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Abstract

In this paper, we discuss how to model systems that communicate through and are coordinated by
mobile channels. Mainly, we focus on modeling the exogenous coordination behavior imposed by
these channels. We use Petri Nets as our modeling language, for they provide a graphically and
mathematically founded modeling formalism. We give Petri Nets for a set of mobile channel types.
This allows us to construct models of applications, by taking the Petri Net of each component and
each mobile channel, and composing them together. For this purpose, we define a special Petri Net
composition function. We also discuss analysis and simulation of these models and their exogenous
coordination behavior.
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1 Introduction

In the MoCha Framework [6] components and processes are coordinated by
mobile channels. A mobile channel is a coordination primitive that allows
anonymous point-to-point communication, enables dynamic reconfiguration
of channel connections in a system, and provides exogenous coordination.
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Mobile channels are interesting for all kinds of entities that need to be co-
ordinated, but they are specially interesting for Component Based Software.
As we show in [6], they provide a highly expressive data-flow architecture for
the construction of complex coordination schemes, independent of the com-
putation parts of components.

The implementation of the MoCha Framework, the MoCha middleware,
is suitable for any centralized or decentralized distributed network where we
exogenously coordinate the components by means of mobile channels. For
example, in [7] we show the benefits of using MoCha for P2P networks.

The purpose of this paper is to give the means for modeling systems that
communicate through and are coordinated by these mobile channels. Our
main goal is to model, analyze, and simulate the exogenous coordination of
these systems. Therefore, we need a modeling language with the following
features: (1) The language is widely used in both the academic world and
industry. (2) It contains well-defined semantics with clear theoretical founda-
tion. (3) It provides analysis of models, like all modeling languages do. (4)
It provides model simulation. (5) The language is easy to understand as well
as the models that it produces. (6) And last, but not least, there is enough
tool-support for this language.

A modeling language that fulfills above requirements is Petri Nets. Petri
Nets, named after their creator Petri [12], provide a graphically and mathe-
matically founded modeling formalism for the concurrent behavior of systems.
They offer precise semantics and a theoretical foundation [15].

By providing mobile channels specified in the Petri Nets model formalism,
we can model systems that use our channels with this formalism. This means
that, besides being able to model systems, we automatically get the follow-
ing advantages: extensive theoretical support, ease of usage, model analysis,
simulation of the models, immediate application in different areas, and ex-
tensive tool support. Furthermore, while it is not the main objective of this
paper, since Petri Nets models have clear and precise semantics, they also
automatically give semantics to our mobile channels. The interested reader
can compare the mobile channel semantics given in [8] which concentrate on
process interaction, with the semantics given in this paper which concentrate
on concurrency.

In section 2, we give a brief overview of the MoCha Framework. In section
3, we give a short introduction to Petri Nets. In section 4, we show how
to model systems that use our mobile channels. Here we give the Petri Net
models for a set of mobile channel types, discuss the minimal behavior that
components need to implement in Petri Nets to use these channels, and give
a composition function for constructing systems. In section 5, we give an
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example of such a composed system, and discuss analysis and simulation. In
section 6, we discuss the complexity of our approach and the need for tools.
We conclude with section 7.

2 MoCha

A channel in MoCha (see figure 1) consists of a pair of two distinct ends:
usually (source, sink) for most common channel-types, but also (source, source)
and (sink, sink) for special types. These channel-ends are available to the
components of an application. Components can write by inserting values into
the source-end, and take by removing values from the sink-end of a channel;
the data-flow is locally one way: from a component into a channel or from a
channel into a component.

Component Component

BA
Writes

Source

Channel

Sink

Takes

Fig. 1. General View of a Channel.

Channels are point-to-point, they provide a directed virtual path between
the (remote) components involved in the connection. Therefore, using chan-
nels to express the communication carried out within an application is archi-
tecturally very expressive, because it is easy to see which components (poten-
tially) exchange data with each other. This makes it easier to apply tools for
the analysis of dependencies and data-flow analysis in an application.

Channels provide anonymous communication. This enables components
to exchange messages with other components without having to know where
in the network those other components reside, who produces or consumes the
exchanged messages, and when a particular message was produced or will be
consumed. Since the components do not know each other, it is easy to update
or exchange any one of them without the knowledge of the components at the
other side of the channels it is connected to. This provides a simple mechanism
for composition of components that are decoupled in space and time.

The ends of a channel are mobile. We introduce here two definitions of
mobility: physical and logical. The first is defined as physically moving a
channel-end from one location to another location in a distributed system,
where location is a logical address space wherein components execute. The
second, logical mobility, is typically defined in the π-calculus as the ability
of passing channel(-end) identities through channels themselves to other com-
ponents in the application; i.e., spreading the knowledge of channel(-ends)
references by means of channels. This is possible in MoCha. However, in this
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paper we define logical mobility as the changing of channel connections among
components in a system by means of connect and disconnect operations. Both
physical and logical mobility are supported by MoCha.

Mobility allows dynamic reconfiguration of channel connections among the
components in an application, a property that is very useful and even crucial in
systems where components are mobile. A component is called mobile when, in
a distributed system, it can move from one location (where its code is execut-
ing) to another. Because the communication via channels is also anonymous,
when a channel-end moves, the components at the other side of the channel
are not aware nor affected by this movement.

Channels provide transparent exogenous coordination. Channels allow sev-
eral different types of connections among components without them knowing
which channel types they deal with. Only the creator of the connection knows
the type of the channel. This makes it possible to coordinate components from
the outside (exogenous), and thus, change an application’s behavior without
having to change the code of its components.

3 A Short Introduction into Petri Nets

Petri Net is actually a generic name for a whole class of net-based models
which can be divided into three main layers [17]. The first layer is the most
fundamental and is especially well suited for a thorough investigation of foun-
dational issues of concurrent systems. The basic model here is that of Elemen-
tary Net Systems [16], or EN systems. The second layer is an ”intermediate”
model where one folds some repetitive features of EN systems in order to get
more compact representations. The basic model here is Place/Transition Sys-
tems [2], or P/T systems. Finally, the third layer is that of high-level nets,
where one uses essentially algebraic and logical tools to yield ”compact nets”
that are suited for real-life applications. Predicate/Transition Nets [5] and
Colored Petri Nets [10] are the best known high-level models.

Any Petri Net of the three layers above is suitable to model a system.
Moreover, any Petri Net of any layer can be transformed/translated into a
Petri Net of another layer [4]. Examples of translation are given in the work of
Engelfriet [3] and Jensen [11]. We specified all the channel types of the MoCha
Framework using the Place/Transition Petri Nets. In contrast with the high-
level Petri Nets, these kind of Petri Nets are at the right level of abstraction
with clear non-changeable semantic rules and constructs. However, in this
paper, for simplicity, we use the Elementary Net Systems Petri Nets. This last
kind of Petri Nets are easier to use, for their theory is a little bit more simpler.
Furthermore, the topology of the synchronous channel types of both models
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are structural equivalent. For the asynchronous types that we introduce in
this paper, it doesn’t pay off to use the Place/Transition Petri Nets for all
channel types.

3.1 Elementary Net Systems

We give a short introduction of Elementary Net Systems (EN system in short).
We restrict ourselves to the definitions that we need in this paper. For an ex-
tensive introduction that also covers several properties of EN systems, equiv-
alences, and EN analysis we refer to the tutorial given in [17]. A net is the
most basic definition of all Petri Nets:

Definition 3.1 A net is a triple N = (P, T, F ) where
(1)P and T are finite sets with P ∩ T = ∅,
(2)F ⊆ (P × T ) ∪ (T × P ),
(3) for every t ∈ T there exist p, q ∈ P such that (p, t), (t, q) ∈ F , and
(4) for every t ∈ T and p, q ∈ P , if (p, t), (t, q) ∈ F , then p �= q.

The elements of P are called places, the elements of T are called transitions,
elements of X = P ∪ T are called elements (of N), and F is called the flow
relation (of N).

Each place p ∈ P can be viewed as representing a possible local state of a
system. At each moment in time a set of local states (places) participate in
the global state of the system. We call such a set of places a configuration.
Graphically, we denote the places that are part of a configuration with a token;
a small black filled circle.

Definition 3.2 A configuration C of a net N = (P, T, F ) is a subset of P .

Thus, a configuration C of a net is a subset of P where each place contains
a token. We now define a elementary net system as given in [17]:

Definition 3.3 Definition: An EN system is a quadruple
M = (P, T, F, Cin) where:
(1)(P, T, F ) is a net and
(2)Cin ⊆ P is the initial configuration

Every transition in an EN system can perform an action called fire. This
action takes a token from all the input places and places a token to each output
place of the transition. This action represents a sequential step of a system.
However, for this to happen all the input places of the transition must have
a token and its output places must be empty, since a place can have at most
only one token at the same time.
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Definition 3.4 Let M = (P, T, F, Cin) be an EN system and let t ∈ T .
(1) •t are the input places of t, and t• the output places of t.
(2) Let C ⊆ P be a configuration. Then t has concession in C (or t can be
fired in C) if •t ⊆ C and t• ∩ C = ∅, written as t con C.
(3) Let C,D ⊆ P . Then t fires from C to D if t con C and D = (C −• t)∪ t•,
written as C[t > D; t is also called a sequential step from C to D.

4 Modeling Mobile Channel based Systems

In order to model systems that use mobile channels, we need to model the
channels in Petri Nets, from now on PN, first. We, then, take the PN of the
components and compose them together with the PN of our mobile channels.

Next, we give the interface of these PN mobile channels. Afterward, we
give the interface and minimal behavior that components need to implement
in order to use our channels. We, then, specify a PN composition function σ.
Besides composing, this function implicitly models the connect and disconnect
channel operation (by using the inverse function as well). Finally, we give the
EN systems for a representative set of mobile channel types.

4.1 Mobile Channel Interface

The EN and P/T-net mobile channel systems that we present in this section
have all the same interface from the point of view of the components of a
system. We give this interface in figure 2. Each channel-net has an internal
part that is determined by it’s type, and an interface that is common to all
channel types consisting of four interface places, two for each channel-end. We
graphically denote these places by marking an extra symbol, I, on the outside
of the circle. The interface places are part of a protocol to ensure that all
write and take operations are blocking; i.e. an active entity performing such
an operation blocks until the operation succeeds and terminates.
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Fig. 2. PN Mobile Channel Interface

The places p
Source

and p
WA

constitute the interface of the source channel-
end. A component that wants to perform a write operation on this end, puts
a token into place p

Source
. This token represents the fact that a data element

is available but has not yet been accepted by the channel. In other words, the
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write operation is pending between the component and the source channel-end.
When the token is removed from this place by the channel, it means that the
channel is processing the write operation. Upon completion of the operation,
the channel puts a token in the interface place p

WA
; a write acknowledgment.

The places p
Sink

and p
RTT

constitute the interface of the sink channel-end.
A component that wants to perform a take operation on this end, puts a token
in place p

RTT
(Ready To Take). This token reveals the desire and willingness

of the component to take a data element from the channel. However, the
channel knows that there is a component waiting (and wanting) to take an
element only when the token in p

RTT
successfully ”enters” the channel due to

a fire action. The channel terminates the take operation by putting a token
into the p

Sink
interface place. The component, then, can take the token from

this place.

We don’t explicitly model a source- and a sink-end in the mobile channel
nets. A channel-end is implicitly modeled by its two interface places and the
internal transitions where these places are either input or output of. Observe,
that the semantics of the write and take operations are analogous with the
ones defined in [8].

4.2 Component Interaction

The components of a system interact with the mobile channels thought the
interface that we defined above. From the point of view of the channels,
a component consists of one or more active entities (threads or processes)
that perform write and take operations. In figure 3 we give the EN systems
of two single entity components. They represent the minimal behavior that
components need to implement regarding the write and take operations toward
channels; i.e. they implement their side of the blocking protocol as described
in section 4.1.

Figure 3(a) shows the PN of a simple writer. This net has two interface
places that are meant for composition with channels:{p

Output
, p

WA
}. The initial

configuration of the net is {p2}. The writer starts the write operation by
executing {p2}[t2 > {p

Output
, p1}. At this point it is blocked for it must wait

until it receives a write acknowledgment; i.e. a token is placed in p
WA

. If the
writer is interacting with a source channel-end, at the time that it receives
the acknowledgment the token in place p

Output
is already gone. Therefore, we

end up with the configuration {p1, pWA
}. The writer ends the operation by

performing the sequential step {p1, pWA
}[t1 > Cin. At this point, it may start

writing again.

Figure 3(b) shows the PN of a simple taker. This net has also two interface
places that are meant for composition with channels: {p

Input
, p

RTT
}. The
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(b) A Taker

2

t1

t2

p
1

p
RTT

I

p
2

p
Output

I

t1

t2

p
1

p
WA

I

p

I

Input

(a) A Writer

p

Fig. 3. A Writer and a Taker EN System

initial configuration of this net is {p2}. The taker starts the take operation
by executing {p2}[t2 > {p1, pRTT

}. At some point in time the channel it is
interacting with takes the token of p

RTT
, and later on, it puts a token back

in place p
Input

. The resulting configuration is {p1, pInput
}. The taker ends

the operation by performing {p1, pInput
}[t1 > Cin. At this point, it may start

taking again.

4.3 PN Composition of Components and Channels

We have introduced the interface of channels and the interface of components
toward channels. We now need to compose components and channels together.
There are several construction strategies possible. Our major requirement is
that such strategy is compositional. One should be able to distinguish the
individual components and channels in the composed system, and it must
be easy to decompose and rearrange the system; i.e. updating and replacing
components and channels without having to change the rest of the system.
Therefore, for example, we cannot do composition and optimize the resulting
PN for it may not be possible to decompose after many composition steps
anymore. Our strategy is, then, to do composition on the interface places.
This way, we don’t have to change the internals of components and channels. It
is easy to recognize the individual parts. And, decomposition is also clear and
easy to do. For this purpose we define a composition function that mergers,
or concatenates, interface places:

Definition 4.1 We define the composition function σ : (X1, P1, X2, P2) −→
Y where,
(1) X1, X2 and Y are EN systems
(2) P1 and P2 are ordered finite set of places, with P1 ⊆ PX1

, P2 ⊆ PX2
and
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|P1| = |P2|. Typical elements of these sets are p1 ∈ P1 and p2 ∈ P2.
We construct the new Petri Net EN System Y as follow,
(3) We rename the places, transitions and flow relations of nets X1 and X2

that have the same name.
(4) PY = (PX1

\ P1) ∪ (PX2
\ P2) ∪ Pnew, where

∀(pairs(p1−i, p2−i)) ∃pnew−i ∈ Pnew,
with i as an index from 1 to |P1| = |P2|, and |P1| = |P2| = |Pnew|,
(5) TY = TX1

∪ TX2
,

(6) FY = (FX1
∪ FX2

∪ FI) \ FRem, where
∀(i ∈ 1 to |Pk|) if (pk−i, t) ∈ FXk

then (pk−i, t) ∈ FRem ∧ (pnew−i, t) ∈ FI ,
∀(i ∈ 1 to |Pk|) if (t, pk−i) ∈ FXk

then (t, pk−i) ∈ FRem ∧ (t, pnew−i) ∈ FI ,
with k = {1, 2}, pk−i ∈ Pk and pnew−i ∈ Pnew, both with index i.
(7) Cin−Y = (Cin−X1

\ P1) ∪ (Cin−X2
\ P2) ∪ Cin−new, where

(∀i ∈ 1 to |Pnew|)if pk−i ∈ Pk ∧ pk−i ∈ Cin−Xk
then pnew−i ∈ Cin−new,

with k = {1, 2}.

The function σ takes EN Systems as parameters, X1 and X2. The function
also takes two set of places, P1 and P2, that correspond to the interface places
of respectively X1 and X2 that we want to compose. The result of the function
is a new EN System Y , that is constructed as follow: (3) We rename all the
places, transitions, and relation flows of nets X1 and X2 that cause name
conflicts due to the composition. (4) Each place of X1 and X2 is present in
Y , except for the interface places of P1 and P2. Each pair {p1, p2} of these
places, that are related to each other for having the same index number, are
substitute for a new place, pnew, that is inserted in Y . (5) The composition
is done on interface places so the transitions of Y are just the union of the
ones in X1 and X2. (6) Every flow relation present in either X1 or X2 is also
present in Y . The flow relations that involve the interface places in P1 and
P2, represented in FRem, are changed to be involved in the new added places
of point 3, represented in FI . (7) The Cin of Y is the union of the ones of
X1 and X2. However, the places of P1 and P2 may also be present at the
initial configurations of these two last EN systems. Since these places do not
exist anymore in Y , we add their corresponding new places from Pnew into the
initial configuration.

We can now compose components and channels using our function σ. For
example, we obtain the PN-system Comp of figure 4, by applying the σ

function to the writer-, taker component and a channel (which we defined
previously): Comp = σ(Taker, {p

Input
, p

RTT
}, Tmp, {p

Sink
, p

RTT
}), Tmp =

σ(Writer, {p
Output

, p
WA

}, Channel, {p
Source

, p
WA

}. In this figure we take the
general channel definition. Later on, we give several PN-systems for different
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(a) Synchronous Channel
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tWrite
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(b) Lossy Synchronous Channel

p

Fig. 5. The Synchronous and Lossy Synchronous Channel EN Systems

mobile channel types.

The composition function σ implicitly models the operation connect. Our
components don’t issue a connect request, and we don’t keep any adminis-
tration concerning connect. However, if a component is composed with a
channel by σ we regard this component connected to the appropriate channel-
end. Analogous to connect, we implicitly model disconnect with the function
σ−1; the inverse of σ.

4.4 A Set of EN and P/T-net Mobile Channels Systems

We now take a representative set of mobile channel types and give an EN
system for each of them.

J. Guillen-Scholten et al. / Electronic Notes in Theoretical Computer Science 154 (2006) 121–138130



4.4.1 The Synchronous Channel Type

With a synchronous channel the I/O operations of both ends are synchronized;
the I/O operations atomically succeed. Figure 5(a) shows the EN system of
this channel. The internals of this channel type is just a transition tWrite that
synchronizes the four interface places as defined in section 4.1. The places
p

Source
and p

RTT
are input places of transition tWrite. Therefore, only when

both the writing and the taking components have each inserted a token in
these places, the I/O operations atomically succeeds (at the same time); each
component inserts a token to its corresponding place as described in section
4.2. We give the sequential firing step: {p

Source
, p

RTT
}[tWrite > {p

Sink
, p

WA
}.

At the end a token is inserted in the places p
Sink

and p
WA

. This indicates the
end of the I/O operations, from the point of view of the channel.

4.4.2 The Lossy Synchronous Channel Type

With the lossy synchronous channel, if there is no I/O operation performed
on the sink channel-end while writing a value to the source-end, the write
operation always succeeds but the value gets lost. In all other cases, the
channel behaves like a normal synchronous type.

Figure 5(b) gives the EN system for this channel type. There are two paths
for a successful write operation. One, is determined by the tWT1 transition and
exhibits the behavior of a synchronous channel. The other, is determined by
the tWT2 transition and exhibits the lossy behavior. The choice between the
first or the second path depends whether there is a component waiting to take
a value or not, this is symbolized by the presence of a token in place p

RTT
.

However, the channel is not aware of this intention yet. Only when firing
transition t1 does the channel know that a component is ready to accept a
value: {p

RTT
}[t1 > {p1, p2}.

If there is a token in place p
Source

, there is a component trying to write,
transition tWT1 fires when there is a token in places p1 and p2; there is a
component waiting to take. At the same time, transition tWT2 is blocked
because of the token in place p2. Therefore, the written value synchronously
flows from p

Source
to p

Sink
: {p

Source
, p1, p2}[tWT1 > {p

Sink
, p

WA
}.

However, if there are no tokens in places p1 and p2, there is no component
to take, transition tWT2 fires and the value gets lost while the write operation
succeeds. Observe that, the transition tWT1 cannot fire due to the lack of a
token in place p1. There is no need to model a garbage collector to delete the
token value since the firing of transition t2 already takes care of this. We give
the sequential steps of the lossy path: {p

Source
}[tWT2 > {p2, p3}[t2 > {p

WA
}.
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4.4.3 The FIFO and FIFO n Channel Type

(c) FIFO−n
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Fig. 6. The FIFO 1, 2 and n Channel EN Systems

With an asynchronous FIFO channel type the I/O operations that are
performed on both channel-ends are done in an asynchronous way. Values
written into the source channel-end are internally stored in a buffer until
taken from the sink-end. Figure 6(a) shows the EN system of a FIFO-1 chan-
nel. As one could expect, the internal buffer of capacity one is modeled by
place p

buf
. We write a value into the channel by performing the sequen-

tial step {p
Source

}[twrite > {p
buf

, p
WA

}, and we take a value by performing
{p

buf
, p

RTT
}[tTake > {p

Sink
}. In figure 6(b) we give a FIFO-2 EN system chan-

nel. Naturally, it contains two buffer places. Figure 6(c) gives the general
scheme of a FIFO EN system channel with buffer capacity n. Observe, that
if n is unlimited, the unbounded FIFO channel type, we get an EN system
with infinite places. To avoid this, we work with a P/T-net system where we
have a single buffer place with unlimited capacity. However, for space saving
reasons, we omitted this kind of PN in this paper.

4.4.4 The Asynchronous Drain Channel Type

The asynchronous drain channel type has two source channel-ends. Further-
more, the I/O operations performed on the ends of this channel succeed one
at a time exclusively. So the write operations on its two ends never succeed
simultaneously. This is reflected in the net we give in figure 7(a). Place p3
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Fig. 7. The Asynchronous Drain- and Spout EN Channel Systems

makes sure that either transition tWrite1 or transition tWrite2 fires, but not both
at the same time.

Let’s assume that there are two simultaneous writes available; the net
configuration is {p

source1
, p

source2
}. Then, we can perform the write operation

on the left source-end first: {p
source1

, p
source2

}[tWrite1 > {p
source2

, p1, p3}, at this
configuration transition tWrite2 is blocked, {p

source2
, p1, p3}[t1 > {p

source2
, p

WA1
}.

Or, we can perform the write operation on the source-end at the right first:
{p

source1
, p

source2
}[tWrite1 > {p

source1
, p2, p3}, at this configuration transition tWrite1

is blocked, {p
source1

, p2, p3}[t1 > {p
source1

, p
WA2

}. However, we can never per-
form both write operations at the same time, since we cannot fire transitions
tWrite1 and tWrite2 concurrently.

4.4.5 The Asynchronous Spout Channel Type

The asynchronous spout channel type has two sink channel-ends. Further-
more, the I/O operations performed on the ends of this channel succeed one
at a time exclusively. So the take operations on its two ends never succeed
simultaneously. This is reflected in the net we give in figure 7(b). Place p2

makes sure that either transition tTake1 or transition tTake2 fires, but not both
at the same time.

Let’s assume that there are two simultaneous takes available; the net con-
figuration is {p

RTT1
, p

RTT2
}. Then, we can perform the take operation on the

left sink-end first: {p
RTT1

, p
RTT2

}[t1 > {p
RTT2

, p1, p2}, at this configuration
the token in place p2 blocks the firing of transition t2, {pRTT2

, p1, p2}[tTake1 >

{p
RTT2

, p
Sink1

}. Or, we can perform the take operation on the sink-end at
the right first: {p

RTT1
, p

RTT2
}[t2 > {p

RTT1
, p2, p3}, at this configuration the

token in place p2 blocks the firing of transition t1, {p
RTT1

, p2, p3}[tTake2 >
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{p
RTT1

, p
Sink2

}. However, we can never perform both take operations at the
same time, since we cannot fire transitions tTake1 and tTake2 concurrently.

5 Analysis and Simulation

We now know how to model systems that use our mobile channels by means
of Petri Nets. In this section we discuss the analysis and simulation of these
models. Figure 8 models a system that consists of a write-, and a take com-
ponent as defined in section 4.2. These two components interact through a
lossy synchronous channel, as defined in section 4.4. We get the system by
composing the Petri Nets of each separate entity by means of the function σ:
σ(Taker, {p

Input
, p

RTT
}, Tmp, {p

Sink
, p

RTT
}), Tmp = σ(Writer, {p

Output
, p

WA
},-

LossySynchronous, {p
Source

, p
WA

}.
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Fig. 8. An Example of Composition

We can simulate the system by playing the ”token game”. This game
consists of firing transitions, when possible, to get the system from one state
into the other. If we cover all possible firing sequences, we get all the possible
states of the system, and thus all the possible exogenous coordination of this
system. In figure 9 we give the sequential configuration graph of figure 8. For
a precise definition of (sequential) configurations graphs, see [17].

Besides simulation, we can also analyze the exogenous coordination behav-
ior of the models for desired, or undesired, properties and features. Petri Nets
offer extensive analysis of its models. The most common analysis features
include causality, concurrency, conflicts, confusions, deadlocks, and equiva-
lence. The first, studies the causality between the events of a system. The
second, analyzes which system events are concurrent at the same moment in
time. The third, analyzes which events are conflicting at the same moment
in time. Sophistic interaction between concurrency and conflicts can lead to,
the fourth, confusions; events that are concurrent can become conflict and
vice-versa. The first four features make it possible to reason about, the fifth,
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Fig. 9. The Sequential Configuration Graph of Figure 8

deadlocks in a system. And finally, Petri Net analysis include equivalence.
Usually, similarity of systems is build upon the notion of morphism.

For example, we can analyze the exogenous behavior of our example model
to find concurrent steps. For this purpose, we can look at its sequential con-
figuration graph, given in figure 9. Basically, every diamond shape in the
figure represents a concurrent step. The first possible concurrent step is
{p

w2
, p

t2
}[{t

t2
, t

w2
} > {p

w1
, p

t1
, p

source
, p

rtt
}; we can arrive from configuration

{p
w2

, p
t2
} to configuration {p

w1
, p

t1
, p

source
, p

rtt
}, by first firing transition t

w2

and then transition t
t2
, or vice-versa. For the precise definition of concurrency

and other analysis we refer to [17,2].

6 Complexity and the Need for Tools

The system we modeled in figure 8 is quite small and simple. Analyzing
and simulating this system “by hand” is possible, but already not a pleasant
task. For example, look at the size of figure 9. A real application consists
of many components and many mobile channels. Therefore, modeling such
an application quickly results in a big Petri Net model that is not human-
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tractable anymore.

One of the reasons is that the construction strategy we chose is compo-
sitional (see section 4.3). Therefore, we cannot optimize the PN systems we
obtain, because then we could not recognize its constituent parts anymore.
However, the main reason for this explosion is that EN and P/T systems do
not offer high-level constructs such as constrains. This obliges us to explic-
itly implement everything we need. For example, we explicitly implemented a
protocol for modeling blocking operations (see section 4). If our goal is to pro-
duce human-readable models, then, the approach we take in this paper using
EN and P/T systems is not really suitable. A better choice, for example, is
a higher-level Petri Net like Colored Petri Nets [10], or, to use the MoCha-pi
calculus given in [8].

However, the Petri Net models that our approach produces are very suit-
able for verification and simulation using tools. This is due to the fact that,
EN and P/T systems have clear non-changeable semantic rules and constructs,
and, that our Petri Net models explicitly encode low-level technical details
that are otherwise not specified. Fortunately, there are many tools available
for EN and P/T systems. For an extensive list of these tools we refer to the
state-of-the-art work in [13].

We are experimenting with the Platform Independent Petri Net Editor
(PIPE) tool [1]. We chose this tool because, it is free of charge, platform-
independent, offers simulation and analysis modules, and gives XML support.

7 Conclusions

In this paper, we showed how to model distributed systems that communicate
through and are coordinated by mobile channels. We focused on modeling
the exogenous coordination of these systems. Examples of such systems are
Component Based and P2P networks, as explained in [6,7]. The modeling
language we chose to use is Petri Nets. We discussed the modeling of com-
ponents, mobile channels and their composition into distributed systems. We
discussed the analysis and simulation of these Petri Net models. In particu-
lar, the analysis of causality, concurrency, conflicts, confusions, deadlocks, and
equivalence of the exogenous coordination of these models. We, also, discussed
the negative and positive points of the approach we take for mapping MoCha
into Petri Nets. On the negative side, the models that we produce quickly
become intractable for humans. On the positive side, the low-level semantics
of these models make them very suitable for simulation and analysis using one
of the many tools that are available for the kind of Petri Nets we use.

Petri Nets have been used in many different application areas. As a result
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there is a high degree of expertise in the modeling field. Interesting for this
paper is the work on Web Services composition presented in [9]. MoCha
channels are suitable for Web Services, and we are intend to use the channel
Petri Nets of this paper for this purpose as well. In [14], Petri Nets are used
to model distributed algorithms. Although, we did not introduce an explicit
notion of location, our channel Petri Nets define a distributed implementation
of the MoCha Framework channel types.
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