over
1.4 million metabolite-immune process associations. Through a web interface, this
network can be used to infer immunobiological processes from metabolites and vice
versa. A current limitation for such analyses remains the lack of uniform metabolite
identifiers for many metabolite classes. For example, for 60% of the metabolites that
were measured as part of this thesis, a Human Metabolite Database (HMDB) identifier
was unavailable. This was in particular these case for lipids, where existing efforts to
provide identifiers for lipids [152] should be integrated with platforms such as HMDB.
Implementing and integration of such identifiers is crucial to further enable FAIR (re-)use
of metabolomics data. Recently, recommendations for metabolite annotations have been
made to overcome the inconsistencies in metabolite nomenclature [153]. Furthermore,
a new methodology is developed to discover new protein-metabolite interactions that
enhances the biological interpretation of metabolomics data [154].
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6.3 Discovery and application of clinical metabolomics-based
biomarkers

High-quality clinical data

The analyses in this thesis have been performed using patient samples which were
collected during previously conducted clinical studies involving hospitalized patients
with moderate to severe CAP, which required hospitalization [30, 29]. An important
characteristic of these clinical studies was the availability of a confirmed microbial
diagnosis, as well as detailed information on patient characteristics, disease severity,
antibiotic therapy, inflammation markers measured during treatment, and length of stay
in the hospital. As such, these clinical studies provided a unique and relevant set of
samples to study the role of metabolomics-based biomarkers in CAP.

Metadata and cofounders

This thesis confirms the importance of complete and extensive data on patient
characteristics, treatments administered, and comorbidities, which may all influence
metabolite profiles and, therefore, could affect the ability to successfully detect novel
biomarkers and should be included to correct for possible confounders in metabolomics
data analysis. In our analyses, details such as sex, age, disease severity, comorbidities,
and durations of symptoms before admission were already collected as part of the study
design. However, several other factors were incomplete or lacking, such as saturation,
fever, respiratory rate, food/fasting details, antibiotic dose, and the specific time of
drawing a blood sample, and can influence the metabolic profile [155, 156, 157]. In
this context, and because of the complexity of design and execution of prospective
clinical trials, the role and further establishment of biobanks for patients with CAP or
associated respiratory infections with extensive collection of all relevant metadata will
be an essential step to aid in future biomarker discovery studies. This is especially a
challenge when the number per patient group is as small as in this thesis.

Control groups and longitudinal data

In this thesis we did not incorporate samples from controls, i.e., individuals unaffected
by an infection. This has impacted our ability to compare observed metabolite levels in
patients with infections to metabolite levels in healthy individuals or in hospitalized
patients without active infection. When considering variability in metabolite levels
within patients, we did have samples available at 30 days post-admission for a subset
of included patients, which can be considered as a within-patient controls. Nonetheless,
establishing metabolome-wide large scale public data repositories for such controls
could be helpful in future metabolomics-based biomarker discovery studies. However,
this would require that metabolomics data can be compared between studies.

In this thesis we have shown that longitudinal metabolite profiles can give more
information about the state of the patient and elucidate the effect of comorbidities and
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co-medications. Therefore, the design of a new clinical study should include sampling
formetabolomics atmore than one time point. Since patients are admitted to the hospital
in different stages of the disease, diagnostic testing based on the absolute metabolite
concentrations at one time point can be challenging. The variable baseline metabolite
levels upon admission and the dynamical metabolite profile differs per patient and
complicates the development and analysis of longitudinal and diagnostic biomarkers
and emphasizes the need for longitudinal biomarkers.

Absolute metabolite levels

In this thesis, metabolite levels were measured as metabolite peak ratio to its internal
standard, as is common practice in the metabolomics field. However, for clinical
application, metabolite levels should be measured as absolute concentrations so a
threshold can be determined that can be easily interpreted by a physician. Measurement
of absolute concentrations was not yet feasible for the hundreds of metabolites that were
measured in the research in this thesis, as this would require calibration lines for all
metabolites. However, if a subset of five to ten metabolites was measured, i.e., in the
context of a dedicated clinical metabolomics-derived assay, this would be an achievable
and important step. In addition, methods should be developed so that also 100’s of
metabolites can be reported as absolute concentrations.

Clinical metabolomics assay development

To measure a small number of metabolites with different chemical properties, such
as polarity and charge, new analytical methodologies should be developed. Recent
research has shown it to be possible to integrate the measurement of metabolites
with different chemistries in one methodological platform, and this methodology
should be developed further for clinical use [158]. In conclusion, to obtain the
integration of metabolomics-based assays in the clinical laboratory, the number of
measured metabolites should be minimized to allow fast processing of samples and easy
interpretation of the results for the clinician. On the other hand, if a larger number
of metabolites are quantified several diseases could be diagnosed (or excluded) in one
analysis.

6.4 Conclusion

We have shown that metabolomics-based biomarkers have potential to monitor the
treatment response in CAP patients. An important advantage of such biomarkers is
their reflection of the host response to infection. Pathogen-specific metabolic responses
described may be able to support discrimination between individual pathogens or
pathogen groups based on the host response but should be further researched to explore
their potential. Ultimately, metabolomics-based biomarkers could in the future be
relevant to complement existing diagnostic tools and biomarkers for diagnosis and
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treatment monitoring of CAP. For that larger studies that follow the above given
recommendations are required.
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CHAPTER 7
Nederlandse samenvatting

Community-acquired pneumonia (CAP), ofwel een thuis opgelopen longontsteking, is
een veel voorkomende infectie van de onderste luchtwegen. CAP kan zowel door
een virus als een bacteriële ziekteverwekker veroorzaakt worden. CAP patiënten
met een ernstig ziekteverloop worden doorgaans in het ziekenhuis opgenomen. In
dat geval krijgen ze meestal initieel een breed-spectrum antibioticum voorgeschreven.
Tegelijkertijd wordt er met behulp van microbiologisch onderzoek geprobeerd de
specifieke ziekteverwekker te identificeren zodat met een gerichter, smaller spectrum
antibioticum uitbehandeld kan worden. Als de oorzaak viraal blijkt te zijn, kan
overwogen worden om de antibioticatherapie te stoppen. Huidige diagnostische
tests voor bacteriële ziekteverwekkers hebben vaak een relatief lange doorlooptijd
(>48 uur) waardoor het lang duurt voordat de therapie op de patient aangepast kan
worden. Bovendien blijft in ongeveer de helft van de CAP-patiënten de ziekteverwekker
onbekend. Nadat de antibioticatherapie is gestart, is het van belang om vroegtijdig
te kunnen meten of de behandeling aanslaat en wanneer deze weer gestaakt kan
worden. Gebruik van antibiotica is direct gerelateerd aan het risico op het ontstaan
van antimicrobiële resistentie (AMR). Het is daarom van groot belang om antibiotica zo
gericht mogelijk te gebruiken en te staken als de oorzaak viraal is of als de bacteriële
infectie volledig is onderdrukt. Snelle en voorspellende diagnostische technieken zijn
essentieel, zowel voor effectieve antibioticatherapie als om het risico op het ontstaan
van AMR te beperken.

Metabolomics is de grootschalige meting van kleine biomoleculen (metabolieten) in
weefsels, cellen of lichaamsvloeistoffen, zoals bloed. Deze lichaamseigen metabolieten
spelen een rol in de regulering van allerlei processen in het lichaam, waaronder bij
de reactie van het lichaam op een infectie. In dit proefschrift hebben wij onderzocht
of er (combinaties van) metabolieten bestaan die specifiek gerelateerd kunnen worden
aan patienten met een CAP infectie. Hierbij hebben wij gekeken naar relaties van
metabolietprofielen met verschillende soorten ziekteverwekkers, met de ernst van de
ziekte en met het ziekteverloop. Onze specifieke focus lag op het bepalen of er
klinische meerwaarde zou kunnen bestaan voor het gebruik van dergelijke nieuwe
metabolomics-gebaseerde biomarkers in de diagnostiek en behandeling van CAP.
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In Hoofdstuk 2 hebben we onderzocht of bepaalde metabolieten onderscheid
kunnen maken tussen verschillende groepen CAP-patiënten, afhankelijk van de
ziekteverwekker. Hierbij hebbenwij gekeken naarmetabolietprofielen in bloedmonsters
van CAP-patiënten die waren opgenomen in het ziekenhuis. We hebben patiënten met
een bacteriële Streptococcus pneumoniae (pneumokok) infectie, een atypische bacteriële
infectie, of een virale infectie, met elkaar vergeleken. We kozen deze drie groepen omdat
de antibiotische behandeling per groep verschilt. Wij vonden dat het niet goed mogelijk
is om pneumokokken of virale infecties te onderscheiden op basis van de onderzochte
metabolietprofielen. Wel bleek het mogelijk om met een set van drie metabolieten
atypische bacteriële infecties te onderscheiden zijn van andere groepen. De gevoeligheid
(63%) en specificiteit (84%) van deze metabolieten, de voorspellende waarde, bleek echter
niet beter dan deze van bestaande diagnostische tests zoals kweek, antigeentesten of
PCR. Desondanks zou het kunnen dat deze metabolieten in aanvulling op bestaande
technieken de identificatie van het type ziekteverwekker kunnen verbeteren, omdat deze
specifiek kijkt naar de metabole respons van een patiënt.

In Hoofdstuk 3 hebben we onderzocht of er met behulp van metabolietprofielen
onderscheid kan worden gemaakt tussen individuele ziekteverwekkers. We hebben
metabolietprofielen geanalyseerd in bloedmonsters van CAP-patiënten met als doel
ons begrip van metabole veranderingen bij patiënten in relatie tot specifieke
ziekteverwekkers te vergroten. In deze analyse vonden we met name in patienten met
een pneumokokkeninfectie, Legionella pneumophila en Coxiella burnetii infecties een
sterkere associatie met specifieke metabolieten. Hierbij bleken met name de niveaus van
fosfatidylcholines, lysofosfolipiden, cortisol, kynurenine, fenylalanine, vrije carnitine
en korte-keten-acylcarnitines een onderscheidende rol te spelen. Deze metabolieten
zijn deels eerder al in verband gebracht met onstekingsprocessen, oxidatieve stress,
en/of endotheelcelfunctie. Bij patiënten met het herpes simplex-virus vonden we
daarnaast een unieke verstoring in het lipidenmetabolisme. Het aantal patiënten
per ziekteverwekker was beperkt in deze studie en vormt een belangrijke beperking.
Bovendien waren er aanzienlijke verschillen in de leeftijd van de patiënten en in variatie
van metabolietniveaus binnen de groepen ziekteverwekkers. De gevonden associaties
tussen specifieke metabolieten en ziekteverwekkers moeten dus als exploratief worden
beschouwd, en kunnen mogelijk als basis van hypothesevorming in vervolgstudies
gebruikt worden.

Het kunnen monitoren van het ziekteverloop en de behandelrespons is essentieel
voor een optimale behandelstrategie. In Hoofdstuk 4 hebben wij gekeken naar
veranderingen in metabolietprofielen gedurende het ziekteverloop van CAP-patiënten.
Momenteel gebeurt dit door het meten van klinische symptomen zoals koorts en door
het bepalen van ontstekingsmarkers in het bloed gedurende de behandeling, zoals
C-reactief proteïne (CRP). Een biomarker zoals CRP is niet specifiek voor de infectie en
reageert relatief traag op veranderingen in de ernst van de de infectie, waardoor ze de
actuele toestand van de patiënt niet nauwkeurig weerspiegelen. In dit hoofdstuk hebben
we onderzocht of er metabolieten zijn die mogelijk kunnen bijdragen aan het monitoren
van de behandelingseffecten bij CAP-patiënten. We hebben hiervoor gekeken naar
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metabolietenprofielen van 25 CAP-patiënten met een streptokokkeninfectie, waarbij
wij op verschillende momenten tijdens en na de behandeling de metabolietprofielen in
bloedmonsters hebben bepaald. We hebben onderzocht of veranderingen in deze over
de tijd variërende metabolietprofielen gerelateerd kunnen worden aan scores voor de
ernst van ziekte (de CURB score), andere ontstekingsmarkers, en aan de opnameduur
in het ziekenhuis. Wij vonden verschillende groepen metabolieten die een correlatie
met ontstekingsmarkers, ernst van de ziekte en/of opnameduur lieten zien. Met name
een aantal triglyceriden bleken mogelijk relevant als longitudinale biomarker voor het
bepalen van behandelrespons.

Op dit moment is er nog relatief weinig bekend over de rol en functie van
metabolieten in de immuunrespons bij infecties. Het kiezen van de meest relevante
groepen van metabolieten in een metabolomics studie, en de biologische interpretatie
van gevonden metabolieten in metabolomics studies, is daarom ingewikkeld. In
Hoofdstuk 5 hebben wij een computationele tool ontwikkeld om deze uitdagingen
te ondersteunen: de Immunometabolic Atlas (IMA). De IMA werkt door middel
van het combineren van verschillende databases met informatie over metabolieten,
eiwitten die aan deze metabolieten gerelateerd zijn en eiwitten die gerelateerd zijn
aan biologische processen. Door de kennis van onderlinge connecties tussen eiwitten
en metabolieten te benutten, wordt het mogelijk om (mogelijke) verbanden tussen
metabolieten en immuno-biologische processen te identificeren. Het uiteindelijk
ontwikkelde interactienetwerk tussen metabolieten en eiwitten had meer dan 1.4
miljoen van dergelijke verbindingen. Met behulp van de publiek beschikbare IMA
kunnen onderzoekers in het vakgebied van immunometabolisme geholpen worden in
zowel het opzetten van nieuwe metabolomics studies als de analyse daarvan.

Samenvattend hebben wij in dit proefschrift laten zien dat metabolietprofielen potentie
hebben als mogelijke biomarkers bij CAP, met name voor het monitoren van
behandelrespons. Hoewel de gevonden metabolietprofielen mogelijk voorspellende
waarde hebben bij de behandeling van CAP, is verder onderzoek in grotere
patiëntcohorten nodig om hun potentiele rol verder te kunnen vaststellen. Een
belangrijk voordeel van metaboliet-gebaseerde biomarkers is dat zij de reactie van
de patiënt op een infectie weerspiegelen, in plaats van de eigenschappen van de
ziekteverwekker zelf. Mogelijk zijn metabolietgebaseerde biomarkers met name in
aanvulling op bestaande diagnostische technieken van toegevoegde waarde bij de
behandeling van CAP.
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