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Chapter 4

ABSTRACT

Background

Atherosclerosis, the main underlying pathology of cardiovascular disease, is a chronic
inflammatory disease characterized by lipid accumulation and immune cell responses in the
vascular wall, resulting in plaque formation. It is well-known that atherosclerosis prevalence
and manifestation vary by sex. However, sexual dimorphism in the immune landscape of
atherosclerotic plaques has up to date not been studied. In this study, we investigated sex-
specific differences in atherosclerosis development and the immunological landscape of aortas

at single-cell level in aged Zd/r" mice.

Methods

We compared plaque morphology between aged male and female chow diet-fed Ldl'"™ mice
(22 months old) with histo logical analysis. Using single-cell RNA-sequencing and flow
cytometry on CD45" immune cells from aortas of aged L4/ mice, we explored the immune

landscape in the atherosclerotic environment in males and females.

Results

We show that plaque volume is comparable in aged male and female mice, and that plaques
in aged female mice contain more collagen and cholesterol crystals, but less necrotic core
and macrophage content compared to males. We reveal increased immune cell infiltration
in female aortas and found that expression of pro-atherogenic markers and inflammatory
signaling pathways was enriched in plaque immune cells of female mice. Particularly, female
aortas show enhanced activation of B cells (Egri, Cd83, Cd180), including age-associated B
cells, in addition to an increased M1/M2 macrophage ratio, where 7/16" M1-like macrophages
display a more pro-inflammatory phenotype (Nlrp3, Cxcl2, Mmp9) compared to males. In
contrast, increased numbers of age-associated Gzmk'CD8" T cells, dendritic cells, and Zrem2"

macrophages were observed in male aortas.

Conclusions

Alrogether, our findings highlight that sex is a variable that contributes to immunological
differences in the atherosclerotic plaque environment in mice and provide valuable insights

for further preclinical studies into the impact of sex on the pathophysiology of atherosclerosis.

Keywords: cardiovascular disease, atherosclerosis, aging, sex, immunology, single-cell

transcriptomics
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Sexual dimorphism in atherosclerosis

INTRODUCTION

Atherosclerosis, a chronic inflammatory disease characterized by lipid accumulation and
immune cell infiltration in the arterial wall, is the main underlying pathology of cardiovascular
disease (CVD). Although CVD is the leading cause of death in both women and men,
accounting for 45% and 39% of all deaths respectivelyl’z, sex differences in atherosclerotic
CVD prevalence and manifestation have been described. CVD develops about 10 years later in
women than in men’ but women have a poorer prognosis and are more likely to die following
an acute cardiovascular event.” While acute cardiovascular events in women are mostly caused
by stable atherosclerotic plaques that undergo erosion, in men, acute plaque rupture is often
the culprit factor.” Moreover, women generally have smaller plaque area with decreased necrotic
core volume compared to men.*” Incidence of thin-cap fibroatheroma and large calcification
area varies by sex, but only when stratified by age, since men younger than 70 years of age
showed a higher prevalence of thin-cap fibroatheroma and large calcification, while women
older than 70 years showed a higher prevalence.8 Notably, CVD risk in women is often missed
due to the assumption that women are “protected” against CVD at younger age. Combined
with the underrepresentation of women in scientific research, these factors contribute to a

knowledge gap regarding the pathophysiology of atherosclerotic CVD in women.’

Inflammation of the arterial wall is a key driver of atherosclerosis pathogenesis. Evidently,
human and mouse studies that mapped the immune landscape of atherosclerotic plaques with
single-cell technologies showed a heterogenous leukocyte pool within the plaque, including
innate and adaptive immune cells.'""* Lymphoid cells, particularly T cells, were highly
abundant in human atherosclerotic plaques and plaques of aged Ldly" mice.” However, sexual
dimorphism in the immune landscape of atherosclerotic plaques is seldomly studied. At a
transcriptomic level, Hartman and colleagues reported significant sex-specific differences in
sex-stratified gene regulatory networks from bulk RNA-sequencing derived from atherosclerotic
aortic root tissue.'® Genes that were more active in women were associated with mesenchymal
and endothelial cells, while genes more active in men were associated with the immune system,
particularly macrophages. Detailed profiling of plaque-residing immune cells is however
lacking. Moreover, only few preclinical studies compared plaque immune cell numbers in the
aortic root or arch between sexes, where either no differences were found either between sexes
or increased infiltration of T cells in male chow diet-fed ApoE” mice." " None of them have

taken aging into account, one of the most dominant risk factors of CVD.”
To bridge this knowledge gap, we investigated sex-specific differences in the atherosclerotic plaque

of aged Ldlr"™ mice, a highly translational preclinical atherosclerosis model.”” We compared

plaque morphology between males and females with histological analysis. Using single-cell RNA-
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sequencing and flow cytometry on CD45" immune cells from aortas of aged Ldlr"™ mice, we

explored the immune landscape in the atherosclerotic environment in males and females.

MATERIALS & METHODS

Animals

All animal experiments were approved by the Leiden University Animal Ethics Committee and
were performed according to the guidelines of the European Parliament Directive 2010/63/EU
of the European Parliament. Male and female Zd/r" mice on a C57BI/6] genetic background (3
months or 20 months old at the start of the experiment) were bred and aged in-house and kept
under standard laboratory conditions. Young (3 months old) mice were randomized according
to weight and basal serum cholesterol levels, and fed a regular chow diet (CD) or a Western diet
(WD) containing 0.25% cholesterol and 15% cocoa butter (Special Diet Services, Witham,
Essex, UK) for 10 weeks. Diet and water were provided ad libitum. At the end of experiment,
mice were anaesthetized by a subcutaneous injection of a cocktail containing ketamine (100
mg/kg), atropine (0.5 mg/kg), and xylazine (10 mg/kg). Mice were bled by retro-orbital
bleeding, and tissues were harvested after in situ perfusion with phosphate buffered saline

(PBS). One mouse was excluded from the experiment due to presence of tumors.

Histology

Hearts and aortas were embedded in O.C.T. compound (Sakura) and snap-frozen. To
determine lesion size, cryosections (10 um) of the aortic root were stained with Oil-Red-O and
hematoxylin (Sigma-Aldrich). To quantify lesion volume, sections were collected from when
aortic valves started to appear until a distance of 1.2 mm relative to the root was reached. The
average of five sequential sections of the three-valve area of aortic roots, displaying the highest
lesion content, was used to compare the vessel occlusion. Collagen content in the lesions was
quantified using a Masson’s trichrome staining (Sigma-Aldrich). The necrotic core was defined
as the acellular, debris-rich lesion area as percentage of total plaque area. Corresponding sections
on separate slides were stained for monocyte/macrophage content with a MOMA-2 antibody
(1:1000, AbD Serotec) followed by a biotinylated goat anti-rat IgG antibody (1:200, Vector).
Secondary antibodies were detected using the Vectastain ABC kit (Vector) and visualized with
ImmPACT NovaRED HRP substrate (Vector). We categorized cholesterol crystallization of
atherosclerotic lesions in the aortic root on a scale of 0 (no cholesterol crystallization) to 3
(>75% of the lesion area contains crystalline cholesterol). Presence of calcification was manually
scored based on morphology. To quantify calcification area, sharp demarcated acellular dark
pink to purple areas in the hematoxylin staining of three consecutive sections were divided by
total plaque area.”” Analysis and scoring were performed blinded. Mice with bicuspid aortic

valves were excluded from histological analyses (n=3). Pictures were taken with a Mikrocam II
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(Besser) linked to a Leica DM6000 Microscope. Stained sections were manually analyzed with

Image] software.

Aortic CD45" cell isolation for single-cell RNA-sequencing

Atherosclerotic aortic arches, carefully detached from other surrounding organs, extensively
flushed with PBS, and thoroughly cleaned from any residual perivascular adipose tissue , were
isolated from aged chow diet-fed male Ldlr" mice (22 months old; n=23) and enzymatically
digested as previously described." Single cell suspensions were stained with Fixable Viability
Dye eFluor™ 780 (1:2000, eBioscience) and CD45-PE (1:500, clone 30-F11, Biolegend). After
removing doublets, alive CD45" cells were sorted (Supplementary Figure 1) using a 100pum
nozzle in PBS supplemented with 0.04% BSA using a FACS Aria II SORP (BD Biosciences)
and immediately processed for single-cell RNA-sequencing (scRNA-seq).

Single-cell library preparation

Aortic CD45" cell suspensions were loaded on a Chromium Single Cell instrument (10x
Genomics) to generate single cell gel bead emulsions (GEMs). ScRNA-seq libraries were
prepared using the Single Cell 3 Solution v2 Reagent Kit (10xGenomics). Sequencing was
performed on an Illumina HiSeq2500 and the digital expression matrix was generated by
de-multiplexing barcode processing and gene UMI (unique molecular index) counting using

the Cell Ranger v6.0 pipeline (10x Genomics).

Single-cell data processing, integration, and analysis

The digital expression matrix of aortas isolated from chow diet-fed aged male Ld/r" mice and
of the female L4l mice, that was recently publishedls, were analyzed using the R package
Seurat (version 4). Cells were filtered by unique gene count per cell >200 and <6,000 for aged
male, and >200 and <7500 for aged female. In addition, a cutoff was set to a maximum of 6%,
and 12% mitochondrial gene expression for aged male and aged female samples, respectively.
Doublets were identified and removed using the DoubletDecon package. The remaining 5294
(aged male) and 4674 (aged female) cells were log-normalized, integrated using canonical
correlation analysis and scaled subjected to principal component analysis (PCA). Based on the
elbow plot, Jackstraw functions and separation of marker genes, 16 PCA components were
included for cluster detection at a resolution of 0.245, which were subsequently visualized

through Uniform Manifold Approximation and Projection (UMAP).

The Seurat function FindAllMarkers was used to find the differentially expressed genes (DEGs)
per cluster, which were examined to define the cell clusters. For the high-resolution re-clustering,
(Cd79b") B-cell clusters, (Cd3e") T-cell clusters and (C468" and Itgam") myeloid clusters were
selected and extracted from the main clustering. Thresholds were set to Cd19<0.3, Cd79b<0.3,
Cd68<0.3 to exclude non-T-cells from the T-cell clustering, Cd3e<0.3, Cd68<0.3 to exclude
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non-B-cells from the B-cell clustering, and Cd3e<0.3, Cd19<0.3, Cd79b<0.3 to exclude non-
myeloid cells from the myeloid clustering. The variable genes of these selected clusters were
then used as input for dimensionality reduction and re-clustering. PCA analysis on rescaled
transcripts was performed with the following dimensions and resolutions: T cells (3155 cells),
dimensions 9, resolution 0.6; B cells (2746 cells), dimensions 11, resolution 0.25; myeloid cells
(1818 cells), dimensions 12, resolution 0.5. Tregs (Foxp3>0.3) and non-Tregs (Foxp3<0.3)
were selected from cluster 4 CD4" T cells (Cd8a<0.3, Cd8b1<0.3, Tcrg-C1<0.3, Cd4>0.4,
Kit<0.3). UMAP plots, dot plots, violin plots, volcano plots were generated in R. Enrichment
scores of the SenMayo geneset were calculated using the AUCell package.”** Pathway analyses

were performed using the Single Cell Pathway Analysis (SCPA) package.”

Flow cytometry

Immunostaining was performed as previously described on single cell suspensions derived
from murine aortas to characterize immune cells."” To block Fc receptors, an unconjugated
anti-CD16/32 antibody (clone 2.4G2, BD Bioscience) was used for mouse samples. Living
cells were selected using Fixable Viability Dye eFluor™ 780 (1:2000, eBioscience) and
different cell populations were defined using anti-mouse fluorochrome-conjugated antibodies
(Supplementary Table S1). Antibody staining of transcription factors and cytokines was
performed using transcription factor fixation/permeabilization concentrate and diluent
solutions and cytofix/permeabilization solutions, respectively (BD Biosciences). Flow
cytometry analysis was performed on a Cytoflex S (Beckman Coulter) and the acquired data

were analyzed using Flow]Jo software (version 10.7).

Statistical analysis

Data are expressed as mean + SEM. Outliers were identified and removed using Grubbs
outlier tests (a = 0.05). Significance of data with more than 2 groups was tested using one-way
ANOVA test followed by a Tukey multiple comparisons test. Statistical significance of data with
2 groups was tested using an unpaired two-tailed t-test or a nonparametric Mann-Whitney U
test. Plotted comparisons are between males and females per age group. P-values of <0.05 were

considered significant. Statistical analysis was performed using GraphPad Prism 9.0.

RESULTS

Atherosclerotic lesions of aged female mice are rich in collagen and
cholesterol crystals

The Ldlr" mouse is a widely used experimental model to study atherosclerosis, but we and others
have previously shown that severe hypercholesterolemia induced by a Western diet (WD) is

needed to promote atherosclerosis in young (3 months) Ld/#"~ mice (Figure 1A-D)."” Notably,
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as shown in Figure 1D-E, young female Zd/+" mice are more prone to develop atherosclerosis
compared to young male Ldlr" mice upon WD feeding. However, this WD-accelerated
induction of atherosclerosis in young mice diverges from the gradual buildup of atherosclerotic
lesions and pathology that comes with aging as manifested in humans. We therefore
investigated sex-related differences in atherosclerotic plaque development, composition, and
the immune landscape in a more translational setting, using chow diet (CD)-fed aged (22
months) Ldl"™ mice (-200-250 mg/dl serum cholesterol, Figure 1B) of both sexes. As opposed
to the large discrepancy of lesion volume between sexes in the young WD-fed mice, lesion
volume between aged male and female CD-fed mice did not statistically differ, although vessel
occlusion was still slightly elevated in aged CD-fed females (Figure 1E-F). Atherosclerotic
lesions of aged female LA/ mice were relatively enriched in collagen content and cholesterol
crystals but showed less necrotic core and macrophage content compared to male mice (Figure
11-]). Calcification incidence and content, which significantly increases in aged atherosclerotic

mice'’, were comparable between both sexes (Figure 1K).

Single-cell profiling reveals increased immune cell infiltration in the
aorta of aged female mice

Next, we sought out to explore sex differences in the immunological landscape of the aged
atherosclerotic plaque and identify unique and conserved gene expression signatures of distinct
plaque immune cell types between aged male and female mice. We performed single-cell RNA
sequencing analysis on CD45" cells obtained from the atherosclerotic aortic arch of aged
female Zdly"™ mice", and integrated this with scRNA-seq data of aged male L4/~ mice (Figure
2A). To identify distinct immune cell types in the atherosclerotic plaque of males and females,
we performed dimensionality reduction and unsupervised cell clustering on a total of 9968
cells (male: 5294 cells, and female: 4674 cells). We observed overlapping alignment of the male
and female immune cell clusters (Figure 2B), indicating proper batch effect correction and
consistency in cluster definition across sexes. Immune cell clusters were defined by canonical
marker genes and visualized in a UMAP plot and proportional abundance barplot (Figure
2C-D and Supplementary Figure S2A-C and Table S2). Proportionally, we observed increased
abundance of CD8" T cells in male aortas, while populations of CD4°CD8" double positive
(DP) T cells, CD21°CD23" B cells and //16" macrophages (MF) were increased in female aortas
(Figure 2D). We also measured sex-specific changes in major immune cell abundance with
flow cytometry and found increased immune cell infiltration in the aortic arches of female
mice (Figure 2E). In agreement with the scRNA-seq data, male aortic arches showed increased
numbers of CD8" T cells and myeloid cells, whereas female aortic arches contained more
CD19" B cells and CD4'CD8" DP T cells (Figure 2E and Supplementary Figure S2D and S3).
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Figure 1. Plaque size and composition of aged male and female Ldl™'~ mice.

A) Experimental setup: young male (light blue) and young female' (light red) Zd/"~ mice were randomized according to weight
and basal serum cholesterol levels and fed a chow diet (white circles) or western diet (grey circles) for 10 weeks, and old male (dark
blue) and old female® (dark red) Ldlr"~ were fed a chow diet. B) Total serum cholesterol levels at sacrifice were measured. C)
Cross sections of the aortic root were stained for lipid and collagen content. D) Atherosclerotic lesion area over distance, E) lesion
volume, and F) vessel occlusion were quantified. G) Collagen content was quantified as percentage of lesion area. H) Cholesterol
crystallization in atherosclerotic lesions was categorized on a scale of 0 (no cholesterol crystallization) to 3. I) Necrotic cores and J)
macrophage content (MOMA-2) were measured as percentage of lesion area. K) Presence of calcification (purple) or no calcification
(grey) was presented as percentage of the group and measured as percentage of lesion area. Data are from n = 1216 mice per group.
Statistical significance was tested by one-way ANOVA. Mean + S.E.M. plotted. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.

To investigate potential sex-specific differences of senescence in the aortic leukocytes of these
aged mice, we performed enrichment of the SenMayo senescence gene set.”” Although B
and T cells did not show any sex-specific difference, NK cells and to a lesser extent myeloid
cells of female aortas displayed enrichment of senescence (Figure 2F). In line with this, we
observed increased expression of senescence-associated secretory phenotype (SASP) genes
(e.g. chemokines, Mmp9, 1l1b, Tnf), intracellular (e.g. Gem, Icaml, Jun) and transmembrane
senescence-associated genes (e.g. Cxcr2, and STAT3 target genes 7nfrsfl1a/b) in NK cells and
myeloid cells of females (Figure 2G). To gain further insight into possible sex differences within
the subsets, we next performed reclustering of each major immune cell population (B cells, T

cells and myeloid cells).
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Figure 2. Inmune cell landscape of aortas from aged male and female Ldl'~ mice.

A) Workflow of scRNA-seq on aortic CD45" cells of chow diet-fed 20-months-old male (n = 23) and female (n = 12) Ldly”"™ mice.
UMAP visualization of clustered aortic leucocytes grouped by (B) sex or (C) immune cell clusters. D) Stacked diagram showing
the relative proportions of major immune cell subtypes within CD45" cells of Zd/r"~ aortas measured by scRNA-seq. E) Stacked
diagram showing the number of major immune cell types in the aorta of aged male and female Ldly", measured as mean per mouse
with flow cytometry. F) Violin plot showing the senescence (SenMayo gene set) enrichment score of major immune cell types per
sex. G) Average expression of SASP, intracellular and transmembrane genes from the SenMayo gene set in major immune cell types
split by sex. DB, double positive; MF, macrophages; SB, single positive; DC, dendritic cell; NK, natural killer; pDC, plasmacytoid
dendritic cell; MC, mast cell.

Activated age-associated B cells are enriched in aortas of female mice

Proportionally, B2-like cells (cluster 0; Ighd, Fcer2a, Cr2) comprised the largest B cell cluster
in aortas of both sexes (males 66% and females 54%) (Figure 3A, Supplementary Figure S4
and B, and Supplementary Table S3). We further detected B1-like cells and regulatory B cells
(cluster 1; Zbrb32, S100a6, Cd9), age-associated B cells (ABCs, cluster 2; Zbrb20, Tbx21, Fas),
Ifn-induced B cells (cluster 3; Ifir2, Ifit3, Ifi213), activated B cells enriched for Myc-target
genes (cluster 4; Nme2, Mifj, immature B cells (cluster 5; Cd93, Cd24a), plasma cells (cluster
6; Sdcl, Jchain, Prdml) and undefined B cells (cluster 7).

Not surprisingly, DEG analysis showed upregulation of X-chromosomal genes (Xisz, Tsix,
Gm6377) in female B cells, while Y-chromosomal genes Eif2s3y and Ddx3y were upregulated
in male B cells (Figure 3B). Female B cells displayed upregulation of activation-related
genes Cd40, Cd80, Cd83, Cd86, Egrl, CA180°°°, while B cells in male aortas exhibited

high expression of Ezs/, a transcription factor that negatively controls B cell activation and
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concomitant antibody-secreting cell function®, suggesting that B cells in males are less likely
to contribute to humoral immunity (Figure 3B and C). Additionally, expression of genes
encoding co-inhibitory molecules was relatively higher in females compared to males, where
Haverl expression (Tim-1) was particularly high in the ABC cluster. Although hard to detect,
both pro- and anti-inflammatory cytokine genes were mostly expressed at higher levels in
female B cells (Supplementary Figure S4C). A similar pattern was seen in antigen-processing
and presentation-related genes, particularly in ABCs. Strikingly, ABCs were more abundant in
atherosclerotic aortic arches of aged female than in aged male Ldlr" mice, which was confirmed
with flow cytometry (386+53 vs. 161£26 cell count, P<0.01; Figure 3A and 3D). ABCs in
females showed high expression levels of ABC-characteristic marker genes 76x21 (T-bet),
Fas, and particularly frgax (CD11¢; Figure 3E). Also, /rgh2 (encoding CD18 that forms the
functional CR4 complex with CD11c) and C472 (encoding a transmembrane molecule that
can regulate B cell activation) were upregulated in female ABCs (Figure 3F).”** Cxer3, a
chemokine receptor that is likely to be involved in the migration of B cells to the site of

34,35

inflammation and differentiation into antibody-secreting plasma cells”"””, is almost exclusively

expressed by the ABC cluster, but expression levels were comparable between sexes (Figure 3C).

Certain zinc finger genes (Zbrb20, Zbtb32) in B cells are associated with plasma cell

differentiation®*”’

, and expression levels of these genes were elevated in female ABCs (Figure
3G). In line with this, plasma cells characterized by high expression of immunoglobulin-
encoding genes and Ly6¢2*®, were more abundantly present in female aortas (Figure 3A, H and
Supplementary Figure S4D). Overall, immunoglobulin-encoding genes were more expressed in
B cell clusters of females, of which ABCs showed high expression of Ighgl and Ighg3 compared
to other B cell clusters (excluding plasma cells; Figure 3H). Notably, gene expression of Ctla4
(co-inhibitory molecule), Slamf9 (upregulated by inflammatory stimulus on B1 cells) and Jzgb7
(involved in homing of B cells) was increased in the female B1/Breg cluster® !, suggesting a

more inflammatory and activated profile of the B1/Breg cluster in female mice (Figure 31).
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Figure 3. Sex-specific gene signatures of aortic B cells in aged Ld/™~ mice.

A) UMAP plots and stacked diagram of B cell clusters in the aorta of L4k~ mice. B) Volcano plot displaying differentially expressed
genes of the total B cell subclustering between aged male and female L~ mice. C) Average expression of biological process-
associated genes in B cell clusters split by sex. D) Absolute number of age-associated B cells in the aortas of aged male and female
Ldly"™ mice was measured with flow cytometry. E) Sex-specific gene expression level of age-associated B cell-specific markers in
cluster 2. F) Volcano plot of cluster 2 displaying differentially expressed genes between male and female. Sex-specific expression
level of G) zinc-finger protein genes in cluster 2, H) immunoglobulin isotype genes in all B cell clusters, and I) genes differentially
expressed in cluster 1. Flow cytometry data are from n = 12-14 mice per group. Statistical significance was tested by a t-test. Mean

+ S.E.M. plotted. **P < 0.01.
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Granzyme-expressing effector CD8" T cells are enriched in
atherosclerotic aortas of aged males

The aortic T cell pool of aged Ldli" mice contained 3 CD8" T cell clusters, specifically
Gzmk'CD8" T cells (cluster 0; Gzmk, Nkg7, Eomes), Gzmb'CD8" T cells (cluster 2; Gzmb,
Klrkl1, Ly6c2), and Sell CD8" T cells (cluster 3; Sell, KIf2, Foxp1; Figure 4A and Supplementary
Figure S5A and B and Table S4). CD8" T cells comprised 63.3% of aortic T cells in males
compared to 28.3% of aortic T cells in females (Figure 4A). While CD4'CD8" double positive
(DP) T cells (cluster 1; Ragl, Arpp21, Ccr9) were the largest T cell cluster in the female aortic
arches, the proportion of CD4" T cells (cluster 4; Tnfrsf4, lzumolr, Icos) did not differ between
the sexes. These sex-specific frequencies of main T cell populations were also confirmed with
flow cytometry (Figure 4B). Additionally, we identified proliferating T' cells (cluster 5; Mki67,
Pelaf; Nusapl), Tox" T cells (cluster 6; Tox, Itm2a, Nab2), gd T cells (cluster 7; Terg-Cl,
Serpinbla, Timeml76alb) and a cluster of mixed cells (cluster 8; Malatl, Lck).

Analysis on total T cells showed that compared to females, the male T cell compartment was
enriched in the natural killer pathway and cytotoxic/effector-related genes (Nkg7, Cel5, Klrd1,
Gzmb, Gzmk) and (Figure 4C-D). In contrast, CTLA-4, TCR and interleukin-related pathways
(red dots in Figure 4C) were more enriched in female T cells. Moreover, effector molecules
(Prfl, Ccl4) and cytokines (Ifng, Tnf, 112, Tgfb1) were expressed at higher levels in T cells from
females than from males, particularly in the Gzmb'CD8" T cells (Figure 4E). Gzmk'CD8" T
cells were more abundant in males, as measured by scRNA-seq as well as with flow cytometry
(Figure 4A and F) and showed comparable gene expression of effector molecules and cytokines,
but increased expression of some exhaustion markers (Lag3, Ctla4) in females (Figure 4E). In
addition, Ce/5 and the gene encoding its receptor Ccr5 were expressed on the majority of the
Gzmb® and Gzmk'CD8" T cells. Interestingly, genes associated with T cell migration (/#gal,
Itga4) and activation marker C469 were expressed at higher levels in both granzyme-expressing

CD8" T cell clusters of males compared to females.

Cluster 4 mainly consisted of CD4" T cells, including regulatory Foxp3'CD4" T cells (Treg),
but also contained some remainder Kir" mast cells (Supplementary Figure S5B). In female
atherosclerotic aortic arches, this cluster was enriched for Lag3, Ctla4, Tnfsf8 (CD30L; Figure
4E). Upon division of cells from cluster 4 into Foxp3'CD4" Tregs and Foxp3 CD4" non-Tregs,
we found that Tregs in females showed higher expression of Pdedl (PD-1), Ctla4 and Tnfrsf4
(OX40) but lower expression of Havcr2 (TIM-3), while non-Treg CD4" T cells in females
specifically showed higher expression of 7ox, Lag3, and Tnfsf8 (Figure 4G). This may indicate
increased presence of the recently described CD30L'PD-1'CD44'CD4" senescence-associated
T cells in aged aortas of female compared to male mice (Supplementary Figure S5C).

Additionally, Tregs in females displayed higher expression of anti-inflammatory cytokine genes
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Tgfbl and Ebi3 (IL-35), whereas non-Tregs in females showed elevated expression levels of
Tnf, 1118, and 1121 compared to non-Tregs in males (Figure 4H).
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Figure 4. Transcriptomic comparison of T cells in aortas of aged male and female Ld/r'~ mice.

A) UMAP plots and stacked diagram of T cell clusters in the aorta of Ldly"™ mice. B) Stacked diagram showing the relative
proportions of CD4’, CD8" and CD4'CD8’ T cells within aged male and female L/~ aortas, measured by flow cytometry.
C) Pathway enrichment of T cells in male and female mice. Green dots: significantly enriched pathways; red dots: interleukin-
related pathways; white dots: insignificantly enriched pathways; black dots: insignificantly unenriched pathways. D) Volcano plot
displaying differentially expressed genes of the total T cell subclustering between aged male and female L&'~ mice. E) Dot plot
displaying the sex-specific expression of biological process-associated genes in T cell clusters. F) Absolute number of Gzmk'CD8"
T cells in the aortas of aged male and female L4/~ mice was measured with flow cytometry. Average gene expression of G)
costimulatory and coinhibitory molecules and H) cytokines in Tregs and non-Tregs from CD4" T cells in cluster 4, split by sex.

Female bias towards inflammatory M1-like macrophages in the aorta

The aortic myeloid cell compartment contained M1- and M2-like macrophages, resident
macrophages, dendritic cells, monocytes, neutrophils, and mast cells (Figure 5A and
Supplementary Figure 6A and B). DEG analysis showed upregulation of Cxc/2, I/16 and Cc/3
in aortic myeloid cells of Ldlr'" females, while Fabp5, Apoe, CdSl and Spp1 were upregulated
in myeloid cells from Ldly" males (Figure 5B). //16* MIl-like macrophages (//16, Csf3r,
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Cxcr2) were the most abundant myeloid population in females (-30% in females vs. ~10%
in males). Moreover, expression of M1-like specific markers Nirp3, Cxcl2, Mmp9 was elevated
in females, suggesting that these macrophages have an enhanced inflammatory phenotype in
the atherosclerotic aorta of females compared to males (Figure 5C). Males, on the other hand,
show increased presence of Trem2' myeloid cells including non-foamy M2-like macrophages
(Trem2, Mmp12), foamy macrophages (Fabp5, Cd5l), resident M2 macrophages (Lyvel, Mrcl)
and mixed Zrem2" macrophages (Empl, Lpl; Figure 5A and Supplementary Table S5). Foamy
macrophages are characteristic of atherosclerotic plaques and are considered to be rather
anti-inflammatory than pro—inﬂammatory“. Cd36, Apoe, Fabp5, and Cd5[ expression was
higher in male Trem2" foamy macrophages, which mediate lipid-uptake and promote foam
cell survival in lesions (Figure 5D and E).*** Additionally, male foamy macrophages showed
increased expression of 7gfbl and Gpnmb (encoding a glycoprotein that is upregulated in

foamy macrophages)*, which have been described to regulate lesion development (Figure SE).
Cluster 7 consists of a mix of foamy and non-foamy macrophages with differential expression

of Lpl and Spp1 between males and females (Supplementary Figure S6C).

Conventional dendritic cells (cDCs; Xcrl, Pptl) and migratory dendritic cells (mDCs; Cer7,
Cel5, Ccl17, Cecl22) were more abundant in males (Figure 5A). Interestingly, male mDCs
showed higher expression of chemokines Cc/5 and Cc/22 compared to females (Supplementary
Figure S6D). Expression of MHClII-related genes (H2-Aa, H2-Abl, H2-EbI, Ciita) among
the DC clusters was highest in the ¢cDCs, but comparable between sexes (Supplementary
Figure SGE). We identified cluster 5 and 10 as neutrophils (Ly6g, Cd177), of which cluster
10 seemed to be proliferating based on high expression of M#ki67 and histone-encoding genes
(Supplementary Table S5). Although neutrophils in females showed elevated expression of
pro-inflammatory gene $100a8, expression of other neutrophil markers were comparable
(Supplementary Figure S5D). Mast cells (MCs) in cluster 9 showed comparable gene expression
levels of MC-markers Feerla and Cpa3, while c-Kit (Kiz) was more expressed in females (Figure
5F). Although MC-specific protease genes encoding chymase (Cmal) and tryptase (7psabl)
were barely detected, genes encoding secretory molecules Cisg, Ccl3, Cel4 and antigen-
presentation-associated molecules (H2-AalAblEbI, Cd74) were increased in female MCs,

suggesting a more pro-atherogenic signature of MCs in female compared to male aortas.

Lastly, pathway analysis showed enrichment of the phagocytosis-associated NDK Dynamin
pathway (Nme2, Dnml), and the migration-associated mCalpain pathway (Cxcr3, Irgbl,
TlnI) in myeloid cells of males, while inflammatory signaling, such as interleukin-related (red
dots: IL6, IL1R, IL2, IL2RB pathways), MAPK and TNFR pathways, was enriched in female
myeloid cells (Figure 5G).
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Figure 5. Plaques of aged male and female L'~ mice differ in myeloid cell proportions.
A) UMAP plots and stacked diagram of myeloid cell clusters in the aorta of La/'"~ mice. B) Volcano plot displaying differentially

expressed genes of the total myeloid cell cells between aged male and female Zdl”' mice. C) Sex-specific expression levels of

1116 M1-associated genes. D) Dot plot displaying the sex-specific expression of biological process-associated genes in macrophage
clusters. Sex-specific gene expression of E) Trem2" M2-related genes in cluster 4 and F) mast cell associated-markers in cluster 9. D)
Pathway enrichment of myeloid cells in male and female mice. Green dots: significantly enriched pathways; red dots: interleukin-
related pathways; white dots: insignificantly enriched pathways; black dots: insignificantly unenriched pathways.

DISCUSSION

Advances in single-cell technologies have enabled comprehensive profiling of immune cell
populations in the atherosclerotic plaque. While sex is known to impact immune responses
and atherosclerotic CVD prevalence and manifestation, studied investigating sex differences in
the immune landscape of the plaque are rarely studied. Our study reveals sexual dimorphism

in plaque composition and immune cell proportions and gene signatures in aged L4/~ mice.
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While plaques of young WD-fed male and female L™ mice show no difference in collagen

. 47,4
and necrotic core area 748

, our data shows that plaques of aged female Ld/r" mice were relatively
more stable compared to plaques of aged male L4/ mice, due to increased collagen content,
and less necrotic core area and macrophages. This corroborates with studies in humans, in
which female CVD patients display similar signs of plaque stability compared to male.” We
did however observe a higher influx of immune cells in female compared to male atherosclerotic
aortas of aged Ldlr" mice and found that gene expression of pro-atherogenic markers and
inflammatory signaling pathways were more enriched in female aortas. In line with these
findings, women are known to elicit stronger innate and adaptive immune responses compared
to men, contributing to their increased susceptibility for inflammatory and autoimmune

. 0
diseases.’

We report a striking increase of ABCs in aortas of atherosclerotic female mice, displaying
enhanced expression of genes involved in B cell activation and antigen presentation, compared
to ABCs in aortas of male atherosclerotic mice, which illustrates sex differences in B cell
immunity that could contribute to atherosclerosis. We see enrichment of immunoglobulin
genes in ABCs in addition to female-biased expression of 76x21 (T-bet) and Cd72, which are
associated with autoantibody production.”’ ™ Furthermore, expression of genes associated with
plasma cell differentiation was elevated in female ABCs, suggesting that ABCs in females are
more likely to become antibody-secreting cells in atherosclerosis. Accordingly, although only
few plasma cells were found in the atherosclerotic aortas, their abundance was increased in
females. High frequencies of ABCs in women have previously been linked to the susceptibility
of autoimmune diseases, such as systemic lupus erythematosus , rheumatoid arthritis and
multiple sclerosis.***>47 Interestingly, both the TLR7 gene, crucial for ABC activation, and
the gene for CD40L, which is involved in immunoglobulin class switching, are located on
the X chromosome.’® Since almost 15% of X-linked genes escape silencing, this may clarify
the increased ABC frequency observed in females compared to males.” In addition, estrogen
has been shown to stimulate the survival and activation of autoreactive B cells.* These
findings contribute to the increasing body of evidence that atherosclerosis pathology involves
autoimmune-like components®®, but where these age-associated B cells are precisely located

in the atherosclerotic plaque environment remains to be investigated.

The presence of clonally expanded, activated T cells in the plaque of cardiovascular disease
patients and mice also supports the concept of atherosclerosis as an inflammatory disease with
autoimmune-like features.**”” Depuydt et al. showed that clonally expanded CD8" T cells in
the plaque of male CVD patients had increased expression of granzymes (GZMB, GZMK and
GZMA) compared to CD8" T cells in the blood.” Although we did not investigate clonality
of T cells in this study, we show that the immune landscape in males is more CD8" T cell-

driven, illustrated by the large male-specific increase in Gzmk'CD8" T cells and Gzmb'CD8"
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T cells. Both CD8" T cell populations express high levels of Ccr5 and its ligand Ce/5, and
in males show more expression of genes associated with activation and migration. Research
has demonstrated that both antagonism and deficiency of the CCR5/CCL5-axis attenuate
atherosclerosis in advanced stages by decreasing lesion size, promoting plaque stability, and
reducing monocyte, macrophage, and T cell infiltration.**® The male-specific increase in Cer5-
expressing CD8" T cells may contribute to the relatively increased macrophage content and
reduced collagen that we observed in aged Ldlr"” male mice. Furthermore, we observed elevated
gene expression of activation marker CZ69 across multiple T cell types in males’”, corroborating
with high expression of C469 on clonally expanded T cells and a large proportion of CD69"
cells among T cells in plaques of male CVD patients.”” CD4'CD8" DP T cells accounted
for the majority (-36%) of the T cells in females and have been previously found in murine
and human plaques.””" Possibly, these cells escaped from the thymus into the periphery
promoted by age-induced thymic involution.” However, in contrast to immature CD4"CD8*
thymocytes”, CD4'CD8" DP T cells in the plaque show high expression of the cytolytic factor
GzmA and memory markers. In line with these findings, CD4'CD8" DP T cells with cytotoxic
or regulatory functions have been described in viral infections’*””, cancer’®”” and rheumatoid
arthritis.”® Although some studies show that sex hormones can influence thymic involution
and the number of CD4* CD8* DP T cells””™®, Aspinall et al. have shown a sex hormone-
independent increase in CD4" CD8" DP T cells in females.™

We found an increase in CD11b" myeloid cell numbers, including a larger proportion of
conventional and migratory DCs, as well as 7rem2" non-foamy M2-like macrophages in aortas
of aged males, while the female myeloid compartment largely contained pro-inflammatory
116" M1-like macrophages. Elevated expression of foam cell survival genes in the male Trem2"
foamy macrophage cluster may explain the increase in foamy macrophage proportion and
larger macrophage area observed in male lesions. In addition, increased expression of 7gfb!
and Gpnmb in this cluster may contribute to regulating plaque development in the male mice.”
We observed a higher M1/M2 macrophage ratio in atherosclerotic plaques of females than in
males. In autoimmune diseases such as SLE and RA, females also show a bias towards M1
polarization, however the underlying mechanism is unclear.* Notably, mast cells displayed a
more pro-atherogenic gene profile in female compared to male mice as illustrated by increased
expression of proteases, chemokines and MHC class IT molecules. This is in line with a previous
study which showed that mast cells in females store and secrete more inflammatory mediators

. R . 8
and are more likely to initiate an immune response.”

Although limited conclusive information is available on how hormonal and chromosomal sex
differences affect inflammation in atherosclerosis, a variety of studies highlighted the impact
of estrogen on leukocyte migration. Estrogen inhibited IL-1-induced upregulation of ICAM-1
and VCAM-1 human endothelial cells®®, and reduced MCP-1 expression in rabbits.®’ These
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estrogen-related effects might decrease monocyte chemotaxis in atherosclerosis, thereby
possibly leading to the lower macrophage content in females compared to males. Furthermore,
men with androgen deficiencies have higher IL-1B concentrations than men with normal

90,91

testosterone levels™”", which might contribute to the lower proportion of inflammatory I11b*

macrophages in males compared to females.

It should however be noted that female mice do not experience a dramatic reduction in estrogen
levels that resembles human menopause, but have comparable estrogen levels during aging.()2
These endocrinologic differences between mice and men, in addition to dissimilarities in the
aging environment between laboratory mice and humans, are limitations of using preclinical
models.”**Apart from biological differences, it is important to keep in mind that our study
faced several technical limitations. The limited number of aortic immune cells demands pooling
of multiple samples to obtain enough events for single-cell RNA sequencing analysis, which
restrained us from performing statistical analysis and may affect differential gene expression
profiles. In addition, although we thoroughly cleaned and flushed the aorta, we cannot exclude
contamination with a few circulating leukocytes. Nevertheless, our single-cell RNA sequencing
analysis and validation at protein level using flow cytometry reveal an elaborate insight into
immunological differences between aged atherosclerotic male and female mice, which should

be taken into account in preclinical atherosclerosis research.

CONCLUSION

Our data can be utilized as a valuable tool for future preclinical studies, including target
validation in experimental mice for intervention studies, but also in refining study design and
rationale for choosing the appropriate sex. Although we cannot not directly extrapolate the
observed sex differences in the murine atherosclerotic immune landscape to that of humans, we
do see similarities between the aged L/ mouse model and human atherosclerosis pathology,

illustrating the relevance of our data set.

Taken together, our study shows that sex is a variable that influences plaque characteristics and
immune cell composition at single-cell resolution in aged Ll mice. These immunological
sex differences may contribute to sex-based clinical differences in atherosclerotic CVD and
highlight potential future areas of sex-specific immunomodulating therapies to combat
atherosclerosis. To investigate this, further research into sex differences of the immune

landscape of atherosclerotic plaques of cardiovascular disease patients is needed.
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sequencing.

Gating strategy of alive aortic CD45" cells for sorting from chow diet-fed aged male Ldlr" mice.
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Supplementary Figure S2. Immune cell clustering and frequency in aortas of aged L/~ mice.
A) Heatmap of the top 50 differentially expressed genes (normalized single-cell gene expression shown) per cluster. B) Feature Dot
Plot and C) Feature UMAP of the marker genes used for cluster annotation. D) Stacked diagram showing the relative proportions

of major immune cell subtypes within aged male and female Zdlr'~ aortas, measured by flow cytometry.
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Supplementary Figure S3. Biological distribution of immune cells in aged Ll mice.
Flow cytometry analysis of CD11b" myeloid, CD19" B cells, CD4" T cells, CD8" T cells and double positive CD4" CD8" T cells

in chow diet-fed aged male and female Ldlr”" mice. Data are from n = 12-14 mice per group. Statistical significance was tested by

a t-test. Mean + S.E.M. plotted. ***P < 0.001.
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Suppl y Figure S4. Sex-specific differences in aortic B cells of aged Ldly'~ mice.

A) Average expression of cytokine and chemokine genes in B cell clusters split by sex. B) Feature Dot Plot and C) Feature UMAP of

the marker genes used for cluster annotation. D) Sex-specific gene expression level of plasma cell-associated genes in B cell clusters.
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Supplementary Figure S5. Characterization of aortic T cells in aged Ldlr”' mice.
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A) Feature Dot Plot of the marker genes used for cluster annotation. B) Average expression of canonical markers in T cell clusters

projected on the UMAP plot. C) UMAP projection displaying sex-specific expression level of genes characteristic for senescence-

associated CD4" T cells.
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Supplementary Figure S6. Comparison of aortic myeloid cells between aged male and female Ll mice.

A) Feature Dot Plot and B) Feature UMAP of the marker genes used for cluster annotation. Sex-specific expression of C) differentially
expressed genes in cluster 7 and D) chemotaxis genes specific for migratory dendritic cells. E) Average expression of MHCII-related
genes in dendritic cell clusters split by sex. F) Average expression of neutrophil markers in myeloid cell clusters split by sex.
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