
Modeling and verifying the topology discovery mechanism of
OpenFlow controllers in software-defined networks using process
algebra
Xiang, S.Q.; Zhu, H.B.; Wu, X.; Xiao, L.L.; Bonsangue, M.M.; Xie, W.L.; Zhang, L.

Citation
Xiang, S. Q., Zhu, H. B., Wu, X., Xiao, L. L., Bonsangue, M. M., Xie, W. L., & Zhang, L.
(2020). Modeling and verifying the topology discovery mechanism of OpenFlow
controllers in software-defined networks using process algebra. Science Of Computer
Programming, 187. doi:10.1016/j.scico.2019.102343

Version: Publisher's Version

License: Licensed under Article 25fa Copyright Act/Law (Amendment
Taverne)

Downloaded from: https://hdl.handle.net/1887/4083539

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:4
https://hdl.handle.net/1887/license:4
https://hdl.handle.net/1887/4083539

Science of Computer Programming 187 (2020) 102343
Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Modeling and verifying the topology discovery mechanism

of OpenFlow controllers in software-defined networks using

process algebra ✩

Shuangqing Xiang a,c, Huibiao Zhu a,∗, Xi Wu b, Lili Xiao a, Marcello Bonsangue c,
Wanling Xie d, Lei Zhang e

a Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai, China
b School of Computer Science, The University of Sydney, Australia
c LIACS, Leiden University, Niels Bohrweg 1, 2333 CA, the Netherlands
d College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, China
e Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, Shanghai, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 16 December 2018
Received in revised form 19 October 2019
Accepted 28 October 2019
Available online 4 November 2019

Keywords:
Formal verification
Modeling
SDN
Secure topology discovery
TopoGuard

Software-Defined Networking (SDN) is an emerging paradigm, providing separation of
concerns between controllers that manage the network and switches that forward data
flow. SDN enables network programmability and reduces the complexity of network control
and management. The OpenFlow protocol is a widely accepted interface between SDN
controllers and switches. OpenFlow controllers are the core of Software-Defined Networks
(SDNs). They collect topology information to build a global and shared view of the
network, which is used to provide services for topology-dependent core modules and
applications. Therefore, the accuracy of the centralized abstract view of the network is of
outermost importance for many essential SDN operations. However, the topology discovery
mechanism used in almost all the mainstream OpenFlow controllers suffers from two
kinds of topology poisoning attacks: Link Fabrication Attack and Host Hijacking Attack.
TopoGuard is a wide-spread secure OpenFlow controller, which improves the standard
topology discovery mechanism, providing automatic and real-time detection of these two
attacks. However, the mechanism of TopoGuard lacks formal verification, especially in the
situation where some hosts are migrating to their new locations. In this paper, we propose
a general parameterized framework, including the Communicating Sequential Processes
(CSP) models of the network components and the interfaces among them. Two loopholes
of TopoGuard are found by implementing and verifying the proposed system model, which
is an instance of the framework, in the model checker Process Analysis Toolkit (PAT).
Moreover, we propose a new topology discovery mechanism based on TopoGuard, which
solves the two loopholes.

© 2019 Elsevier B.V. All rights reserved.

✩ This paper extends the work published at TASE 2018 [1]: 12th International Symposium on Theoretical Aspects of Software Engineering.

* Corresponding author.
E-mail address: hbzhu@sei.ecnu.edu.cn (H. Zhu).
https://doi.org/10.1016/j.scico.2019.102343
0167-6423/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.scico.2019.102343
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:hbzhu@sei.ecnu.edu.cn
https://doi.org/10.1016/j.scico.2019.102343
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2019.102343&domain=pdf

2 S. Xiang et al. / Science of Computer Programming 187 (2020) 102343
1. Introduction

In traditional computer networks, the control and the data planes are tightly coupled, and the whole structure is highly
decentralized. Therefore, it is hard to effectively extend networks with new functionalities and reason precisely about their
behaviors. Software-Defined Networking (SDN) has recently emerged as a new network paradigm, paving the way towards
a next generation networking, producing an innovative research and development environment [2], and making it easier to
monitor and manage network behaviors. A controller is the strategic point in a software-defined network, responsible for the
management of the whole network, while the switches in the data plane are responsible for forwarding packets as well as
reporting device status according to the instructions from the controller. The OpenFlow protocol [3] is the de-facto standard
communication protocol between a controller and a switch, implementing the so called southbound interface between the
control plane and the data plane. TopoGurad [4] is an OpenFlow controller, which provides a feasible mechanism to secure
the topology discovery process. Later on, we will refer to an OpenFlow controller and an OpenFlow switch as OF controller
and OF switch, or simply controller and switch.

An OF controller collects the entire network’s topology information to create an abstract global view of the network,
which enables a smooth and efficient network operation [5]. Many services in the application plane (e.g., routing, policy,
etc.) and some core controller modules are highly dependent on the topology information maintained by the controller.
Therefore, the accuracy of the topology information known by the controller is of great importance. The OpenFlow Topology
Discovery Protocol (OFDP) is the topology discovery protocol used in almost all the mainstream open source OF controllers
(Floodlight, OpenDayLight, Maestro, NOX, Ryu, etc.). However OFDP suffers from two information attacks: Host Hijacking
Attack and Link Fabrication Attack, which take advantage of the loopholes in OFDP to poison the topology information
known by the controllers. The two kinds of attacks are unique to SDN, which may lead to serious hijacking, denial of service
or man-in-the-middle attacks [4,6–8]. Host Hijacking Attack concerns injecting fake host-generated packets into the network
to deceive the controller into believing that the target host has migrated to another location, whereas Link Fabrication Attack
involves an attacker creating a new malicious link in the network. In both cases the attacking goal is to gain control over
traffic.

Some work has already been proposed to prevent the two kinds of attacks. In [8], a countermeasure-based method
is proposed to overcome Link Fabrication Attack. The method adds a cryptographic Message Authentication Code (MAC)
in each Link Layer Discovery Protocol (LLDP) packet to authenticate the packet’s integrity. The work in [7] proposes a
real-time accurate verification solution, which uses network flow graphs to detect attacks that violate those learned flow
graphs/modules. In addition, Hong et al. [4] also designed a real-time low-overhead defensive solution, which adds some
small changes into the topology discovery modules of OF controllers, and the secure OF controller is called TopoGuard.
Although TopoGuard is in the experimental stage, the simple and effective design as well as the high performance of
TopoGuard makes it as one of the most feasible methods to prevent the two kinds of attacks. However, the mechanism of
TopoGuard lacks of formal verification, especially in the situation where the hosts are in the process of migration. And this
is the reason why we choose it as the foundation to design a more secure topology discovery mechanism.

Communicating Sequential Processes (CSP) [9,10] has been widely applied in many fields, including distributed systems,
concurrent systems, and networks [11–13]. Inspired by [11], we model the behaviors of TopoGuard, OF switches, hosts and
two kinds of attackers as CSP processes. This paper is an extension of the work that is published at TASE 2018 [1].

Many other approaches have been proposed to verify SDNs. Some of them are designed to verify configurations of the
data plane [14–18]. For example, FLOVER [18], a model checking system, can translate OpenFlow rules and a network
security policy into an assertion set, which can then be processed and verified by an SMT solver. NetKAT [19], equipped
with a sound and complete equational theory, is used for specifying and verifying packet-processing functions in SDNs.

Some other works provide tireless abstraction of the three layers of SDN and focus on the verification of the entire
network [20–22]. For example, Flowlog [22] provides a Datalog-based tireless SDN programming language and enables
built-in verification. Flowlog programs can be complied into Alloy, a verification tool, to verify some canonical properties
[23]. [21] combines model checking and symbolic execution to mitigate the state-space explosion. CSP, like [22] and [21],
enables the description of controller programs, switches and hosts through a unified abstraction. One of the most important
features of CSP is that it allows the description of the communication among objects. CSP provides channels to model
communications, which can help us build the model for the basic structure of SDNs through an intuitive way.

The main contributions of this paper are listed as below:

• We propose a parameterized framework that models the basic structure of SDNs, including three layers (control plane,
data plane, and external environment) and the communications among them. The external environment of the networks
discussed in this paper contains four kinds of hosts (compromised moving host, compromised unmoving host, normal
moving host and normal unmoving host) and two kinds of attackers (link attacker and host attacker). One may extend
an instance of the framework to create a specific model.

• We implement and verify the system model, which is an extended instance of the general framework. Two loopholes are
found: One may make the system vulnerable to Host Hijacking Attack, and another one may hinder legal migrations.

• Through analysis, we come to a conclusion that the verification results of the two system models still hold for more
complex networks that are discussed in Section 5.5.

• A new topology discovery mechanism based on TopoGuard is proposed, which is verified to cope with the two loopholes.

S. Xiang et al. / Science of Computer Programming 187 (2020) 102343 3
Fig. 1. SDN structure.

The remainder of this paper is organized as follows. We briefly introduce the preliminaries about the relevant concepts
of the OpenFlow Protocol, CSP and PAT in the next section. Section 3 is devoted to introducing OFDP, the two kinds of
attacks, and the mechanism of TopoGuard. The CSP models for TopoGuard, switches, hosts and attackers are described in
Section 4. In Section 5, we implement as well as verify the proposed system model in PAT. Moreover, we discuss whether
or not the verification results still hold for other SDNs. A new mechanism based on TopoGuard is proposed in Section 6,
where we build the improved system model and verify it in PAT. Finally, we conclude the paper and present the future
directions.

2. Preliminaries

2.1. OpenFlow protocol

The structure of SDN is shown in Fig. 1. The OpenFlow protocol is the most dominant southbound interface between the
control plane and the data plane, through which an OF controller can manage and configure a remote OF switch. TopoGuard
is applied to single-controller OpenFlow-based networks. One such network composes of several components: namely, one
controller, a number of switches, and some hosts. We firstly introduce some glossaries according to [24].

OF Message: A controller may communicate with switches using OF messages, which are sent over connections.
Packet: A packet is treated as a unit to be forwarded among switches and hosts.
Connection: A connection carries OF messages between a switch and a controller, and it may be implemented using various
network transport protocols.
Link: A link carries packets between a switch and another switch/a host. An internal link is a link between two switches.
Port: A switch has a set of OpenFlow ports, including several local reserved ports and some normal ports. CONTROLLER is
the most common reserved port, which is used to exchange OF messages with the controller. Additionally, a switch may
receive/forward packets via its normal ports.
Ingress Port, Ingress Switch: Consider a packet-in message that carries a packet. The switch that has sent the message to
the controller is the ingress switch, and the port on which the packet was received by the ingress switch is the ingress port.
Flow table: A flow table in a switch contains some rules. When a packet comes into the switch via a normal port, the
switch will search the flow tables to find a matching rule. Each rule is composed of some match fields, a set of instructions
that will act on a specific packet, etc.
Matching: On receipt of a packet, a switch firstly extracts the header fields of the packet as well as some other information
like the packet’s ingress port, which are used to carry out a flow table lookup.

There are dozens of OF messages defined in the OpenFlow protocol. Here we only list three kinds of OF messages, which
are used in the modeling of TopoGuard:

PktIn: We consider a switch who has received a packet with no matched rule. Then, the switch will send a packet-in
message that carries the packet to the controller.
PktOut: A controller uses a packet-out message to ask a switch to forward a packet through a designated port.
PtStatus: A switch uses port-status messages to inform a controller of port changes.

4 S. Xiang et al. / Science of Computer Programming 187 (2020) 102343
2.2. CSP

Communicating Sequential Processes (CSP), first proposed by C.A.R. Hoare, is a process algebra for describing and analyz-
ing the interactions in concurrent systems [9]. CSP processes are composed of primitive processes and actions. The processes
in this paper are defined using the following syntax. a and b stand for atomic actions and c is the name of a channel.

P , Q ::= Skip | a → P | c?x → P | c!y → P | P‖ Q | P |||Q | P�Q | P ; Q | P � b � Q | (x := e ; P)

• Skip represents a process that does nothing but terminates successfully.
• a→ P denotes a process that first engages in the action a, and then behaves the same as the process P.
• c?x → P gets a message via the channel c and assigns it to variable x. Then the process behaves like P.
• c!y → P sends a message y via channel c and then behaves like P.
• P � b � Q describes that if the condition b is true, the behavior of the process is like P, otherwise, as Q.
• P || Q describes the concurrency of P and Q, and they are synchronized with their common actions or a pair of commu-

nication actions (c!y and c?x).
• P ||| Q denotes two processes which run concurrently without synchronization.
• P � Q is a process that behaves either as P or Q, and the choice is made by the environment on the very first step.
• P;Q represents a process that performs P and Q sequentially.
• (x=e ;P) is a process which behaves like P , except that the initial value of x is defined to be the value of the expression e.

Here, a function in our model is equal to a sequence of assignments in CSP.

2.3. PAT

As a self-contained framework for composition, simulation and reasoning of concurrent systems [25] and other possible
domains, Process Analysis Toolkit (PAT) [26] is designed as an extensible and modularized framework based on CSP. PAT
implements various model checking techniques catering for different assertions such as deadlock freeness, reachability,
and LTL with fairness assumptions in distributed systems [27]. The process notations in PAT are similar to those in CSP
except some different symbols and expressions. For example, the general choice � in CSP is expressed as [] in PAT, and
P = mod{v = v + 1} → Skip in PAT denotes that the global variable v can be updated by an action named mod. The
grammar of PAT is shown as below:

• #def ine N x: defines a global constant named N with initial value x.
• var T opo[N][M]: defines a global two-dimensional array named Topo.
• channel C x: declares a channel with identity C . x is the buffer size. Notice that a channel with buffer size 0 sends/re-

ceives messages synchronously.
• P = mod{v = v + 1} → Skip: denotes that the global variable v can be updated by an action named mod.
• #def ine cond v > 0: defines a proposition named cond.
• #assert P reaches cond: defines an assertion that asks: whether process P can reach a state at which cond is satisfied.

In order to determine whether the assertion is true, PAT’s model checker performs a depth-first-search algorithm to
repeatedly explore unvisited states until a state at which the condition is true is found or all states have been visited
[26].

• #assert P |= F : asks whether every execution of P satisfies the LTL formula F .

3. Threats in topology discovery and overview of TopoGuard

3.1. Topology discovery

Topology discovery in an OpenFlow-based software-defined network concerns two services in a controller: (1) Link Man-
ager for detecting internal links; (2) Host Tracker for locating hosts. Before the two services initiate, there is a Switch
Discovery step, in which the controller discovers all the switches and gets the basic capabilities, like the ID of a switch and
the ports on it, through the HandShake protocol [28].

3.1.1. Link manager
As the standard topology discovery protocol in OpenFlow-based SDNs, OFDP leverages the Link Layer Discovery Protocol

(LLDP) [29]. The main parts of an OFDP/LLDP packet are shown in Table 1. The destination MAC address of an LLDP packet
is set to a fixed bridge-filtered multicast address.

Then, we illustrate how OFDP works using a simple example shown in Fig. 2.
At first, the controller creates an LLDP packet for the port P1 on the switch S1 and sends it to S1 though a packet-out

message. Then, the switch S1 will extract the LLDP packet from the packet-out message and forward it through P1 according
to the instruction in the packet-out message: outport = P1. After receiving the LLDP packet from S1, the switch S2 will send
a packet-in message that carries the LLDP packet, to the controller according to a pre-installed rule in its flow table. The

S. Xiang et al. / Science of Computer Programming 187 (2020) 102343 5
Table 1
The main parts of an OFDP/LLDP packet.

DstMAC SrcMAC EthType Chassis ID Port ID Optional TLVs

01:80:C2:00:00:0E Outgoing Port MAC 0x88CC Switch ID Outgoing Port ID E.g., Signature

Fig. 2. An example of OFDP.

Fig. 3. Two examples of the two attacks.

packet-in message contains the identities of the ingress switch S2 and the ingress port P3. Besides, the LLDP packet has the
information about the source switch ID and source port ID (i.e. Chassis ID and Port ID in Table 1). Therefore, the controller
will deduce that there exists an internal link from (S1 , P1) to (S2 , P3).

3.1.2. Host Tracker
Host Tracker allows for monitoring traffic, assisting in traffic routes, and determining the source of host-generated packets

[30]. After detecting a packet-in message that contains a host-generated packet (e.g. an Address Resolution Protocol (ARP)
packet), Host Tracker will extract the host’s ID from the packet. In addition, Host Tracker will obtain the host’s location
information, including the ID of the switch that connects the host (InSID) and the ID of the host’s attachment port (InPID).

3.2. Threats in topology discovery

3.2.1. Link Fabrication Attack
An example of Link Fabrication Attack is shown in Fig. 3(a). We assume that the host H1 and the host H2 have been

compromised by an attacker. At first, H1 (the link attacker) sends a fake LLDP packet of which the Chassis ID field and the
Port ID field are S3 and P2 to the switch S1. A fake LLDP packet is generated by tampering a genuine LLDP packet received
by H1, or it is a copy of a normal LLDP packet received by H2 [4]. Then, S1 will send a packet-in message that carries the
fake LLDP packet to the controller. Finally, the controller will deduce the existence of an internal link from P2 on S3 to P1
on S1, which is denoted by the dashed line.

3.2.2. Host Hijacking Attack
As shown in Fig. 3(b), before the attack, the traffic from host H1 to host H2 is illustrated by the dashed line. Then the host

attacker injects a fake ARP packet of which the Source Host ID field is H2 into the network through H3. After observing the
fake ARP packet, the controller will believe that H2 has moved to P2 on S1. Therefore, the Routing Service in the controller
will compute a new route for the traffic from H1 to H2. For example, a rule which says that the packet sent from H1 to H2
should be forwarded to port P2 will be inserted into the flow table of S2. As a result, the traffic from host H1 to H2 will be
directed to H3 and then obtained by the attacker. The traffic hijacked by the attacker is shown by the dotted line.

6 S. Xiang et al. / Science of Computer Programming 187 (2020) 102343
Fig. 4. Value transition of Device Type.

Fig. 5. The mechanism of TopoGuard.

3.3. TopoGuard

TopoGuard is a secure OF controller, which is extended from NOX. The improvement to OFDP proposed by TopoGuard
could also be applied to other OF controllers which use OFDP as their topology discovery protocol. TopoGuard maintains
three attributes for a switch port: Device Type, Host List and Shut-Down Flag.

Host List When TopoGuard detects a host-generated packet, if there is no record of the host in any host list, in which case
the packet is a first-hop host packet, TopoGuard will add the host into the host list of the packet’s ingress port.
Shut-Down Flag It will be set to TRUE once TopoGuard receives a related port-down signal, which is carried by a port-status
message.
Device Type As shown in Fig. 4, the initial value of Device Type of a specific switch port is ANY. Then Device Type of the
port is set to HOST once TopoGuard observes a first-hop host packet that is received by the port, or the value is set to
SWITCH when an LLDP packet received via the port is monitored. The value is set back to ANY when TopoGuard detects a
port-down signal from the port.

Fig. 5 shows the mechanism of TopoGuard on notification of a new internal link or a host migration. If a packet-in
message that carries an LLDP packet arrives, and the internal link deduced from the message has not been observed before,
a new internal link event is triggered. In this case, TopoGuard will check the controller-signed signature in the packet to
ensure that the packet has not been tampered. Then, TopoGuard will detect if there is any host lies on the path of the LLDP
propagation by checking Device Type. If Device Type of any of the two ports on the new link is HOST, the controller will
issue an alert and deny the link update.

If TopoGuard detects a host-generated packet from a port, and the host’s location deduced from the packet is different
from the one recorded in Host Table, TopoGuard will check the legality of the host migration. Before the host migration
finishes, the controller must have received a port-down signal of the port [4]. If Shut-Down Flag of the port is TRUE, then
TopoGuard will modify the location information of the host. After that, TopoGuard will send an ICMP Echo request to the
former location of the host and wait for a response within a reasonable time. If TopoGuard receives the corresponding ICMP
Echo reply later, which indicates the migration is malicious, it will withdraw the previous location update and raise an alert.

4. Formalizing SDNs with TopoGuard and attackers

In order to check whether or not the mechanism in TopoGuard can successfully prevent the two kinds of attacks de-
scribed in Section 3, we model the behaviors of TopoGuard using CSP in this section. Additionally, we also formalize OF
switches, four kinds of hosts and two kinds of attackers. In addition, we define some tables to store the topology informa-
tion collected by the controller, flow rules, etc. CSP processes can read or write those tables.

S. Xiang et al. / Science of Computer Programming 187 (2020) 102343 7
In topology discovery process, there are many kinds of attacks that aim at different objects. In this paper, we focus on
the two kinds of new attacks described in Section 3, which are peculiar to SDNs, instead of the attacks against classical
protocols or algorithms.

We first make some important assumptions before modeling.

4.1. Assumptions

1. As mentioned before, there are three parts in topology discovery: switch discovery, link discovery and host discovery.
The switch discovery step does not require any additional protocol since when an OpenFlow switch establishes a connection
to the OpenFlow controller, the switch information should be stored in the OpenFlow controller for future management [4].
Of course, there are attacks that aim at switch discovery step. For example, attacks that take advantages of the loopholes of
TCP or TLS, but this paper concentrates on Host Hijacking Attack and Link Fabrication Attack, which aim at host discovery
and link discovery step respectively. Therefore, we assume that the Switch Discovery step is secure.

2. If the signature algorithm for constructing LLDP packets are secure enough, it is obvious that TopoGuard will be able to
detect Link Fabrication Attack with tampering style. Discussing the security of classical signature algorithms is out of the
scope of this paper, and therefore, we omit the signature field from LLDP header and let an attacker launch Link Fabrication
Attack in the relay manner.

3. In our model, before initiating an attack, an attacker has gained enough information about its target.

• For Link Fabrication Attack, the attacker has to get a copy of the target LLDP packet (a normal LLDP packet received by
H2 in Fig. 3(a)), which can be achieved by setting a physical link or tunnel.

• For Host Hijacking Attack, the identity of the target host (H2 in Fig. 3(b)) is needed. The attacker may retrieve the target
identifier through an ARP request.

None of the possible behaviors above will set the device type of the port that belongs to an internal link to HOST, or set
the device type of the port that connects to a host to SWITCH. Therefore, these behaviors will not influence the verification
results.

4. This abstraction comes from the third assumption. During the process for a host attacker to get the identifier of its
target host, both of the compromised host and the target host will generate some host-generated traffics. Therefore, when
the host-hijacking attack starts, the controller has already recorded the location of the corresponding hosts and changed the
attributes of related ports. As a result, in our model, we will manually set the initial locations of the hosts and the attributes
of related ports.

4.2. Definitions

In our model, all the communications among the components are formalized as passing messages through channels. We
show some channels and the corresponding processes in Fig. 6. A directed edge in the figure denotes a channel between
two processes as well as the direction of message transmission.

CSx , SxC: represent the communications between the controller and the switch Sx . The controller receives OF messages via
SxC and sends OF messages through CSx . Since every OF switch in the network is connected to the controller, there are also
two channels between the switch Sy and the controller. Here we omit them from the figure for simplicity.
SxPi : represents forwarding packets to the switch Sx through its port Pi , assuming that there is an internal link between Pi
ofSx and P j of Sy . Sx waits to receive packets from Sy through channel SxPi . Sx can also send packets to Sy through channel
SyP j . Besides, assuming that the host Hu is connected to the port Pm of Sx , then the host may forward packets to Sx through
channel SxPm .
SHu : denotes forwarding packets to Hu . The link between Hu and its connected switch Sx is modeled as the channel SHu

and the channel SxPm , and the host is connected to port Pm on Sx . Notice that if Hu is compromised by an attacker, the
attacker may inject packets into the network through the channel SxPm .
Monitorv : is used by a link attacker to monitor the traffic that arrives at the host Hv .
PtChange: is designed to make sure that the controller will receive a port-down signal before the host Hu finishes its
migration.
Host, Link: represent delivering packet-in messages to Host Tracker and Link Manager respectively.
CSend: is used by both Host Tracker and Link Manager to ask the controller to issue OF messages.

The definitions of the OF messages and the packets used in our model are illustrated in Table 2. Here @ is a separator.
Notice that the format of a packet in our model is an abstraction of its practical format. That is, we omit some fields that
are not necessary.

8 S. Xiang et al. / Science of Computer Programming 187 (2020) 102343
Fig. 6. The channels used in modeling.

Table 2
Definitions of OF messages and packets.

PktType Format

ICMPEcho PktType@Type@DstHID
LLDP PktType@SrcSID@SrcPID
ARP PktType@SrcHID

OFMsgType Format

PktIn MsgType@InSID@InPID@Pkt
PktOut MsgType@OutPID@Pkt
PtStatus MsgType@Type@SID@PID

ICMPEcho: Since we are more concerned about the interactions among the network components than how to design rules
for different protocols, we just define an abstracted packet type here. DstHID is the ID of the destination host. The value of
Type can be Request or Reply.
LLDP: an LLDP packet has three fields: packet type, source switch ID and source port ID.
ARP: SrcHID in an ARP packet represents the ID of the source host that has generated the packet.
PktIn: Similar to the definition of packets, an OF message has a message type field. InSID and InPID denote the ingress
switch ID and ingress port ID respectively. Pkt denotes the packet that is carried in the OF message. The format of Pkt could
be the format of ICMPEcho, LLDP, or ARP.
PktOut: OutPID denotes the port through which the packet will be sent out by the switch.
PtStatus: The value of Type could be PtDown or PtUp. Switch ID together with port ID denote the port that triggers the
port-status message.

We list all the tables in Table 3. The definitions we give are abstracted from the real implementations or specifications. A
table is indexed by the bold field/fields. A flow rule in Flow Table has four matching fields, which are the primary key of the
table, and the value of a field may be a wildcard. OutPID represents an output action, denoting the port through which the
switch should forward a matched packet. Notice that Host Table and Link Table store the topology information collected by
the controller, while HostLoc and InterLink store the real topology of the network. HID in Host Table denotes host identity.
SID and PID in Host Table represent the switch identity and the port identity respectively, showing the attachment point of
a host. The information of an internal link from port PP I D1 of switch SS I D1 , represented by (SID1, PID1), to port PP I D2 of
switch SS I D2 is stored in Link Table.

4.3. The TopoGuard controller

Then we use CSP to model the TopoGuard controller. As shown in C1, the process Controller describes the behaviors
of TopoGuard. An OF controller has two modules to receive and send OF messages respectively. Therefore we define two
processes: CReceiver and CSender, which may communicate with the processes LinkManager and HostTracker.

C1 : Controller =df (C Receiver|||C Sender)||(LinkManager|||HostT racker)

S. Xiang et al. / Science of Computer Programming 187 (2020) 102343 9
Table 3
Definitions of some tables.

Name Owner Definition Functionality

Flow Table Switch InPID*PktType*SrcHID
*DstHID*OutPID

Storing rules which are used in the matching step.

Host Table Controller HID*SID*PID Recording host location information collected by the controller.
Link Table Controller SID1*PID1*SID2*PID2 Storing the internal link information collected by the controller.
Port Table Controller SID*PID*DeviceType

*ShutDownFlag*HostList
Holding the attributes of the switch ports.

HostLoc HID*SID*PID Recording the real locations of the hosts in the network.
InterLink SID1*PID1*SID2*PID2 Storing the information of the links among switches.

Then we describe the behaviors of the receiving module. As shown in C2, if more than one switch tries to send an OF
message to the controller at the same time, the controller will randomly choose one switch to pass a message. In addition,
the controller may receive port-status messages via the channel PtChange.

In practical, a port-change signal is detected by a switch, and then the switch will send a port-status message to the
controller. Here in order to make sure that the controller will receive a port-down signal before the corresponding host
migration finishes, we omit the self-detection process of a switch and let a migrating host to inform the controller of a
correlated port-status change.

As shown in C3′ , the Shut-Down Flag of the port denoted by the port-status message will be set to FALSE, if the Type
field of the message is PtDown.

Normally, an OF controller has a separate module to decide where to deliver a received packet-in message. Here we
integrate this decision-making functionality into CReceiver. As shown in C3:

• If a packet-in message that carries an LLDP packet arrives, then CReceiver1 will send the message to LinkManager to
handle a possible link update.

• HostTracker will be invoked if the packet-in message carries a host-generated packet.

C2 : C Receiver =df

((�x∈{0...S Num−1} SxC?msg → C Receiver1(msg))

�(PtChange?msg → Handle PtChange(msg))); C Receiver

C3 : C Receiver1 =df

(Link!msg → Skip)

�MsgT ype[msg] == Pkt In ∧ msg[3] == LLD P�
(Host!msg → Skip

�msg[3] == AR P ∨ msg[3] == IC M P Echo � Skip)

C3′ : Handle PtChange(msg) =df

set S D Flag(S I D[msg], P I D[msg], F AL S E); Skip � T ype[msg] == Pt Down � Skip

Some notations used in C2, C3 and C3′ are listed as below:

• SNum is a constant that stands for the number of the switches.
• msg is a tuple of varying length that represents an OF message.
• msg[3] is the value of the fourth element of the tuple msg, which represents the fourth field of the OF message that just

received.
• MsgType[msg] is equal to msg[0], denoting the MsgType field of an OF message.
• Type[msg] is equal to msg[1], standing for the Type field of a port-status message.
• PktIn, LLDP, ARP, ICMPEcho, and PtDown are enumeration values.
• The function setSDFlag(SID[msg],PID[msg],FALSE) modifies the attribute Shut-Down Flag of the port. Notice that the syntax

of CSP does not contain function. Here, a function in our model is equal to a sequence of assignments in CSP.

C4 describes the module that is responsible for issuing OF messages to switches. On receiving an OF message from
another process, CSender will issue the message to the designated switch.

C4 : C Sender =df C Send?x.msg → C Sx!msg → C Sender

• x.msg is a tuple where msg represents the OF message that is waiting to be issued and the first element x denotes the
target switch to which the OF message will be sent.

10 S. Xiang et al. / Science of Computer Programming 187 (2020) 102343
Then, from C5 to C7, we show how to model Link Manager, which is responsible for constructing LLDP packets as well
as handling the received LLDP packets. As shown in C5, we build two processes to model the two functionalities mentioned
above.

C5 : LinkManager =df LLD P Constructor|||LLD P Handler

As described in C6, in order to discover all the internal links in the network, Link Manager will generate an LLDP packet
(represented by LLDP.x.i) for each port on each switch except for the reserved ports. Each switch owns one reserved port
to communicate with the controller, and the ID of the reserved port is zero. Therefore, the range of x starts from 1 instead
of 0. Then each LLDP packet is encapsulated into a packet-out message, and Link Manager will deliver these messages to
the sending module. The packet-out message PktOut.i.LLDP.x.i will ask switch Sx to forward the LLDP packet LLDP.x.i through
port Pi since the OutPID field of the message is i.

C6 : LLD P Constructor =df |||x∈{0...S Num−1},i∈{1...P Numx−1}(C Send!x.Pkt O ut.i.LLD P .x.i → Skip)

• PNum is a constant that stands for the number of the ports on a switch. We assume that each switch has the same
number of ports.

As shown in C7, at first, the process LLDPHandler will check whether the internal link that is deduced from the received
packet-in message has been detected before. The checking step is modeled as the function searchLink(msg). If the return
value of the function is TRUE, LLDPHandler will check the Device Type of the two ports on the new internal link. getTD gets
the value of the attribute Device Type of a designated switch port by searching Port Table. If any of the two ports connects
to a host, an alert will be triggered. The alert is modeled as executing the action attack. If the new internal link is legal,
LLDPHandler will insert it into Link Table and update Device Type of the two ports.

C7 : LLD P Handler =df (Link?msg →
is_new_link = searchLink(msg);

((port_type1 = get DT (SrcS I D[msg], Src P I D[msg]);

port_type2 = get DT (InS I D[msg], InP I D[msg]);

(attack → Skip

�port_type1 == H O ST ∨ port_type2 == H O ST �
insertLink(msg); set DT (msg); Skip))

�is_new_link == T RU E�
(Skip))); LLD P Handler

• is_new_link is a global variable that is used to store the return value of the function searchLink(msg).
• searchLink(msg), insertLink(msg), etc. are functions.

We can also describe Host Tracker as the CSP process HostTracker. Later in Section 6, we will give the model for the
improved Host Tracker, and the main structure of the process NewHostTracker is the same as the structure of the pro-
cess HostTracker. Additionally, we have described the mechanism of handling host-migration event in Section 3, and the
formalization of this mechanism is straightforward. Therefore, we omit the details of the process HostTracker.

4.4. Switch

After describing the model of the controller, now we show how to formalize the switches. In order to reduce the state
space, we pre-install all the necessary rules into flow tables. For example, we pre-install a rule for each switch to di-
rect an ICMP Echo reply to the controller. A switch is composed of a packet handler, a message handler, a reserved port,
some normal ports and a flow table. The packet handler is responsible for handling all the arrived packets, while the mes-
sage handler will deal with OF messages. The behavior of a normal port with identity i on Sx is modeled as the process
PktReceiverxi |||PktSenderxi . The process MsgReceiverx|||MsgSenderx behaves as the reserved port with identity 0. In summary,
a switch with identity x is modeled as follows:

S1 : S witchx =df Pkt Handlerx||Msg Handlerx||(Msg Receiverx|||Msg Senderx)

(|||i∈{1..P Num−1}(Pkt Receiverxi |||Pkt Senderxi))

Then we explain how the sub-processes of Switchx interact with each other, and how they communicate with the envi-
ronment.

As shown in Fig. 7(a), if more than one normal port has received a packet, one of these packets will be chosen to be
handled, and the others will wait. The switch will search its flow table to find a matched rule for the chosen packet. The
matching step, which is modeled as PktHandlerx , is shown in Fig. 8. The two branches of the matching step are listed as
below.

S. Xiang et al. / Science of Computer Programming 187 (2020) 102343 11
Fig. 7. Interactions of the sub-processes of the switch model.

Fig. 8. The matching step.

• If there exists a matching rule for the packet in the flow table, then the packet will be forwarded to another switch
or another host. If the value of the OutPID field in the matching rule is p, then PktHandlerx will send the packet to
PktSenderxp .

• Otherwise, a packet-in message that carries the packet will be sent out through the reserved port, and this behavior is
formalized as sending the packet to the process MsgSenderx .

As shown in Fig. 7(b), a switch may receive packet-out messages from the controller. If the OutPID field of a packet-out
message is p, then MsgHandlerx will send the packet to the process PktSenderxp . The sub-processes of the process Switchx

are listed from S2 to S7. On receiving a packet from port Pi , the behaviors of switch Sx are formalized by the processes S2
to S4.

S2 : Pkt Receiverxi =df Sx P i?pkt → HandlePktx!i.pkt → Pkt Receiverxi

S3 : Pkt Senderxi =df SendPktxi?pkt → index = get S witchPort(x, i);

(sw = index[0]; pt = index[1]; Ssw P pt !pkt → Pkt Senderxi)

�index! = E M P T Y �
(ht = get Host(x, i); S Hht !pkt → Pkt Senderxi)

S4 : Pkt Handlerx =df HandlePktx?i.pkt → out_port = matchPkt(i, pkt);

(SendMsg!Pkt In.x.i.pkt → Pkt Handlerx)

�out_port == E M P T Y �
(j = out_port; SendPktxj !pkt → Pkt Handlerx)

• getSwitchPort(x,i) is a function that will search the table InterLink to find the switch port that connects to Pi of Sx . And
the result is stored in the tuple index of which the first and the second elements are the switch identity and the port
identity respectively.

• getHost(x,i) will search the table HostLoc to find the host that connects to Pi of switch Sx .
• matchPkt(i,pkt) denotes the matching step. The value of the OutPID field of the matched rule is stored in the global

variable out_port.

Processes S5 to S7 describe that switch Sx receives an OF message from the controller and then handles the message. Af-
ter receiving an OF message, Msg Receiverx will send the message to Msg Handlerx through the channel HandleMsgx . If the
message is a packet-out message, the packet carried in the message will be extracted and sent to the process Msg Senderx

through the channel SendPktxp .

12 S. Xiang et al. / Science of Computer Programming 187 (2020) 102343
S5 : Msg Receiverx =df C Sx?msg → HandleMsgx!msg → Msg Receiverx

S6 : Msg Senderx =df SendMsgx?msg → SxC !msg → Msg Senderx

S7 : Msg Handlerx =df HandleMsgx?msg →
(pkt = get Pkt(msg); p = O ut P I D[msg]; SendPktxp !pkt → Msg Handlerx)

�MsgT ype[msg] == Pkt O ut�
(Msg Handlerx)

• getPkt(msg) will extract the packet in the message and store the packet into pkt.
• OutPID[msg] is equal to msg[1], denoting the OutPID field in an packet-out message.

4.5. Host

The hosts in the network can be grouped into two categories: unmoving host and moving host. Later in the next part,
after introducing the attacker model, we will give another two host models that describe hosts that are monitored by
attackers. We consider a host with identity u, and its location is l = (x,i), denoting that host Hu connects to port Pi on switch
Sx . As analyzed in Section 4.1, we will manually set the initial locations of the hosts and the attributes of related ports.

First, we describe the behaviors of a host that will not move to another location. As shown in H2, host Hu waits to
receive packets from channel SHu . On receiving an ICMP Echo request with u as its DstHID field, the host will reply an ICMP
Echo packet: ICMPEcho.Reply.u.

H1 : Unmoving Host(u, x, i) =df Unmoving Host1(u, x, i); Unmoving Host(u, x, i)

H2 : Unmoving Host1(u, x, i) =df S Hu?pkt →
(Sx Pi !IC M P Echo.Reply.u → Skip

� PktT ype[pkt] == IC M P Echo ∧ T ype[pkt] == Request ∧ Dst H I D[pkt] == u�
Skip)

• Request and Reply are two enumeration values.

Then we will expand the unmoving-host model to enable the migration of a host.

• The migration of a host contains a period of downtime, that is to say, the host will stop working for a while before
starting to work in its new location.

• Besides, the switch port that connects to the host will be shut down before the host finishes its migration.

Process H3 describes a host with location l = (x,i). The host will move to a new location l ′ = (y,j) at some time. As we
mentioned before, an unmoving host may receive a packet and possibly inject an ICMP Echo reply into the network, and
the migration may happen at any time. Therefore, we could combine the two actions in the unmoving-host model with a
migration process in any order, which produces three combinations connected by �. If the process H3 could perform more
than one branch at the same time, it will make its choice arbitrarily.

Process H4 describes the three steps for a host to migrate:

• (1) The controller will notice the change of the correlated port. As we analyzed before, by making a communication on
channel PtChange, the controller will receive a port-down signal.

• (2) The host migrates from l = (x,i) to l ′ = (y,j), and we model it by modifying the location of host Hu in the table HostLoc.
• (3) The host injects an ARP packet into the network, which will help the controller to record the host’s new location.

H3 : Moving Host(u, x, i, y, j) =df ((Unmoving Host1(u, x, i); Migration(u, x, i, y, j))

�(S Hu?pkt → Migration(u, x, i, y, j))

�(Migration(u, x, i, y, j); Unmoving Host(u, y, j))

H4 : Migration(u, x, i, y, j) =df

PtChange!Pt Status.Pt Down.x.i → (move(u, x, i, y, j); (S y P j!AR P .u → Skip))

Notice that we are not concerned about the specific time period that a host is shut down, but only focus on the order
in which the actions occur. Once the process Migration starts to execute, the process MovingHost cannot receive or handle
any packet until Migration finishes its execution. Moreover, executable actions of other processes could happen between the
action PtChange!PtStatus.PtDown.x.i and Sy P j!ARP.u.

S. Xiang et al. / Science of Computer Programming 187 (2020) 102343 13
4.6. Attacker

We model two kinds of attackers: link attacker and host attacker to launch Link Fabrication Attack and Host Hijacking
Attack respectively. Instead of letting an attacker gain necessary information for launching an attack in the model, we
manually set the position that the attacker initiates attack and the information of the attacking target. As discussed at
the beginning of this section, the attacker behaviors during the omitted steps will not bring attribute modifications that
influence the verification results. By instantiating the parameterized attacker models proposed, one may create specific
attacking scenarios.

4.6.1. Link attacker
As discussed in Section 4.1, we are only concerned about the relay-fashion Link Fabrication Attack. Considering two

compromised hosts: Hv and Hu . Hu is attached to Pi of Sx . If an LLDP packet is captured by the link attacker via the channel
Monitorv , the attacker will insert the LLDP packet into the network via the channel SxPi .

A2 : LinkAttacker(x, i, u, v) =df Monitorv ?pkt →
(Sx Pi !pkt → LinkAttacker1(x, i, u, v))

�PktT ype(pkt) == LLD P�
(LinkAttacker(x, i, u, v))

A3 : LinkAttacker1(x, i, u, v) =df Monitorv ?pkt → LinkAttacker1(x, i, u, v)

Moreover, we must allow the action of being monitored in the host models. The new processes are named Unmov-
ingHostM and MovingHostM respectively. We take UnmovingHostM for example.

H5 : Unmoving HostM(u, x, i) =df Unmoving HostM1(u, x, i); Unmoving HostM(u, x, i)
H6 : Unmoving HostM1(u, x, i) =df

S Hu?pkt → Monitoru !pkt →
(Sx Pi !IC M P Echo.Reply.u → Skip

�PktT ype[pkt] == IC M P Echo ∧ T ype[pkt] == Request ∧ Dst H I D[pkt] == u�
Skip)

4.6.2. Host attacker
Considering an attacker that is running on a compromised host Hu , and its target host is Hv . The compromised host is

connected to Pi on Sx . As analyzed before, when the attacker is about to inject a fake ARP packet, the controller has already
recorded the two hosts’ locations and also changed Device Type of the related switch ports. In our model, we will manually
set the information above before starting verification. As shown in A1, the fake ARP packet will be injected into the network
through the channel from Hu to Sx , that is, the channel Sx Pi .

A1 : Host Attacker(x, i, u, v) =df Sx P i !AR P .v → Skip

5. Verification

The parameterized CSP models proposed in Section 4 constitute a general framework, which can be instantiated as
needed. In this section, we are concerned with three problems about TopoGuard:

• If TopoGuard can prevent Link Fabrication Attack?
• If TopoGuard can prevent Link Fabrication Attack?
• Will TopoGuard hinder legal host migrations?

In order to answer these questions, we first build a system model, which is an instance of the general framework, according
to the network in Fig. 9. Then we implement the CSP models in Section 4 and the system model in PAT. After that, we
verify the three assertions that are corresponding to the three problems for the system model. Finally, we discuss if the
verification results hold for other SDNs.

5.1. The original system model

The network we used to build the system model is illustrated in Fig. 9. The host H0 will not move to another location,
while H1 will move to the switch S1 from S2. Before H1 moves to the port P2 of S1, H2 will move to P1 of S2. A host
attacker will inject a fake ARP packet into the network through H0 to deceive the controller into believing that H1 has
moved to P2 of S0. Additionally, a link attacker will monitor H1 and launch an attack from H0 to try to create a fake link
from P2 of S2 to P2 of S0.

14 S. Xiang et al. / Science of Computer Programming 187 (2020) 102343
Fig. 9. The network used in verification.

Then we illustrate the CSP model as below. S0 , H0 , etc. are enumeration values. We pre-installed all the necessary flow
rules into the flow tables of the switches. In addition, Device Type of P2 on S0 and P2 on S2 are set to HOST before verifying.

S ystem =df (||x∈{0..2} S witchx)||Controller

||(Migration(H2, S1, P2, S2, P1);

(Moving HostM(H1, S2, P2, S1, P2)|||Unmoving Host(H2, S2, P1)))

||Unmoving Host(H0, S0, P2)

||(Host Attacker(S0, P2, H0, H1)|||LinkAttacker(S0, P2, H0, H1))

5.2. Implementing the CSP models in PAT

Once we have a PAT program and an assertion, we may ask PAT to search the state space of the program to check if
the assertion is satisfied. The syntax of PAT is similar to CSP except for a few symbols and expressions. However, PAT only
supports one-dimensional channel array, while CSP supports defining channels which contain multiple indexes, for example
SxPi . The solution is to translate two-dimensional indexes into one-dimensional indexes.1

First of all, some of the global definitions are shown as below:

channel S H[H Num] 0;

channel S P [S Num ∗ (P Num − 1)] 0;

var LinkT able[S Num][S Num][2];
var InterLink[S Num][S Num][2];
var HostT able[H Num][2];
var HostLoc[H Num][2];
enum { Pt Status, Pkt O ut, Pkt In };

SH[HNum] is a set of channels that denote the links from switches to hosts, corresponding to the channel SHu in the CSP
models.
SP[SNum*(PNum-1)] represents the channels used by switches to receive packets from hosts or other switches. The corre-
sponding CSP channel is SxPi .
LinkTable, InterLink, HostTable, and HostLoc denote the four tables that we defined in the previous section. Link-
Table[x][y][0]/LinkTable[x][y][1] represents the identity of the port that is part of the internal link from switch Sx to switch
Sy , and the port is on switch Sx/Sy . HostTable[u][0] stands for the switch that is connected to Hu , while HostTable[u][1]
represents the switch port that Hu connects.
PtStatus, PktOut, and PktIn are enumeration values, standing for OF message types.

One thing to be careful of is that, if the PAT process PktSender(x,i), which represents the sending functionality of a
switch port, tries to send out a packet, it has to get the channel index of the switch port or the host that connects to Pi
of Sx . We define an array named CIndex[SNum][PNum-1] to store the channel indexes. At the beginning, we initialize this
channel-index array according to two tables InterLink and HostLoc. In this step, we use two mutually exclusive sets of values
to distinguish switch ports and hosts. Then by checking the value of CIndex[x][i], the process PktSender(x,i) will know where
to send the packet. For example, CIndex[x][i]=101 represents the channel that is used by host H1 to receive packets, and
then the process PktSender(x,i) will forward the packet via channel SH[1].

Then, the encoding of the processes MovingHost(u,x,i,y,j) and Migration(u,x,i,y,j) is shown as follows:

Moving Host(u, x, i, y, j) = ((Unmoving Host_1(u, x); Migration(u, x, i, y, j))
[](S H[u]?pkt → Migration(u, x, i, y, j))
[](Migration(u, x, i, y, j))); Unmoving Host(u, y, j)

1 The full PAT programs can be found in https://github .com /Shuang -x /PAT-TopoDiscovery.git.

https://github.com/Shuang-x/PAT-TopoDiscovery.git

S. Xiang et al. / Science of Computer Programming 187 (2020) 102343 15
Table 4
Verification results.

Fake_Link Fake_Host Migration_Finish

System Invalid Valid Invalid
NewSystem Invalid Invalid Valid

Migration(u, x, i, y, i) = PtChange!Pt Status.Pt Down.x.i →
move{HostLoc[u][0] = y; HostLoc[u][1] = j; }
→ S P [y ∗ (P Num − 1) + j − 1]!AR P .u → Skip

As we can see, the PAT programs MovingHost(u,x,i,y,j) and Migration(u,x,i,y,j) are almost the same as the CSP models H3
and H4. In PAT, an action may be attached with a statement block of a sequential program (which may contain local/global
variables, if-then-else, while, etc.) [26]. We implement a function in a CSP process as an action with a statement block in
PAT. For example, the action move assigns the value of y to HostLoc[u][0] and the value of j to HostLoc[u][1].

5.3. Assertions

We write three assertions in PAT to answer the three questions.
The first assertion asks whether there is any chance that Link Fabrication Attack will succeed by checking if a fake link

from port P2 on switch S2 to port P2 on switch S0 will be added into the Link Table. LinkExist[S Num][S Num] is a table
defined in PAT to record the direction of a link between two switches.

#assert S ystem reaches Fake_Link;

#def ine Fake_Link LinkT able[S2][S0][0] == S2&&LinkT able[S2][S0][1] == P2;
&&LinkExist[S0][S2] == 0;

The second assertion shown as below asks if the location of the target host H1 will be set to (S0 , P2) in some trace, which
means it is possible for the host attacker to succeed in deceiving the controller.

#assert S ystem reaches Fake_Host;

#def ine Fake_Host HostT able[H1][0] == S0&&HostT able[H1][1] == P2;

The third assertion checks if host H1 and host H2 will finish their migrations normally by asking if Migration_Finish will
be eventually satisfied in every execution of the process System.

#assert S ystem |= <> Migration_F inish;

#def ine Migration_F inish HostT able[H1][0] == S1&&HostT able[H1][1] == P2

HostLoc[H1][0] == S1&&HostLoc[H1][1] == P2

HostT able[H2][0] == S2&&HostT able[H2][1] == P1

HostLoc[H2][0] == S2&&HostLoc[H1][1] == P1;

5.4. Verification results and analyses

The verification results for the model S ystem are shown in the first row of Table 4.

• The assertion Fake_Link is invalid, which means that the link attacker is not able to succeed.
• The assertion Fake_Host is valid, showing that the host attacker may tamper the location information of host H1 . The

witness trace is shown in Fig. 10.
• The assertion Migration_Finish is invalid, and one of the witness traces is shown in Fig. 11, which illustrates that To-

poGuard may misjudge a legal migration.

Fig. 10 represents the witness of the assertion Fake_Host. It describes the situation that the host-hijacking attack starts
during the migration of the target host H1. When the fake ARP packet arrives at the controller, a port-down signal of P2
on S2 has already been received by the controller and the Shut-Down Flag of the port has been set to TRUE. As a result,
the controller will believe that H1 has left its old location and modify the location of H1 according to the fake ARP packet.
Then, because the target host cannot receive packets or reply any ICMP Echo request during its downtime, the controller
will keep the update information. In other words, if the host attacker launches an attack during the downtime of the target
host, it will succeed.

In addition, the success of the Host Hijacking Attack will bring some other bad influence. After the attack succeeds, the
target host H1 will inject ARP packets into the network from its new location. However, Shut-Down Flag of P2 on S0 is FALSE,
so the controller will take the normal ARP packet from H1 as a fake one and refuse to update the location information of H1.

16 S. Xiang et al. / Science of Computer Programming 187 (2020) 102343
Fig. 10. Witness trace for the assertion Fake_Host .

Fig. 11. Witness trace for the assertion Migration_F inish.

Fig. 11 is the witness trace of the assertion Migration_Finish. It shows that, before the ARP packet sent by the host H2
from its new location (S2 ,P1) is detected by the controller, H1 has finished its migration and the controller has observed
the ARP packet generated by H1 from its new location (S1 ,P2). Therefore, when the controller handles the first ARP packet
generated by H2 from its new location, Shut-Down Flag of P2 on S1 has already been set to FALSE. As a result, the controller
will raise an alert and refuse to change the location of H2.

5.5. Applying the verification results to other SDNs

In this section, we show that the verification results still hold for other networks which are extended based on the
network shown in Fig. 9. It is composed of two steps. At first, we discuss the networks that have the same topology with
Fig. 9 (switches) but own different environments (hosts and attackers). Then, we analyze the verification results for a much
larger set of networks with more complex topologies.

5.5.1. Different environments
The intuitive idea of the environment of Fig. 9 is that we need one compromised host (H0), one target host (H1) and

one auxiliary host (H2). An attacker can insert fake or repeated packets into the network through the compromised host.
The auxiliary host represents any host in the network except for the compromised host or the target host. The analyses for
other environments are listed as follows.

• If host H0 migrates after the attacker injects the packet, the controller will handle the fake or repeated packet before
handling messages generated due to H0’s migration. Therefore, the attack will finish before the Shut-down Flag of port P2
on S0 is set to TRUE. That is to say, the attribute changes brought by H0’s migration will have no influence on the attack.

• If H0 moves to another location before the attack starts, then it is equivalent to the situation where the attacker starts
the attack from another location and the compromised host will not migrate.

• The two host migrations in Fig. 9 represent two categories of migrations according to the attribute-modifying mechanism
of TopoGuard: (1) a host migrates to a port that has not connected to any host. (2) a host moves to a port from which
another host just left.

• There is no need to let the two attackers have different locations. Because the host-hijacking attack will not set the Device
Type of any port to SWITCH, and the link-fabrication attack will not set the Shut-Down Flag of any port to TRUE.

S. Xiang et al. / Science of Computer Programming 187 (2020) 102343 17
Fig. 12. Network pattern.

• There may be more than one host attacker in the network. In our model, the controller will handle messages in sequence
so that the host attackers will not influence each other. As a result, one host attacker is enough, and the analysis for the
number of link attackers is the same.

5.5.2. More complex topologies
As shown in Fig. 12, there could be subnetworks that lie between the attacker and the target switch/host. A subnetwork

could have arbitrary topology as long as host H0 can communicate with host H1 to get enough information for initiating
attacks.

To sum up, we come to a conclusion that the success of the two kinds of attacks does not rely on the locations of the
attackers and their targets, as long as the attackers are able to gain enough information to initiate attacks. Besides, for more
complex networks discussed above, the verification results still hold.

6. An improved mechanism

6.1. Mechanism

The underlying causes of the two problems described in the previous section are as below.

• One vulnerability is that the controller will believe the first packet of a host which has moved from another location.
• Another problem is that there could be a period of time before checking Shut-Down Flag of a migrating host’s old

location.

An intuitive solution is to strengthen the verification of the new port’s attributes and eliminate the previous-port checking
step. One key observation in designing TopoGuard is that the controller must receive a port-down signal before the host
migration finishes [4]. According to this observation, we draw two conclusions about the networks in which TopoGuard is
applied.

• The networks are not hybrid networks that contain both OpenFlow switches and traditional forwarding devices like
routers. The reason is that a controller in a hybrid network does not have a global view of all the devices, and as a result,
when a port of a traditional device is shut down, the controller may not receive a port-down signal.

• In the networks that have virtual machines, several hosts (physical hosts or virtual machines) may share one physical
switch port. In this situation, the controller can control the virtual switches. That is to say, the global view of a controller
is built on the virtual topology of the network.

To sum up, in the controller’s view, a switch port may connect to at most one host. Then, when the controller notices a
host migration, it should make sure that no other host is at the moving host’s new location. Therefore, we add an attribute
Last-Seen Host for each switch port to record the latest host that has been observed by the controller from the port. There
are two situations:

• One is that the host is connecting to the port.
• Another one is that the host is the latest one that was connecting to the port.

If a host-migration event is triggered, then the controller will handle the event following the new mechanism shown in
Fig. 13. Assuming that the source host of the detected host-generated packet which triggers the event is H1 . At first, the
attribute Last-Seen Host of the new port is checked, and if it is empty, which means that the port has not connected to any
host, the controller will record the new location of H1. Similar as before, an ICMP Echo request will be sent to the previous
location of the host. Additionally, Last-Seen Host of the new port will be set to H1. The controller will also modify other
attributes according to the mechanism of TopoGuard. If the attribute Last-Seen Host of the new port denotes a host that is
not H1, then the Shut-Down Flag of the new port should be true, otherwise the host-generated packet is a fake one.

18 S. Xiang et al. / Science of Computer Programming 187 (2020) 102343
Fig. 13. The new mechanism to handle a host migration.

6.2. New Host Tracker

The main structure of the CSP model for the new Host Tracker, in which our mechanism is modeled, is shown in C8 and
C9. The logic inside these two processes is the same as that in the model for the original Host Tracker.

C8 describes that once New HostT racker receives a packet-in message that carries a ARP packet, the sub-process C9 is
invoked.

As described in C9, if the host denoted by the ARP packet is detected for the first time (host_loc == E M P T Y), and the
Device Type of the ingress port is SWITCH (port_type == SW I T C H), then an attack alert is issued according to Fig. 4. The
process HandleNew Host is to create a new host profile for the detected host. If the host is not new, and its location is
different from the location recorded in Host Table, a host-migration event is triggered, which is modeled as C10.

In C10, f lag stores the value of Shut-Down Flag of the new port, and last_host denotes the attribute Last-Seen Host of
the new port. If Last-Seen Host is not empty, and the port is not shut down (Shut-Down Flag is FALSE), then an alarm is
raised. Otherwise, Host Tracker will follow the steps shown in the bottom box of Fig. 13.

C8 : New HostT racker =df Host?msg →
(New Handle AR P (msg) � PktT ype[msg] == AR P � HandleIC M P Echo(msg))

�MsgT ype[msg] == Pkt In�
(New HostT racker)

C9 : New Handle AR P (msg) =df

host_loc = searchHost(SrcH I D[msg]); port_type = get DT (InS I D[msg], InP I D[msg]);

(attack → Skip � port_type == SW I T C H � HandleNew Host(msg))

�host_loc == E M P T Y �
(Skip � host_loc[0] == InS I D[msg] ∧ host_loc[1] == InP I D[msg]�
New HostMigration(msg, host_loc))

C10 : New HostMigration(msg, host_loc) =df

f lag = get S D Flag(InS I D[msg], InP I D[msg])
last_host = getLast Host(InS I D[msg], InP I D[msg]);

((setLoc(SrcH I D[msg], InS I D[msg], InP I D[msg]); set DT (InS I D[msg], InP I D[msg], H O ST);

addHostList(SrcH I D[msg]); setLast Host(InS I D[msg], InP I D[msg], SrcH I D[msg]);

set S D Flag(InS I D[msg], InP I D[msg], F AL S E);

C Send!host_loc[0].Pkt O ut.host_loc[1].IC M P Echo.Request.SrcH I D[msg] → Skip)

�last_host == E M P T Y ∨ (last_host! = E M P T Y ∧ f lag == T RU E)�
(attack → Skip));

• searchHost(SrcHID[msg]) is a function that searches Host Table to find the controller-recorded location of the host with
identity SrcHID[msg]. The result is stored in the global variable host_loc, which is a tuple where the first element rep-
resents the switch identity and the second element denotes the port identity. If there is no record for the host, then
host_loc is equal to EMPTY, which is an enumeration value.

• getSDFlag(InSID[msg],InPID[msg]) will return the value of Shut-Down Flag of the port with identity InPID[msg] on the
switch with identity InSID[msg]. If the value is TRUE, it means that this port has been shut down.

S. Xiang et al. / Science of Computer Programming 187 (2020) 102343 19
• getLastHost(InSID[msg],InPID[msg]) will return the value of the attribute Last-Seen Host of the port designated by In-
SID[msg] together with InPID[msg].

• setLoc(SrcHID[msg],InSID[msg],InPID[msg]) modifies the controller-recorded location of the host with identity SrcHID[msg]
to (InSID[msg], InPID[msg]). Besides, the functions setDT(· · ·), addHostList(· · ·) and setLastHost(· · ·) modify the attributes
Device Type, Host List and Last-Seen Host respectively.

6.3. New system model and verification results

In the new system model, the process NewController is generated by replacing the sub-process HostTracker of Controller
with the process NewHostTracker.

New S ystem =df (||x∈{0..2} S witchx)||NewController

||(Migration(H2, S1, P2, S2, P1);

(Moving HostM(H1, S2, P2, S1, P2)|||Unmoving Host(H2, S2, P1)))

||Unmoving Host(H0, S0, P2)

||(Host Attacker(S0, P2, H0, H1)|||LinkAttacker(S0, P2, H0, H1))

The definitions of the assertions for the new system model are as same as those given in the previous section where we
verify TopoGuard, and therefore we omit the repetitive parts.

#assert New S ystem reaches Fake_Link;

· · ·
#assert New S ystem reaches Fake_Host;

· · ·
#assert New S ystem |= <> Migration_F inish;

· · ·
The results of the verifications are shown in the second row of Table 4, from which we can see that the new system

model is able to prevent Link Fabrication Attack as well as Host Hijacking Attack, and the improvement scheme we propose
will not hinder legal host migrations.

7. Conclusion and future work

We have built a parameterized framework that captures the basic structure of SDNs, including a modularized control
plane, a general date plane with interfaces connected to the environment (hosts and attackers), and the communications
between the control and data planes. The general framework can be extended to study controller functionalities and some
data plane properties. For example, one may add a new functional module in the control plane to study some related
properties by observing the states or behaviors of the network.

Link Fabrication Attack and Host Hijacking Attack are two topology poisoning attacks that are unique to SDNs. The two
attacks may lead to serious hijacking, denial of service or man-in-the-middle attacks. TopoGuard, a secure extension to OF
controllers, provides a topology discovery mechanism to prevent the two attacks. However, it lacks of formal verification,
especially in the situation where some hosts are migrating.

In order to study the secure topology discovery mechanism that is designed to prevent the two kinds of attacks described
above, we have built an instance of the framework, added two modules in the control plane, and designed the network
shown in Fig. 9 to create a specific system model. Through analyses, we have shown that the specific network used in
verification represents a much larger set of networks. After implementing and verifying the system model into PAT, two
new loopholes of TopoGuard were found. Besides, we have shown that the success of the two kinds of attacks does not rely
on the locations of the attackers and their targets, as long as the attackers are able to gain enough information to initiate
attacks. In addition, the verification results still hold for more complex networks with the pattern shown in Fig. 12.

The topology discovery mechanism we proposed based on TopoGuard is a new countermeasure to prevent the two kinds
of attacks. The improved system model (with the new mechanism) has been implemented and verified in PAT.

Undeniably, formal modeling and verifying is an effective method to study security problems of computer networks. In
the future, we will study the computer networks consisting of traditional networks and software-defined networks. Topology
discovery algorithms for these hybrid networks are notoriously difficult and very sensible to attackers, and as such formal
methods can be of help.

Acknowledgement

This work was partly supported by National Key Research and Development Program of China (Grant No.
2018YFB2101300), National Natural Science Foundation of China (Grant No. 61872145), Shanghai Collaborative Innova-
tion Center of Trustworthy Software for Internet of Things (Grant No. ZF1213) and the Fundamental Research Funds for the
Central Universities of China.

20 S. Xiang et al. / Science of Computer Programming 187 (2020) 102343
References

[1] Shuangqing Xiang, Huibiao Zhu, Lili Xiao, Wanling Xie, Modeling and verifying topoguard in openflow-based software defined networks, in: 2018
International Symposium on Theoretical Aspects of Software Engineering, TASE 2018, Guangzhou, China, August 29-31, 2018, pp. 84–91.

[2] Diego Kreutz, Fernando M.V. Ramos, Paulo Jorge Esteves Veríssimo, Christian Esteve Rothenberg, Siamak Azodolmolky, Steve Uhlig, Software-defined
networking: a comprehensive survey, Proc. IEEE 103 (1) (2015) 14–76.

[3] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru M. Parulkar, Larry L. Peterson, Jennifer Rexford, Scott Shenker, Jonathan S. Turner, Openflow:
enabling innovation in campus networks, Comput. Commun. Rev. 38 (2) (2008) 69–74.

[4] Sungmin Hong, Lei Xu, Haopei Wang, Guofei Gu, Poisoning network visibility in software-defined networks: new attacks and countermeasures, in:
22nd Annual Network and Distributed System Security Symposium, NDSS 2015, San Diego, California, USA, February 8-11, 2015.

[5] Laurent Vanbever, Joshua Reich Theophilus Benson, Nate Foster, Jennifer Rexford, Hotswap: correct and efficient controller upgrades for software-
defined networks, in: Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking, HotSDN 2013, The Chinese
University of Hong Kong, Hong Kong, China, Friday, August 16, 2013, pp. 133–138.

[6] Suleman Khan, Abdullah Gani, Ainuddin Wahid Abdul Wahab, Mohsen Guizani, Muhammad Khurram Khan, Topology discovery in software defined
networks: threats, taxonomy, and state-of-the-art, IEEE Commun. Surv. Tutor. 19 (1) (2017) 303–324.

[7] Mohan Dhawan, Rishabh Poddar, Kshiteej Mahajan, Vijay Mann, SPHINX: detecting security attacks in software-defined networks, in: 22nd Annual
Network and Distributed System Security Symposium, NDSS 2015, San Diego, California, USA, February 8-11, 2015.

[8] Talal Alharbi, Marius Portmann, Farzaneh Pakzad, The (in)security of topology discovery in software defined networks, in: 40th IEEE Conference on
Local Computer Networks, LCN 2015, Clearwater Beach, FL, USA, October 26-29, 2015, pp. 502–505.

[9] C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall, 1985.
[10] A.W. Roscoe, Understanding Concurrent Systems, Texts in Computer Science, Springer, 2010.
[11] Gavin Lowe, A.W. Roscoe, Using CSP to detect errors in the TMN protocol, IEEE Trans. Softw. Eng. 23 (10) (1997) 659–669.
[12] Xi Wu, Huibiao Zhu, Formalization and analysis of the REST architecture from the process algebra perspective, Future Gener. Comput. Syst. 56 (2016)

153–168.
[13] Yuan Fei, Huibiao Zhu, Xi Wu, Huixing Fang, Shengchao Qin, Comparative modelling and verification of pthreads and dthreads, J. Softw. Evol. Process

30 (3) (2018).
[14] Ramtin Aryan, Anis Yazidi, Paal Einar Engelstad, Øivind Kure, A general formalism for defining and detecting openflow rule anomalies, in: 42nd IEEE

Conference on Local Computer Networks, LCN 2017, Singapore, October 9-12, 2017.
[15] Lucas Freire, Miguel C. Neves, Lucas Leal, Kirill Levchenko, Alberto E. Schaeffer Filho, Marinho P. Barcellos, Uncovering bugs in P4 programs with

assertion-based verification, in: Proceedings of the Symposium on SDN Research, SOSR 2018, Los Angeles, CA, USA, March 28-29, 2018, pp. 4:1–4:7.
[16] Elvira Albert, Miguel Gómez-Zamalloa, Albert Rubio, Matteo Sammartino, Alexandra Silva, Sdn-actors: modeling and verification of SDN programs, in:

Formal Methods - 22nd International Symposium, FM 2018, Held as Part of the Federated Logic Conference, FloC 2018, Proceedings, Oxford, UK, July
15-17, 2018, pp. 550–567.

[17] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, Philip Brighten, Godfrey Veriflow, Verifying network-wide invariants in real time, in: Pro-
ceedings of the 10th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2013, Lombard, IL, USA, April 2-5, 2013, pp. 15–27.

[18] Sooel Son, Seungwon Shin, Vinod Yegneswaran, Phillip Porras, Guofei Gu, Model checking invariant security properties in OpenFlow, 06 2013,
pp. 1974–1979.

[19] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter Kozen, Cole Schlesinger, David Walker, Netkat: semantic foundations
for networks, in: The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’14, San Diego, CA, USA, January
20-21, 2014, pp. 113–126.

[20] Arjun Guha, Mark Reitblatt, Nate Foster, Machine-verified network controllers, in: ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’13, Seattle, WA, USA, June 16–19, 2013, pp. 483–494.

[21] Marco Canini, Daniele Venzano, Peter Peresíni, Dejan Kostic, Jennifer Rexford, A NICE way to test openflow applications, in: Proceedings of the 9th
USENIX Symposium on Networked Systems Design and Implementation, NSDI 2012, San Jose, CA, USA, April 25-27, 2012, pp. 127–140.

[22] Tim Nelson, Andrew D. Ferguson, Michael J.G. Scheer, Shriram Krishnamurthi, Tierless programming and reasoning for software-defined networks,
in: Proceedings of the 11th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2014, Seattle, WA, USA, April 2-4, 2014,
pp. 519–531.

[23] Jackson Daniel, Software Abstractions - Logic, Language, and Analysis, MIT Press, 2006.
[24] The ONF is an operator led consortium, https://www.opennetworking .org/. (Accessed 12December2018) (Online).
[25] Jun Sun, Yang Liu, Jin Song Dong, Yan Liu, Ling Shi, Étienne André, Modeling and verifying hierarchical real-time systems using stateful timed CSP,

ACM Trans. Softw. Eng. Methodol. 22 (1) (2013) 3.
[26] Jun Sun, Yang Liu, Jin Song Dong, Jun Pang, PAT: towards flexible verification under fairness, in: Computer Aided Verification, 21st International

Conference, CAV 2009, Grenoble, France, June 26 - July 2, pp. 709–714,.
[27] Yuanjie Si, Jun Sun, Yang Liu, Jin Song Dong, Jun Pang, Shao Jie Zhang, Xiaohu Yang, Model checking with fairness assumptions using PAT, Front.

Comput. Sci. 8 (1) (2014) 1–16.
[28] Farzaneh Pakzad, Marius Portmann, Wee Lum Tan, Jadwiga Indulska, Efficient topology discovery in openflow-based software defined networks, Com-

put. Commun. 77 (2016) 52–61.
[29] IEEE standard for local and metropolitan area networks - station and media access control connectivity discovery, in: IEEE Std 802.1AB-2016 (revision

of IEEE Std 802.1AB-2009), March 2016, pp. 1–146.
[30] Colin Scott, Andreas Wundsam, Barath Raghavan, Aurojit Panda, Andrew Or, Jefferson Lai, Eugene Huang, Zhi Liu, Ahmed El-Hassany, Sam Whitlock,

Hrishikesh B. Acharya, Kyriakos Zarifis, Scott Shenker, Troubleshooting blackbox SDN control software with minimal causal sequences, in: ACM SIG-
COMM 2014 Conference, SIGCOMM’14, Chicago, IL, USA, August 17-22, 2014, pp. 395–406.

http://refhub.elsevier.com/S0167-6423(19)30138-8/bib4B463135s1
http://refhub.elsevier.com/S0167-6423(19)30138-8/bib4B463135s1
http://refhub.elsevier.com/S0167-6423(19)30138-8/bib4D413038s1
http://refhub.elsevier.com/S0167-6423(19)30138-8/bib4D413038s1
http://refhub.elsevier.com/S0167-6423(19)30138-8/bib546F706F537572766579s1
http://refhub.elsevier.com/S0167-6423(19)30138-8/bib546F706F537572766579s1
http://refhub.elsevier.com/S0167-6423(19)30138-8/bib434152s1
http://refhub.elsevier.com/S0167-6423(19)30138-8/bib415752s1
http://refhub.elsevier.com/S0167-6423(19)30138-8/bib544D4Es1
http://refhub.elsevier.com/S0167-6423(19)30138-8/bib5758s1
http://refhub.elsevier.com/S0167-6423(19)30138-8/bib5758s1
http://refhub.elsevier.com/S0167-6423(19)30138-8/bib4659s1
http://refhub.elsevier.com/S0167-6423(19)30138-8/bib4659s1
http://refhub.elsevier.com/S0167-6423(19)30138-8/bib436F6D70696C65416C6C6F79s1
https://www.opennetworking.org/
http://refhub.elsevier.com/S0167-6423(19)30138-8/bib534A3133s1
http://refhub.elsevier.com/S0167-6423(19)30138-8/bib534A3133s1
http://refhub.elsevier.com/S0167-6423(19)30138-8/bib53593134s1
http://refhub.elsevier.com/S0167-6423(19)30138-8/bib53593134s1
http://refhub.elsevier.com/S0167-6423(19)30138-8/bib4F4644507632s1
http://refhub.elsevier.com/S0167-6423(19)30138-8/bib4F4644507632s1

	Modeling and verifying the topology discovery mechanism of OpenFlow controllers in software-deﬁned networks using process algebra
	1 Introduction
	2 Preliminaries
	2.1 OpenFlow protocol
	2.2 CSP
	2.3 PAT

	3 Threats in topology discovery and overview of TopoGuard
	3.1 Topology discovery
	3.1.1 Link manager
	3.1.2 Host Tracker

	3.2 Threats in topology discovery
	3.2.1 Link Fabrication Attack
	3.2.2 Host Hijacking Attack

	3.3 TopoGuard

	4 Formalizing SDNs with TopoGuard and attackers
	4.1 Assumptions
	4.2 Deﬁnitions
	4.3 The TopoGuard controller
	4.4 Switch
	4.5 Host
	4.6 Attacker
	4.6.1 Link attacker
	4.6.2 Host attacker

	5 Veriﬁcation
	5.1 The original system model
	5.2 Implementing the CSP models in PAT
	5.3 Assertions
	5.4 Veriﬁcation results and analyses
	5.5 Applying the veriﬁcation results to other SDNs
	5.5.1 Different environments
	5.5.2 More complex topologies

	6 An improved mechanism
	6.1 Mechanism
	6.2 New Host Tracker
	6.3 New system model and veriﬁcation results

	7 Conclusion and future work
	Acknowledgement
	References

