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Abstract

Transcriptome signature reversion (TSR) has been extensively proposed and used to discover new indications for existing drugs (i.e.
drug repositioning, drug repurposing) for various cancer types. TSR relies on the assumption that a drug that can revert gene expression
changes induced by a disease back to original, i.e. healthy, levels is likely to be therapeutically active in treating the disease. Here, we
aimed to validate the concept of TSR using the PRISM repurposing data set, which is—as of writing—the largest pharmacogenomic data
set. The predictive utility of the TSR approach as it has currently been used appears to be much lower than previously reported and
is completely nullified after the drug gene expression signatures are adjusted for the general anti-proliferative downstream effects of
drug-induced decreased cell viability. Therefore, TSR mainly relies on generic anti-proliferative drug effects rather than on targeting
cancer pathways specifically upregulated in tumor types.
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Introduction
Transcriptome signature reversion (TSR) has been extensively
used with the aim to discover new indications for existing drugs
(i.e. drug repurposing, drug repositioning) for various cancer types
[1]. TSR relies on the assumption that a drug that can revert gene
expression changes induced by a disease back to its original, i.e.
healthy, state is likely to be therapeutically active in treating the
disease.

The typical TSR drug repositioning study proceeds according to
the following approach: first, the genes upregulated and downreg-
ulated in the tumor tissue as compared with the adjacent ‘healthy
normal’ tissue (tumor signature) are identified using differen-
tial gene expression analysis. Next, either the Connectivity Map
database or its successor the Library of Integrated Network-Based
Cellular Signatures (LINCS) L1000 database is screened for gene
expression signatures of drugs (drug signatures), which reverse
the differentially expressed genes (DEG) identified in the first step
in the opposite direction [2, 3]. Finally, the top drug candidates are
tested on one or more cancer cell lines and/or in an animal model
of the same tumor type as the tumor signature. Using this proce-
dure, several studies have elicited drugs with anticancer activity
against specific tumor types [4–11], suggesting that TSR has a high
predictive ability for prioritizing drug repurposing candidates. The
best available systematic evidence for the concept of TSR in
oncology was published by Chen et al. [6], which demonstrated
that the potential to revert the gene expression signatures of
breast, liver and colorectal tumors is associated with the median
half maximal inhibitory concentration (IC50) of compounds tested
in a single cell line of that tumor type.

However, drugs identified using TSR may be targeting the
downstream proliferative ‘effect’ rather than the upstream
‘cause’ of the proliferative phenotype characterizing a spe-
cific cancer type. Indeed, it has been shown that drugs that
decrease cell viability show similarity in gene expression
perturbation signatures, which is linked to transcription factors
regulating cell death, proliferation and division time [12]. In
other words, a stronger expected inversion of a tumor gene
expression signature based on the drug signature could perhaps
only be a proxy for the general anti-proliferation effect of
a drug and not specifically targeting the tumor (sub)type
under investigation. This would imply that TSR as currently
implemented is less useful for drug repurposing than claimed,
as it would not provide any specificity in prioritizing which
drugs may be effective against a particular tumor type. Alter-
natively, it seems appropriate to remove the downstream gene
expression effects related to decreased cell viability from the
drug signatures in order to increase the predictive utility of
TSR.

In this study, we aim to comprehensively validate the concept
of TSR using a series of 18 different solid tumor types with at
least four cell lines per tumor type and 400+ drugs for each
of these tumor types based on the recent release of the PRISM
repurposing data set [13]. In addition, we repeated the analysis
using drug signatures from which downstream effects of reduced
cell viability were removed to determine if this step increases or
decreases the predictive power of TSR for selecting whether a
drug has the potential to be repurposed against a particular tumor
type.
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Figure 1. Graphical illustration of the main method of generating the default connectivity scores (A) and corrected connectivity scores (B) and using it
to quantify the predictive power in prediction cell viability.

Materials and methods
Study design
To answer the main research objective of validating the predic-
tive utility of connectivity scores for prioritizing drug repurpos-
ing candidates, we combined publicly available data from the
PRISM, LINCS and The Cancer Genome Atlas (TCGA) databases
(Figure 1). Data acquisition, data inclusion/exclusion criteria and
summarization steps are described below in more detail.

Cancer cell line viability data
As of writing, the PRISM repurposing data set constitutes the
largest data available on cancer cell line viability, significantly
more than earlier publicly released high-throughput databases
(i.e. GDSC1000 and CTRPv2) [13] . The data in PRISM were gener-
ated in two stages: in the first screening stage, 578 cancer cell lines
were screened with up to 4518 drugs at a single concentration
of 2.5 μM, and in the second screening stage, the 1448 of the
most active drugs at this single concentration were retested at
eight concentrations ranging from 610 pM to 10 μM. As the
only differences in effectivity between cell lines can be expected
for these active drugs, we focus the analysis on data from the
second stage. These data were downloaded on 14 June 2021 from
the PRISM Repurposing 21Q2 release available on ‘depmap.org’
(release with filenames ‘secondary-screen-dose-response-curve-
parameters.csv’ and ‘secondary-screen-cell-line-info.csv’). Four
parameters that result from fitting the dose response curve were
available, called ‘slope’, ‘auc’, ‘ec50’ and ‘ic50’, in the data set. The
most natural choice would be to use the half maximal inhibitory
concentration (IC50) as this was used in the paper of Chen B
et al.; however, the IC50 was only estimable in 51% of experiments
because of the limited concentration range used in the experi-
ments. The half maximal effective concentration (EC50) was also
not a great choice to compare drugs with each other because of
the expected differences in the maximal response between drugs

and its high variability (ranged from 1 × 10−7 to 4 × 10304). The
slope has a wide data range, which includes negative numbers
(−4891 to +18 537) and is therefore difficult to interpret. The
dose–response area under the curve (AUC) therefore appeared
to be the best option as it has the narrowest range (0.004174 to
4.889162) of all parameters with a relatively simple interpretation:
it represents the fraction of cells left after drug exposure averaged
over all the tested concentrations normalized to cells receiving no
drug treatment, such that AUC values below 1 indicate sensitivity
to treatment. The nonnegative nature of the distribution also
makes it possible to log-transform, making it easier to include in
statistical models and to display in figures.

Drug gene expression perturbation data
Drug signatures, based on data generated by the LINCS Program
[3], were calculated with the goal of estimating the effect in the
average tumor cell line at 10 μM for 6 h and 24h. This concentra-
tion was chosen because it is the most common concentration
used in all experiments and the concentration is at the upper
limit of the concentrations tested in the second phase of PRISM.
Experiments that tested concentrations other than 10 μM (37% of
total) were removed. Additionally, drugs that were tested in less
than 5 distinct cell lines were removed because of small sam-
ple size, implying poor generalizability. Experiments with drugs
incubated for 6 hours and 24 hours were analyzed separately. For
each data subset (i.e. 6- and 24-h experiments), a separate linear
mixed model was fitted on each of the 978 landmark genes with
treatment as a categorical variable using DMSO control vehicle
as the reference level and cell line and plate as two separate
random effects, allowing for correlation. To create a consensus
drug signature between the 6- and 24-h drug signatures, the fold
change (FC) and standard error estimates of 6 h and 24 h were
combined using meta-analysis using the ‘rma’ function in the
‘metafor’ package (version 3.0-2).
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Cancer tissue gene expression signature
TCGA RNA-seq HTSeq counts data and associated meta-
data were downloaded from gdc.xenahubs.net (version 12
November 2017; 11 538 samples in total) [14]. Twenty-two
TCGA projects had enough tumor and adjacent normal samples
to run a differential expression analysis contrasting the two
tissue types (Supplementary Table S1). Genes with a mean
log2-FC (Counts + 1) expression below 6 were removed, so
that only the 13 386 most highly expressed genes remained
(Supplementary Figure S1).

To create the tumor gene expression signatures, the samples
of each tumor type were first normalized using the upperquar-
tile method using the ‘calcNormFactors’ function from ‘edgeR’
package (version 3.35.1). Next the data were analyzed using the
‘voom’ function from the ‘limma’ package (version 3.49.4), with
a fixed effect for the tumor versus normal contrast. To create the
‘meta-analysis mean tumor signature’ used in Figure 3D, the log2-
FC estimates and standard errors of each tumor type, the rma
function in the metafor package (version 3.0-2) was used with all
default options.

Estimating the mean normalized AUC (mnAUC)
Because each drug in PRISM is not always tested in exactly the
same set of cell lines, a linear mixed model was used to separate
the effect of cell lines and drugs. This step summarizes the AUC
into an mnAUC. The interpretation of the mnAUC is the same as
the original AUC, but it now represents the average fraction of cells
left after drug exposure of a set of cell lines. First a linear mixed
model was fitted using the ‘lme4’ package (version 1.1-27.1) using
the following formula:

log (auc) ∼ 1 + (
1| drug_name

) + (
1|cellLine_id

)
.

Then, the mnAUC was calculated using the following formula:

mnAUCdrug=i = eIntercept+drug_ranefi ,

where drugranef is the posterior Bayes estimates for the respective
drug in the mixed model. This calculation was done for all drugs
and cell lines at the same time and for the subsets of experiments
that used cell lines that are associated with a particular TCGA
tumor type.

Supplementary Table S1 lists the selection and number of
PRISM cancer cell lines mapped to each tumor type.

Removing downstream impact of reduced cell
viability from drug signatures
It has been observed that drugs that strongly decrease cell via-
bility share a common gene signature response linked to tran-
scription factors regulating cell death, proliferation and division
time [12]. The goal of this procedure is to remove the downstream
effects of the drug action (i.e. cell death, reduced proliferation
and division time) from the drug’s gene expression signature.
If a gene is consistently upregulated or downregulated in the
presence of drugs with different mechanisms of action, which
strongly decreases cell viability, this gene is unlikely to be linked
to the unique mechanism of action of a specific drug. The second-
order effect of the strongly decreased cell viability is approx-
imated by regressing the log2-FC after drug exposure of each
gene after (y-axis) on the logarithm of the mnAUC (x-axis). The
corrected DE is taken to be the residual, i.e. the part of the

variation in differential expression not explained by the mnAUC
(Supplementary Figure S2). This process was repeated for all 978
genes measured by the LINCS array, separately for the 6- and 24-h
drug exposure subsets of the data. To get the corrected combined
6–24 h drug signatures, the corrected 6- and 24-h drug signatures
were combined using meta-analysis as described previously.

Calculating connectivity scores
To calculate a connectivity score, one first needs to create a
tumor signature. The first step is to remove any genes that
were not measured in the LINCS microarray data, leaving 952
overlapping genes. The next step would be to only include genes
that pass a certain threshold. The paper of Chen et al. [6] only
included genes that were differentially expressed above 1.5 log2-
FC or below -1.5 log2-FC in combination with adj. P-value below
0.001, resulting in between 65 and 83 genes in the 3 tumor
signatures. Using the same criteria for the 18 tumor signatures
included in this research would result in between 3 and 176 genes
(Supplementary Table S1). To minimize differences in the size of
the tumor signature between tumor types and explore the effect
of variation in tumor signature selection, we decided to test four
different scenarios: use the 50, 100 and 150 most statistically
significant genes DEG (scenarios 1–3) and use the same method
from Chen et al. to make a direct comparison easier (scenario 4).

The connectivity scores were calculated using both the
original method using the ‘connectivityScore’ function in the
‘PharmacoGx’ package (version 2.5.2) and the newer version
‘cmap_score_new’ available from https://github.com/Bin-Chen-
Lab/RGES. The benefit of the newer version is that it does not
produce any connectivity scores of 0 in specific situations as
described in the paper of Chen et al. [6], which could bias the
results in correlation analyses. After validating that this newer
version of connectivity scoring worked similarly to the original
connectivity score without producing any connectivity scores of
0 (Supplementary Figure S3), we decided to use the newer version
for our main results.

Gene set enrichment analysis (GSEA)
GSEA was performed using Enrichr, an enrichment analysis web-
based tool providing various types of visualization summaries
of collective functions of gene lists [15]. Using this website, the
gene sets of interest were uploaded to the gene symbol form field
available at https://maayanlab.cloud/Enrichr/ in April 2022.

Statistical analyses
All correlations mentioned in the results used the nonparametric
Spearman correlation (R function ‘cor.test’, ‘method’ = ‘spearman’).
This nonparametric method is used to obviate the assumption
that the relationship between the variables is linear and has the
advantage that it is invariant to monotone transformations of the
variables (i.e. taking the logarithm of a variable does not change
the correlation coefficient).

Results
Data retrieval and preprocessing
PRISM and LINCS share 506 drugs that fit the inclusion criteria
of the differential expression of drugs after drug exposure being
measured in at least five cell lines. Of these included drugs, the
cell viability was tested on between 89 and 479 cancer cell lines
with a median of 445 (Figure 2A), and the differential expression
after exposure to the drug was tested on a median of 10 different
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cell lines with on average 4.2 replications per cell line, resulting in
a median total sample size of 42 (Figure 2B).

The mnAUC was centered around 1 (i.e. no effect versus control
in the average cancer cell line) for the majority of drugs, with
a sizeable minority having an mnAUC below 1, which signifies
anticancer efficacy (Figure 2C). The association of the mnAUC
with the DEG after 6 h, 24 h and 6 + 24 h shows that the majority
of genes are statistically significantly associated with mnAUC at
a significance level of P < 0.05 (Figure 2D), with most (75%) of
genes being affected after 24-h drug exposure and the fewest
genes (56%) after 6h of drug exposure. The combined 6 + 24-h drug
signatures scored in between at 70% of genes affected.

Figure 2E illustrates an example of a strong negative corre-
lation and Figure 2F illustrates an example of a strong positive
correlation after 24-h drug treatment. In both cases, the DEG
seem normally distributed to good approximation (i.e. centered
around log2-FC = 0) from mnAUC >1, but starts to increase and
decrease, respectively, when the mnAUC decreases below 1. Note
that a positive correlation in this context implies that the gene
is downregulated in the presence of drugs that decrease cell
viability, whereas a negative correlation implies that the gene
is upregulated. Drugs with an mnAUC >1 have on average far
fewer DEG than those with mnAUC <1 (Supplementary Figure S4),
which reinforces why the drugs with mnAUC >1 could be consid-
ered the control group.

Inverse association between genes upregulated
in cancer and downregulated after drug-induced
reduced cell viability
When the log2-FC of the tumor tissues versus the adjacent
normal tissues is plotted against the correlation coefficient
between the mnAUC and the DEG after 6, 24 and 6 + 24 h, it
can be seen that genes that are downregulated after exposure
to drugs that decrease cell viability (from around rho > 0.15)
are on average upregulated in most tumor tissues (Figure 3).
Supplementary Table S2 lists correlation estimates and P-values:
all correlation coefficients are positive and at least for 19 out of
23 tumor types the correlation is statistically significant for all 3
types of drug signatures used (i.e. 6 h, 24 h and 6 + 24 h combined).

To find out if there is a common link between the set of genes
that are both frequently upregulated in cancer and strongly pos-
itively associated with mnAUC after drug exposure (thus down-
regulated in the presence of drugs that decrease cell viability,
see Figure 2F), we performed gene set enrichment analysis using
the 25 genes with the most positive correlations with mnAUC
(rho > 0.42, Supplementary Table S3). Results from the KEGG 2021
pathway database indicate the genes have the strongest associ-
ation with the ‘Cell cycle’ pathway (adj. P-value: 3 × 10−7), with
other strong contenders being ‘DNA replication’ (adj. P-value:
3 × 10−4), ‘Mismatch repair’ (adj. P-value: 6 × 10−3), ‘Base excision
repair’ (adj. P-value: 9 × 10−3) and ‘Cellular senescence’ (adj. P-
value: 9 × 10−3).

Predictive power of normal and corrected
connectivity scores
For the 18 TCGA tumor types PRISM cell lines could be matched
to, we tested whether the connectivity score calculated using
the tumor’s gene expression signatures was predictive of the
anticancer effect to cell lines associated with that tumor type
(Tables 1 and 2).

Without correcting for the downstream gene expression effects
of drug-induced decreased cell viability, there is indeed a statis-
tically significant trend between the connectivity score and the

mnAUC of the drug calculated in cell lines belonging to the same
tumor type for most tumor tissues, but this trend disappears
when the downstream effects of drug-induced decreased cell via-
bility on the drug gene expression profile are removed (Figure 4)
by conditioning on the effects seen in other cell lines at the same
mnAUC.

Interestingly, without correction the overall association is
already highly statistically significant for most tumors using the
50 most statistically significant DEG as input for the connectivity
scoring method. This relationship becomes even stronger when
100 or 150 genes are used. Using the method of selecting tumor
genes used by Chen et al., i.e. only including genes in the tumor
signature that have a log2-FC above 1.5 or below −1.5 and an
adjusted P-value below 0.001, produced qualitatively identical
results.

Our results so far indicate that the connectivity scores calcu-
lated using the ‘uncorrected’ drug signatures do have some power
to predict the sensitivity of cell lines of a particular tumor type
to a specific drug, as asserted by earlier publications. However,
by far the strongest predictor of the mnAUC of a drug in cell
lines belonging to a specific tumor type is the mnAUC calculated
using ‘all other cell lines’: this produces a median R2 of 95.5%
(Table 3, model 2 column) compared with a median R2 of 1.6%
for the ‘uncorrected’ connectivity score (Table 3, model 1 column).
Furthermore, adding the connectivity score as a second predictor
to the mnAUC calculated in other cell lines increases the R2 by a
median of 0.01% (Table 3, model 3 column), suggesting almost all
the predictive power of the connectivity score is already captured
by the overall drug-induced decreased cell viability of the drug in
the other cell lines.

It should be noted in Table 3 that for the 2 out of 18 tumors
(ESCA and STAD) for which adding the connectivity score appears
nominally statistically significant, these P-values remain above
the Bonferroni corrected statistical significance threshold of
0.003 (i.e. 0.05 divided by 18). As the results in Table 3 were
created using the drug signatures that combined the results of
the 6- and 24-h drug perturbation gene expression experiments,
as a sensitivity analysis we repeated the procedure using the
connectivity scores calculated using the drug signatures based
on only the drug perturbation gene expression experiments
with 6-h duration (Supplementary Table S4) or 24-h duration
(Supplementary Table S5). The median increases in R2 obtained
by adding the connectivity score are only 0.01 and 0.02%,
respectively. In addition, none of the P-values obtained go below
the multiple testing corrected statistical significance threshold of
0.003.

Discussion
The hypothesis that drugs can normalize gene expression changes
induced by a disease such as cancer are therapeutically active
in treating this disease is attractive and rational. However, our
study shows that TSR as currently used in the discovery of novel
drugs for the treatment of cancer mainly relies on selecting drugs
that have general anti-proliferative effects rather than drugs that
interact specifically with the transcriptome characteristic for the
tumor type.

This is best illustrated using Figure 3. Genes that are downreg-
ulated in the presence of drugs that strongly reduce cell viability
(i.e. with positive Spearman correlation as illustrated in Figure 2F)
are on average upregulated in cancer. This holds true both for
drug signatures generated using data from the LINCS experiments
after 6 and 24 h of drug exposure. Gene set enrichment analysis
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Figure 2. Data on number of cell lines each of the 506 included drugs were tested on in PRISM and LINCS, the distribution of the mnAUC and the
association between mnAUC and differential expression after drug exposure. (A) Histogram of the number of cell lines each drug was tested on in
PRISM. (B) Number of different cell lines, and total number of cell lines, each drug was tested on in LINCS. The data are separately presented for both 6 h
exposure and 24 h exposure subsets of the data. (C) Distribution of the mnAUC. The solid red line represents the ‘null’ value, i.e. no effect compared with
control experiments for the average cell line. (D) Distribution of the Spearman rho correlation coefficient for the 6 h, 24 h and the combined 6 + 24-h
drug exposure gene expression signatures. The dashed black lines at −0.086 and + 0.086 represent the critical rho values, below and above which the
association is statistically significant. (E, F) Example of a gene [GADD45A, (E)] whose expression after 24-h drug exposure is strongly negatively correlated
with mnAUC and of a gene [POLE2, (F)] whose expression after 24-h drug exposure is strongly positively correlated with mnAUC. The blue line is the
LOESS moving average and the red line is the linear model fit. Note: the X-axes of (A–F) are logarithmic.

showed that these genes are associated with the pathways ‘Cell
cycle’, ‘DNA replication’, ‘Mismatch repair’, ‘Base excision repair’
and ‘Cellular senescence’, indicating that this inverse association
is caused by a general anti-proliferation response, not the target-
ing of a specific pathway uniquely driving the tumor cells.

Indeed, after removing the effect of drug-induced decreased
cell viability from the drug signatures by conditioning on effects
seen in other cell lines at the same mnAUC, the connectivity
scores are no longer predictive of drug effectivity (Figure 4). In
addition, while the connectivity scores generated using the uncor-
rected drug signatures do have some predictive ability in predict-
ing the average AUC of drugs in cell lines belonging to a specific
tumor type (median R2 of 1.6%), this turns out to be negligible
compared with simply using the average AUC of the drugs in
other cell lines (median R2 of 95.5%). Furthermore, adding the

connectivity score as a covariate to the average efficacy of the
drugs in other cell lines only increases the median R2 by 0.01%,
which is a statistically insignificant amount for 16 out of the 18
tumor types included in the connectivity score analyses. This is
further evidence to support the hypothesis that the connectiv-
ity score using the uncorrected drug signatures only captures
a fraction of the generic anti-proliferation potential of a drug
and does not provide any increased specificity toward cancer
sub(types), which would be useful to support a drug repurposing
effort.

Previous systematic research reported much higher predictive
ability using TSR and connectivity scores as compared with our
estimates, namely, explained variabilities (R2) of 7% for invasive
breast (n = 100 drugs), 26% for liver hepatocellular carcinoma
(n = 24 drugs) and 16% for colon adenocarcinoma (n = 58 drugs)
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Figure 3. The log2-FC of each tumor tissue versus adjacent normal tissue contrast plotted against the Spearman rho of the correlation between mnAUC
and DEG after drug exposure. Panels (A–C) do this, respectively, for the 6 h, 24 h and the combined 6 + 24-h drug perturbation signatures separately for
each of the 23 tumor types included in the analysis. Panel (D) instead uses the meta-analysis mean of the log2-FC contrast, with each color representing
a different drug perturbation signature subset.

Table 1. Spearman correlation coefficients between the mnAUC of a drug in cell lines of the corresponding tumor and the connectivity
scores calculated using various methods of selecting the most statistically significant DEG in the corresponding tumor tissue using the
drug signatures not corrected for the overall association between the DEG after drug exposure and mnAUC

TCGA
project

Using 50 most statistically
significant genes

Using 100 most statistically
significant genes

Using 150 most statistically
significant genes

Using genes >1.5 log2FC and
adj. P < 0.001

BLCA +0.22 (P = 8 × 10−7) ∗∗∗ +0.24 (P = 8 × 10−8) ∗∗∗ +0.28 (P = 2 × 10−10) ∗∗∗ +0.24 (P = 5 × 10−8) ∗∗∗

BRCA +0.10 (P = 0.02) ∗ +0.12 (P = 0.007) ∗∗ +0.13 (P = 0.005) ∗∗ +0.16 (P = 0.0003) ∗∗∗

CHOL −0.02 (P = 0.69) −0.03 (P = 0.44) +0.02 (P = 0.61) +0.03 (P = 0.45)
COAD +0.01 (P = 0.77) +0.14 (P = 0.002) ∗∗ +0.18 (P = 3 × 10−5) ∗∗∗ +0.01 (P = 0.88)
ESCA +0.09 (P = 0.03) ∗ +0.13 (P = 0.003) ∗∗ +0.13 (P = 0.003) ∗∗ +0.17 (P = 0.0001) ∗∗∗

GBM +0.22 (P = 3 × 10−7) ∗∗∗ +0.17 (P = 0.0002) ∗∗∗ +0.27 (P = 4 × 10−10) ∗∗∗ +0.24 (P = 6 × 10−8) ∗∗∗

KICH −0.18 (P = 5 × 10−5) ∗∗∗ −0.11 (P = 0.01) ∗ −0.05 (P = 0.31) −0.01 (P = 0.88)
KIRC 0 (P = 0.93) 0 (P = 0.91) +0.01 (P = 0.84) +0.10 (P = 0.02) ∗

KIRP +0.12 (P = 0.007) ∗∗ +0.07 (P = 0.14) +0.12 (P = 0.008) ∗∗ +0.15 (P = 0.0007) ∗∗∗

LIHC +0.14 (P = 0.001) ∗∗ +0.14 (P = 0.001) ∗∗ +0.20 (P = 7 × 10−6) ∗∗∗ +0.26 (P = 2 × 10−9) ∗∗∗

LUAD +0.07 (P = 0.10) +0.23 (P = 2 × 10−7) ∗∗∗ +0.19 (P = 1 × 10−5) ∗∗∗ +0.24 (P = 5 × 10−8) ∗∗∗

LUSC +0.08 (P = 0.06) +0.13 (P = 0.003) ∗∗ +0.22 (P = 7 × 10−7) ∗∗∗ +0.24 (P = 4 × 10−8) ∗∗∗

PAAD +0.06 (P = 0.18) +0.09 (P = 0.05) +0.15 (P = 0.0005) ∗∗∗ –
PRAD +0.13 (P = 0.003) ∗∗ +0.12 (P = 0.007) ∗∗ +0.13 (P = 0.005) ∗∗ +0.17 (P = 0.0001) ∗∗∗

SARC +0.06 (P = 0.16) +0.08 (P = 0.06) +0.11 (P = 0.02) −0.04 (P = 0.39)
STAD +0.24 (P = 8 × 10−8) ∗∗∗ +0.21 (P = 1 × 10−6) ∗∗∗ +0.25 (P = 1 × 10−8) ∗∗∗ +0.15 (P = 0.0006) ∗∗∗

THCA −0.08 (P = 0.08) −0.05 (P = 0.28) −0.02 (P = 0.67) +0.13 (P = 0.003) ∗∗

UCEC +0.14 (P = 0.001) ∗∗ +0.16 (P = 0.0003) ∗∗∗ +0.15 (P = 0.0006) ∗∗∗ +0.18 (P = 3 × 10−5) ∗∗∗

Note: ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001.

[6]. In our analysis, we found explained proportions of variance of
<4% for these same three tumors. While our study uses different
data (PRISM data set instead of ChEMBL), both studies in prin-
ciple test the same hypothesis. To keep our methods consistent
with the methods of Chen et al., we used the same method of
calculating connectivity scores, similarly combined the 6- and 24-
h drug signatures and in one of our four tested scenarios used the

same log2-FC and a statistical significance cutoff (with identical
results when testing the top 50, 100 or 150 most statistically
significant genes of each tumor type). A difference is that in
our study each drug’s effect on cell viability is based on the
results of all cell lines belonging to a specific tumor type in
the PRISM data set, whereas the study by Chen et al. selected a
single cell line as representative for each tumor type. In addition,
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Table 2. Spearman correlation coefficients between the mnAUC of a drug in cell lines of the corresponding tumor and the connectivity
scores calculated using the 50, 100 and 150 most statistically significant DEG in the corresponding tumor tissue using the drug
signatures corrected for the overall association between the DEG after drug exposure and mnAUC

TCGA
project

Using 50 most statistically
significant genes

Using 100 most statistically
significant genes

Using 150 most statistically
significant genes

Using genes >1.5 log2FC and
adj. P < 0.001

BLCA −0.01 (P = 0.86) +0.04 (P = 0.42) +0.05 (P = 0.27) −0.01 (P = 0.81)
BRCA +0.02 (P = 0.61) +0.03 (P = 0.52) +0.04 (P = 0.42) +0.04 (P = 0.38)
CHOL +0 (P = 0.94) −0.12 (P = 0.007) ∗∗ −0.05 (P = 0.25) +0.03 (P = 0.48)
COAD +0.02 (P = 0.69) +0.01 (P = 0.90) +0.01 (P = 0.74) −0.02 (P = 0.61)
ESCA +0.11 (P = 0.01) ∗ +0.11 (P = 0.01) ∗ +0.14 (P = 0.001) ∗∗ +0.05 (P = 0.28)
GBM −0.03 (P = 0.57) 0 (P = 0.95) +0.05 (P = 0.25) +0.02 (P = 0.69)
KICH −0.11 (P = 0.01) ∗ −0.15 (P = 0.0005) ∗∗∗ −0.10 (P = 0.02) ∗ −0.05 (P = 0.22)
KIRC −0.03 (P = 0.50) +0.05 (P = 0.26) +0.08 (P = 0.08) +0.05 (P = 0.22)
KIRP −0.07 (P = 0.14) −0.03 (P = 0.49) −0.02 (P = 0.72) +0.07 (P = 0.12)
LIHC −0.01 (P = 0.85) −0.03 (P = 0.49) +0.01 (P = 0.75) +0.04 (P = 0.39)
LUAD −0.05 (P = 0.24) +0.02 (P = 0.68) +0.03 (P = 0.55) −0.01 (P = 0.86)
LUSC +0.01 (P = 0.74) +0.03 (P = 0.48) +0.04 (P = 0.40) 0 (P = 0.93)
PAAD −0.13 (P = 0.003) ∗∗ −0.06 (P = 0.18) −0.06 (P = 0.17) –
PRAD −0.05 (P = 0.31) −0.03 (P = 0.57) −0.02 (P = 0.68) +0.01 (P = 0.86)
SARC −0.18 (P = 4 × 10−5) ∗∗∗ −0.06 (P = 0.19) −0.03 (P = 0.46) −0.08 (P = 0.06)
STAD +0.10 (P = 0.02) ∗ +0.06 (P = 0.15) +0.06 (P = 0.19) +0.03 (P = 0.56)
THCA +0.07 (P = 0.11) +0.02 (P = 0.65) −0.08 (P = 0.08) −0.03 (P = 0.44)
UCEC +0.05 (P = 0.31) +0.03 (P = 0.47) +0.06 (P = 0.16) −0.02 (P = 0.73)

Note: ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001.

Figure 4. Distributions of the correlation coefficient between the mnAUC of a drug in the cell lines of the corresponding tumor and the connectivity
scores calculated using the 50, 100, 150 most statistically significant DEG and using genes above or below 1.5 log2FC & adj. P < 0.001, in the corresponding
tumor tissue. P-values presented were generated using the nonparametric Wilcoxon signed rank exact test, testing with the null hypothesis that the
median is equal to 0. The red line signifies a Spearman rho of 0, i.e. no association between the connectivity score and mean AUC of the tumor cell lines.
Two and three stars signify P-values below 0.01 and 0.001, respectively.

we tested 400+ drugs for each of the 18 tumor types, whereas
Chen et al. only included 24–100 drugs. All aspects combined,
we believe our study constitutes a more comprehensive effort to
test the underlying TSR hypothesis by using more drug data, by
varying the method of selecting the tumor signature genes and by

combining the results of all cell lines belonging to particular
tumor type.

A possible objection to our method of removing the effect of
reduced cell viability from the drug signatures is that it might
remove part of the more upstream (i.e. causal) effects contained
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Table 3. Percentage of variation explained in the mean AUC of cell lines belonging to a specific tumor type by three different linear
models. If the correlation coefficient of the connectivity score was negative (i.e. opposite the expected direction), the P-values were
replaced with 1

TCGA project Model 1: connectivity score as
covariate
(R2 and P-value versus null model)

Model 2: mean AUC calculated using other
cell lines as covariate
(R2 and P-value versus
null model)

Model 3: connectivity score added to
model 2
(Increase in R2 and P-value versus
model 2)

BLCA 5.87% (P = 3 × 10−8) ∗∗∗ 97.6% (P < 1 × 10−240) ∗∗∗ 0.004% (P = 0.34)
BRCA 1.74% (P = 0.003) ∗∗ 96.3% (P < 1 × 10−240) ∗∗∗ 0.00005% (P = 0.94)
CHOL 0.0005% (P = 1) 91.7% (P < 1 × 10−240) ∗∗∗ 0.07% (P = 0.04)
COAD 2.31% (P = 0.0006) ∗∗∗ 95.5% (P < 1 × 10−240) ∗∗∗ 0.02% (P = 0.17)
ESCA 0.94% (P = 0.03) ∗ 96.8% (P < 1 × 10−240) ∗∗∗ 0.05% (P = 0.005) ∗∗

GBM 5.78% (P = 4 × 10−8) ∗∗∗ 96.9% (P < 1 × 10−240) ∗∗∗ 0.0004% (P = 1)
KICH 0.10% (P = 1) 88.8% (P < 1 × 10−240) ∗∗∗ 0.03% (P = 0.22)
KIRC 0.07% (P = 1) 88.8% (P < 1 × 10−240) ∗∗∗ 0.02% (P = 1)
KIRP 0.84% (P = 0.04) ∗ 88.8% (P < 1 × 10−240) ∗∗∗ 0.0001% (P = 0.94)
LIHC 3.32% (P = 4 × 10−5) ∗∗∗ 95.2% (P < 1 × 10−240) ∗∗∗ 0.01% (P = 0.3)
LUAD 2.81% (P = 0.0001) ∗∗∗ 98.7% (P < 1 × 10−240) ∗∗∗ 0.005% (P = 1)
LUSC 3.66% (P = 1 × 10−5) ∗∗∗ 97.1% (P < 1 × 10−240) ∗∗∗ 0.001% (P = 1)
PAAD 1.37% (P = 0.008) ∗∗ 97.3% (P < 1 × 10−240) ∗∗∗ 0.003% (P = 0.46)
PRAD 1.89% (P = 0.002) ∗∗ 89.5% (P < 1 × 10−240) ∗∗∗ 0.03% (P = 1)
SARC 0.59% (P = 0.09) 90.1% (P < 1 × 10−240) ∗∗∗ 0.12% (P = 1)
STAD 3.95% (P = 7 × 10−6) ∗∗∗ 95.3% (P < 1 × 10−240) ∗∗∗ 0.06% (P = 0.01) ∗

THCA 0.01% (P = 0.84) 95.5% (P < 1 × 10−240) ∗∗∗ 0.01% (P = 1)
UCEC 1.46% (P = 0.006) ∗∗ 96.4% (P < 1 × 10−240) ∗∗∗ 0.04% (P = 1)
Median: 1.6% 95.5% 0.014%

Note: ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001.

in the drug signature as well. Many of the drugs decreasing cell
viability will use different mechanisms of action and thus the
expected correlation between mnAUC and gene expression of
genes in upstream pathways will be relatively weak, compared
with the correlation between mnAUC and genes in the down-
stream pathways associated with cell viability in the same direc-
tion. Therefore, the corrected drug signatures are still expected
to contain upregulated and downregulated genes specific to their
upstream, primary mechanism of action although the magnitude
of the upregulation and downregulation might have been reduced.
Despite this, it remains possible some upstream pathways may
on average be affected similarly in response to drugs decreasing
cell viability as when the pathway is directly targeted. While this
possibility exists and may hold true for some pathways, previous
research has demonstrated that many drug signatures belonging
to the same drug class cluster together in statistical analyses
and therefore do contain unique information [3]. Additionally,
from Supplementary Figure S4 it can be seen that there is no
statistically significant difference in the median number of DEG
per drug signature between corrected and uncorrected data.

The results from this paper are primarily relevant to the use of
TSR for the purpose of finding new anticancer drugs. However,
we suggest that our findings should serve as a more general
caveat to the use of TSR outside of oncology that the relatively
nonspecific method of attempting to reverse all DEG associated
with a specific disease may not be optimal, and there should be
an attempt to separate out the effect of different gene expression
pathways and their upstream and downstream effects on the
transcriptome.

Despite the presented evidence supporting a refined view of
TSR efforts, we believe that TSR still has potential left to be useful
as a drug repurposing method within oncology. For such efforts,
we have three recommendations:

First, it seems necessary to use single-cell RNA-seq data
instead of bulk RNA-seq data. Using bulk RNA-seq data is

conceptually problematic because the gene expression of all
cell types present in the sample is measured at the same time.
Solid tumor samples consist of tumor cells intermixed with other
cell types such as immune cells, endothelial cells and stromal
cells, whereas bulk adjacent normal samples contain varying
mixtures of normal cells, none of which may be of the cell type
from which the first tumor cell originated. For example, clear
cell renal cell carcinoma (ccRCC) tumors are believed to originate
from proximal convoluted tubule of the nephron [16], implying
that it would make the most sense to contrast the gene expression
of ccRCC tumor cells to the gene expression of proximal tubules
cells, preferably of the same patient.

Second, separating out the effect of driver events from pas-
senger events is required. Tumor cells have to acquire many
different driver events (e.g. mutations and copy number events)
in specific sequences before they become numerous enough to
cause symptoms and the patient is diagnosed with a tumor [17].
Because of increasing genetic instability along the way, tumor
cells also acquire passenger events that do not increase tumor
cell survivability, e.g. random mutations or genes that are co-
amplified or co-deleted in copy number events. This makes the
gene expression of each tumor clone unique, but only reversing
the impact of driver events is expected to provide a therapeu-
tic benefit. A statistical model containing all driver events and
passenger events could separate out the gene expression impact
of each, revealing which driver events have a gene expression
signature potentially reversible by already available drugs. Other
potentially useful approaches to select which genes are most
therapeutically useful to target for the inversion of the gene
expression are, e.g. network analysis [18], gene co-expression
analysis [19, 20], causal analysis [21, 22] and graphical models [23].
As an alternative to or in addition to using clinical data, the effect
of driver events can be experimentally determined using cell lines
or patient-derived organoids modified with CRISPR [24], although
this method has the downside of being less representative of the
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in vivo-situation lacking the interaction of the tumor cells with the
tumor microenvironment.

Third, the scope of TSR could be broadened to non-tumor cell
types present in the tumor microenvironment. Tumors survive
by manipulating their environment to serve their needs, such
as suppressing immune cells and stimulating endothelial cells
to grow new blood vessels. Existing drugs that target the CTLA-
4 receptor on T cells (e.g. ipilimumab) and VEGF receptor on
cells of the vascular endothelium (e.g. sunitinib) already prove
that this can be an effective strategy. For example, the ideal
contrasts in these cases would be to compare the gene expression
of inactivated immune cells in the tumor to those in the blood and
cells in the vascular endothelium of the tumor to those in healthy
tissues outside of the tumor. It would be especially interesting to
do this for patients for whom therapy failed immediately or after
the development of resistance, as the interactions between the
tumor cells and non-tumor cells of interest are likely facilitated
through as of yet understudied pathways which may be targetable
by a drug already on the market.

We believe that future efforts taking these recommendations
into account may help to improve the specificity of drug repur-
posing.

Key Points

• Transcriptome signature reversion (TSR) is a widely used
computational method to find new uses for existing
drugs, for example, against specific tumor types. It
assumes that drug gene expression signatures that can
reverse the gene expression signature of the malignant
phenotype are more likely to be therapeutic in treating
that phenotype.

• The connectivity score (measuring gene signature rever-
sion), while statistically significant in most cases, only
explains a median of 1.6% of the variation in the sen-
sitivity of cell lines to drugs. Additionally, it does not
provide any predictive benefit over the mean sensitivity
measured using other cell lines not descended from the
same tumor type.

• Removing the impact of decreased cell viability from
the drug signatures completely nullified the predic-
tive performance. This implies that the connectivity
score as currently used only quantifies the generic anti-
proliferative potential of drug, and cannot be used to
reposition drugs against specific tumor types.

• We discuss several possible improvements on the cur-
rent use of TSR, which may make it more useful for drug
repositioning in the future.
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