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Abstract

When a patient is admitted to the intensive care unit (ICU) after a traumatic brain injury (TBI), an

early prognosis is essential for baseline risk adjustment and shared decision making. TBI out-

comes are commonly categorised by the Glasgow Outcome Scale–Extended (GOSE) into

eight, ordered levels of functional recovery at 6 months after injury. Existing ICU prognostic

models predict binary outcomes at a certain threshold of GOSE (e.g., prediction of survival

[GOSE > 1]). We aimed to develop ordinal prediction models that concurrently predict probabili-

ties of each GOSE score. From a prospective cohort (n = 1,550, 65 centres) in the ICU stratum

of the Collaborative European NeuroTrauma Effectiveness Research in TBI (CENTER-TBI)

patient dataset, we extracted all clinical information within 24 hours of ICU admission (1,151 pre-

dictors) and 6-month GOSE scores. We analysed the effect of two design elements on ordinal

model performance: (1) the baseline predictor set, ranging from a concise set of ten validated

predictors to a token-embedded representation of all possible predictors, and (2) the modelling

strategy, from ordinal logistic regression to multinomial deep learning. With repeated k-fold

cross-validation, we found that expanding the baseline predictor set significantly improved ordi-

nal prediction performance while increasing analytical complexity did not. Half of these gains

could be achieved with the addition of eight high-impact predictors to the concise set. At best,

ordinal models achieved 0.76 (95% CI: 0.74–0.77) ordinal discrimination ability (ordinal c-index)

and 57% (95% CI: 54%– 60%) explanation of ordinal variation in 6-month GOSE (Somers’ Dxy).

Model performance and the effect of expanding the predictor set decreased at higher GOSE

thresholds, indicating the difficulty of predicting better functional outcomes shortly after ICU

admission. Our results motivate the search for informative predictors that improve confidence in

prognosis of higher GOSE and the development of ordinal dynamic prediction models.
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Introduction

Globally, traumatic brain injury (TBI) is a major cause of death, disability, and economic bur-

den [1]. The treatment of critically ill TBI patients is largely guided by an initial prognosis

made within a day of admission to the intensive care unit (ICU) [2]. Early outcome prediction

models set a baseline against which clinicians consider the effect of therapeutic strategies and

compare patient trajectories. Therefore, well-calibrated and reliable prognostic models are an

essential component of intensive care.

Outcome after TBI is most often evaluated on the ordered, eight-point Glasgow Outcome

Scale–Extended (GOSE) [3–6], which stratifies patients by their highest level of functional

recovery according to participation in daily activities. Existing baseline prediction models used

in the ICU dichotomise the GOSE into binary endpoints for TBI outcome. For example, the

Acute Physiologic Assessment and Chronic Health Evaluation (APACHE) II [7] model pre-

dicts in-hospital survival (GOSE > 1) while the International Mission for Prognosis and Anal-

ysis of Clinical Trials in TBI (IMPACT) [8] models focus on predicting functional

independence (GOSE > 4, or ‘favourable outcome’) and survival at 6 months post-injury.

Dichotomised GOSE prediction employs a fixed threshold of favourability among the eight

levels of recovery for all patients. However, there is no empirical justification for an ideal treat-

ment-effect threshold of GOSE [9]. Moreover, dichotomisation removes each patient or care-

giver’s ability to define a different level of recovery as ‘favourable’ during prognosis. By

concealing the nuanced differences in outcome defined by the GOSE, dichotomisation also

limits the prognostic information made available during a shared treatment decision making

process. For example, when clinicians, patients, or next of kin must together decide whether to

withdraw life-sustaining measures (WLSM) after severe TBI, knowing the probability of differ-

ent levels of functional recovery in addition to the baseline probability of survival would enable

better quality-of-life consideration and confidence in the decision (Fig 1B) [10]. These prob-

lems of dichotomisation cannot be addressed simply by independently training a combination

of binary prediction models at several GOSE thresholds. If model predictions are not con-

strained across the thresholds (i.e., ensuring probabilities do not increase with higher thresh-

olds) during training, then combining multiple threshold outputs may result in nonsensical

values. For example, the purported probability of survival (GOSE > 1) might be lower than

that of recovering functional independence (GOSE > 4).

A practical solution would be to train ordinal outcome prediction models, which concur-

rently return probabilities at each GOSE threshold by learning the interdependent relation-

ships between the predictor set and the possible levels of functional recovery (Fig 1A). Ordinal

GOSE prediction models would allow users to interpret the probability of different levels of

functional recovery. Additionally, they can provide insight into the conditional probability of

obtaining greater levels of recovery given lower levels (see Fig 1B for a practical clinical appli-

cation of this information). However, moving from binary to ordinal outcome prediction

poses three key challenges. First, there is no guarantee that widely accepted TBI outcome pre-

dictor sets, validated either by binary or ordinal regression analysis, will be able to capture the

nuanced differences between levels of functional recovery well enough for reliable prediction.

Second, ordinal prediction models typically need to be more complicated than binary models

to encode the possibility of more outcomes and the constrained relationship between them

[11]. For GOSE prediction, ordinal models can either encode the outcomes as: (1) multino-

mial, in which nodes exist for each GOSE score and collectively undergo a softmax transfor-

mation (to constrain the sum of values to one) and probabilities are calculated by

accumulating values up to each threshold, or (2) ordinal, in which nodes exist for each thresh-

old between consecutive GOSE scores, constrained such that output values must not increase
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Fig 1. Comparison of ordinal outcome prediction to binary outcome prediction in terms of model architecture and clinical application. GOSE = Glasgow

Outcome Scale–Extended at 6 months post-injury. ReLU = rectified linear unit. Pr(•) = Probability operator, i.e., “probability of •.” Pr(•|�) = Conditional

probability operator, i.e., “probability of •, given �.” (A) Output layer architectures of binary and ordinal GOSE prediction models. Ordinal prediction models
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with higher thresholds, and probabilities for each threshold are calculated with a sigmoid

transformation (Fig 1A). Third, assessment of prediction performance is not as intuitive with

an ordinal outcome as with a binary outcome. Widely used dichotomous prediction perfor-

mance metrics such as the c-index (i.e., the area under the receiver operating characteristic

curve [AUC]) do not trivially extend to the ordinal case [12], so assessment of ordinal predic-

tion models requires the consideration of multifactorial metrics and visualisations that may

complicate interpretations of model performance [13].

As part of the Collaborative European NeuroTrauma Effectiveness Research in TBI (CEN-

TER-TBI) project, we aim to address the challenges of ordinal outcome prediction. Our analy-

ses cover a range of modelling strategies and predictors available within the first 24 hours of

admission to the ICU.

Materials and methods

Study population and dataset

The study population was extracted from the ICU stratum of the core CENTER-TBI dataset

(v3.0) using Opal database software [14]. The project objectives and experimental design of

CENTER-TBI have been described in detail by Maas et al. [15] and Steyerberg et al. [16] Study

patients were prospectively recruited at one of 65 participating ICUs across Europe with the

following eligibility criteria: admission to the hospital within 24 hours of injury, indication for

CT scanning, and informed consent according to local and national requirements.

Per project protocol, each patient’s follow-up schedule included a GOSE assessment at 6

months post-injury, or, more precisely, within a window of 5–8 months post-injury. GOSE

assessments were conducted using structured interviews [6] and patient/carer questionnaires

[17] by the clinical research team of CENTER-TBI. The eight, ordinal scores of GOSE, repre-

senting the highest levels of functional recovery, are decoded in the heading of Table 1. Since

patient/carer questionnaires do not distinguish vegetative patients (GOSE = 2) into a separate

category, GOSE scores 2 and 3 (lower severe disability) were combined to one category (GOSE

2 {2,3}) in our dataset. Of the 2,138 ICU patients in the CENTER-TBI dataset available for

analysis, we excluded patients in the following order: (1) age less than 16 years at ICU admis-

sion (n = 82), (2) follow-up GOSE was unavailable (n = 283), and (3) ICU stay was less than 24

hours (n = 223). Our resulting sample size was n = 1,550. For 1,351 patients (87.2%), either the

patient died during ICU stay (n = 205) or results from a GOSE evaluation at 5–8 months post-

injury were available in the dataset (n = 1,146). For the remaining 199 patients (12.8%), GOSE

scores were imputed using a Markov multi-state model based on the observed GOSE scores

recorded at different timepoints between 2 weeks to one-year post-injury [18]. A flow diagram

for study inclusion and follow-up is provided in S1 Fig, and summary characteristics of the

study population are detailed in Table 1.

must not only have a more complicated output structure (in terms of learned weights and outcome encoding choices) but also constrain probabilities across the

possible levels of functional outcome (indicated by ‘Constraint’ in the ordinal model representations). The constraint for multinomial outcome encoding is

performed with a softmax activation function while the constraint for ordinal outcome encoding is performed with subtractions of output values (implemented

with a negative ReLU transformation) from lower thresholds. In the provided legend formula for the softmax activation function, zi represents the outputted

value of the ith node of the multinomial outcome encoding layer (i.e., the node representing the ith possible score of GOSE) preceding the softmax

transformation. (B) A sample patient case to demonstrate the difference in prognostic information between ordinal and binary GOSE prediction models.

Binary models predict outcomes at one GOSE threshold while ordinal models predict outcomes at every GOSE threshold concurrently and provide conditional

predictions of higher GOSE threshold outcomes given lower GOSE threshold outcomes. Bespoke conditional probability diagrams can be constructed between

any number of GOSE thresholds, as desired by model users, so long as lower thresholds (e.g., GOSE> 1) precede higher thresholds (e.g., GOSE> 3) in

directionality. Conditional probabilities are calculated by dividing the model probability at the higher threshold by the model probability at the lower threshold

(e.g., PrðGOSE > 3jGOSE > 1Þ ¼ PrðGOSE > 3Þ=PrðGOSE > 1Þ).

https://doi.org/10.1371/journal.pone.0270973.g001
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Repeated k-fold cross-validation

We implemented the ‘scikit-learn’ module (v0.23.2) [20] in Python (v3.7.6) to create 100 strati-

fied partitions of our study population for repeated k-fold cross-validation (20 repeats, 5

folds). Within each of the partitions, approximately 80% of the population would constitute

the training set (n� 1,240 patients) and 20% of the population would constitute the corre-

sponding testing set (n� 310 patients). For parametric (i.e., deep learning) models, we imple-

mented a stratified shuffle split on each of the 100 training sets to set 15% (n� 46 patients)

aside for validation and hyperparameter optimisation.

Selection and preparation of concise predictor set

In selecting a concise predictor set, our primary aim was to find a small group of well-vali-

dated, widely measured clinical variables that are commonly used for TBI outcome prognosis

in existing ICU practice. We selected the ten predictors from the extended IMPACT binary

prediction model [8] for moderate-to-severe TBI–defined by a baseline Glasgow Coma Scale

(GCS) [21, 22] score between 3 and 12, inclusive–to represent our concise set. While 26.6% of

our study population falls out of this GCS range (Table 1), we find that the IMPACT predictor

Table 1. Summary characteristics of the study population at ICU admission stratified by ordinal 6-month outcomes.

Summary

characteristics

Overall Glasgow Outcome Scale–Extended (GOSE) at 6 months post-injury p-value‡

(1)

Death

(2 or 3) Vegetative or

lower severe disability

(4) Upper

severe disability

(5) Lower

moderate

disability

(6) Upper

moderate

disability

(7) Lower

good recovery

(8) Upper

good recovery

n� 1550 318

(20.5%)

262 (16.9%) 120 (7.7%) 227 (14.6%) 200 (12.9%) 206 (13.3%) 217 (14.0%)

Age [years] 51 (31–

66)

66 (50–

76)

55 (36–68) 48 (29–61) 44 (31–56) 41 (27–53) 48 (31–65) 41 (24–61) <0.0001

Sex 0.59

Female 409

(26.4%)

78

(24.5%)

71 (27.1%) 43 (35.8%) 64 (28.2%) 49 (24.5%) 59 (28.6%) 45 (20.7%)

Race (n† =

1427)

0.13

White 1386

(97.1%)

281

(97.2%)

239 (96.8%) 106 (95.5%) 195 (96.5%) 183 (97.3%) 184 (98.4%) 198 (97.5%)

Black 21 (1.5%) 2 (0.7%) 4 (1.6%) 3 (2.7%) 5 (2.5%) 3 (1.6%) 2 (1.1%) 2 (1.0%)

Asian 20 (1.4%) 6 (2.1%) 4 (1.6%) 2 (1.8%) 2 (1.0%) 2 (1.1%) 1 (0.5%) 3 (1.5%)

Baseline GCS

(n† = 1465)

8 (4–14) 5 (3–10) 6 (3–10) 8 (4–13) 8 (5–13) 9 (6–14) 13 (7–15) 13 (8–15) <0.0001

Mild [13–

15]

390

(26.6%)

30

(10.3%)

38 (15.3%) 26 (23.4%) 42 (19.5%) 66 (34.9%) 91 (45.3%) 97 (46.4%)

Moderate

[9–12]

331

(22.6%)

65

(22.3%)

41 (16.5%) 28 (25.2%) 65 (30.2%) 36 (19.0%) 40 (19.9%) 56 (26.8%)

Severe [3–8] 744

(50.8%)

196

(67.4%)

170 (68.3%) 57 (51.4%) 108 (50.2%) 87 (46.0%) 70 (34.8%) 56 (26.8%)

Data are median (IQR) for continuous characteristics and n (% of column group) for categorical characteristics, unless otherwise indicated. Units or numerical

definitions of characteristics are provided in square brackets. Baseline GCS = Glasgow Coma Scale at ICU admission, from 3 to 15. Conventionally, TBI severity is

categorically defined by baseline GCS scores as indicated in square brackets.

�Percentages for sample size (n) represent proportion of study sample size in each GOSE group.
†Limited sample size of non-missing values for characteristic.
‡p-values are determined from proportional odds logistic regression (POLR) coefficient analysis trained on all summary characteristics concurrently [19]. For

categorical variables with k> 2 categories (e.g., Race), p-values were calculated with a likelihood ratio test (with k-1 degrees of freedom) on POLR.

https://doi.org/10.1371/journal.pone.0270973.t001
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set is the most rigorously validated [23–27] baseline set available for the overall critically ill

TBI population. The ten predictors, characterised in Table 2, are all measured within 24 hours

of ICU admission and include demographic characteristics, clinical severity scores, CT charac-

teristics, and laboratory measurements. The predictors as well as empirical justification for

their inclusion in the IMPACT model have been described in detail [28]. In this manuscript,

each of the models trained on the IMPACT predictor set is denoted as a concise-predictor-

based model (CPM).

Seven of the concise predictors had missing values for some of the patients in our study

population (S2 Fig). In each repeated cross-validation partition, we trained an independent,

stochastic predictive mean matching imputation function on the training set and imputed all

Table 2. Concise baseline predictors of the study population stratified by ordinal 6-month outcomes.

Concise predictors Overall

(n = 1550)

Glasgow Outcome Scale–Extended (GOSE) at 6 months post-injury p-value‡

1 (n = 318) 2 or 3

(n = 262)

4 (n = 120) 5 (n = 227) 6 (n = 200) 7 (n = 206) 8 (n = 217)

Age [years] 51 (31–66) 66 (50–76) 55 (36–68) 48 (29–61) 44 (31–56) 41 (27–53) 48 (31–65) 41 (24–61) <0.0001

GCSm (n† = 1509) 5 (1–6) 2 (1–5) 3 (1–5) 5 (1–6) 5 (1–6) 5 (2–6) 5 (3–6) 6 (5–6) <0.0001

(1) No response 484 (32.1%) 152

(50.0%)

104 (40.6%) 35 (29.9%) 63 (28.5%) 46 (23.6%) 47 (23.0%) 37 (17.5%)

(2) Abnormal extension 54 (3.6%) 17 (5.6%) 20 (7.8%) 4 (3.4%) 6 (2.7%) 3 (1.5%) 2 (1.0%) 2 (0.9%)

(3) Abnormal flexion 63 (4.2%) 14 (4.6%) 12 (4.7%) 8 (6.8%) 11 (5.0%) 8 (4.1%) 4 (2.0%) 6 (2.8%)

(4) Withdrawal from stimulus 114 (7.6%) 27 (8.9%) 23 (9.0%) 8 (6.8%) 20 (9.0%) 21 (10.8%) 8 (3.9%) 7 (3.3%)

(5) Movement localised to

stimulus

305 (20.2%) 52 (17.1%) 47 (18.4%) 24 (20.5%) 50 (22.6%) 46 (23.6%) 44 (21.6%) 42 (19.8%)

(6) Obeys commands 489 (32.4%) 42 (13.8%) 50 (19.5%) 38 (32.5%) 71 (32.1%) 71 (36.4%) 99 (48.5%) 118 (55.7%)

Unreactive pupils (n† = 1465) <0.0001

One 111 (7.6%) 31 (10.5%) 31 (12.3%) 7 (6.3%) 20 (9.3%) 5 (2.6%) 8 (4.1%) 9 (4.4%)

Two 168 (11.5%) 84 (28.5%) 33 (13.0%) 8 (7.2%) 14 (6.5%) 8 (4.2%) 16 (8.2%) 5 (2.4%)

Hypoxia 207 (13.4%) 60 (18.9%) 33 (12.6%) 14 (11.7%) 35 (15.4%) 33 (16.5%) 16 (7.8%) 16 (7.4%) 0.37

Hypotension 210 (13.5%) 56 (17.6%) 51 (19.5%) 21 (17.5%) 32 (14.1%) 22 (11.0%) 15 (7.3%) 13 (6.0%) 0.0038

Marshall CT (n† = 1255) VI (II–VI) III (II–VI) II (II–VI) II (II–VI) II (II–II) II (II–III) II (II–II) VI (II–VI) 0.043

No visible pathology (I) 118 (9.4%) 8 (3.3%) 11 (5.3%) 5 (5.2%) 17 (8.7%) 25 (15.2%) 24 (13.6%) 28 (16.5%)

Diffuse injury II 592 (47.2%) 56 (22.8%) 84 (40.6%) 54 (56.2%) 92 (47.2%) 100 (60.6%) 103 (58.5%) 103 (60.6%)

Diffuse injury III 108 (8.6%) 42 (17.1%) 17 (8.2%) 10 (10.4%) 14 (7.2%) 9 (5.5%) 6 (3.4%) 10 (5.9%)

Diffuse injury IV 16 (1.3%) 7 (2.8%) 1 (0.5%) 1 (1.0%) 4 (2.1%) 1 (0.6%) 1 (0.6%) 1 (0.6%)

Mass lesion (V & VI) 421 (33.5%) 133

(54.0%)

94 (45.4%) 26 (27.1%) 68 (34.9%) 30 (18.2%) 42 (23.9%) 28 (16.5%)

tSAH (n† = 1254) 957 (76.3%) 221

(90.2%)

176 (84.2%) 73 (76.0%) 150 (76.9%) 106 (63.9%) 125 (71.4%) 106 (63.1%) 0.16

EDH (n† = 1257) 244 (19.4%) 31 (12.7%) 32 (15.3%) 21 (21.9%) 46 (23.6%) 32 (19.3%) 42 (23.9%) 40 (23.5%) 0.016

Glucose [mmol/L] (n† = 1062) 7.7 (6.6–9.4) 8.8 (7.3–

11)

8.0 (6.5–9.8) 7.6 (6.5–

9.3)

7.8 (6.6–

9.6)

7.7 (6.5–

8.7)

7.3 (6.3–

8.5)

7.1 (6.3–

8.1)

0.013

Hb [g/dL] (n† = 1140) 13 (12–14) 13 (11–14) 13 (11–14) 14 (12–14) 13 (12–14) 14 (12–15) 13 (12–15) 14 (13–15) 0.038

Data are median (IQR) for continuous characteristics and n (% of column group) for categorical characteristics. Units of characteristics are provided in square brackets.

GCSm = motor component score of the Glasgow Coma Scale. Marshall CT = Marshall computerised tomography classification. tSAH = traumatic subarachnoid

haemorrhage. EDH = extradural haematoma. Hb = haemoglobin.
†Limited sample size of non-missing values for characteristic.
‡p-values are determined from proportional odds logistic regression (POLR) analysis trained on all concise predictors concurrently [19] and are combined across 100

missing value imputations via z-transformation [29]. For categorical variables with k > 2 categories (e.g., GCSm), p-values were calculated with a likelihood ratio test

(with k-1 degrees of freedom) on POLR.

https://doi.org/10.1371/journal.pone.0270973.t002
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missing values across both sets using the ‘mice’ package (v3.9.0) [30] in R (v4.0.0) [31]. The

result was a multiply imputed (m = 100) dataset with a unique imputation per partition, allow-

ing us to simultaneously account for the variability due to resampling and the variability due

to missing value imputation during repeated cross-validation.

Prior to the training of CPMs, each of the multi-categorical variables (i.e., GCSm, Marshall

CT, and unreactive pupils in Table 2) were one-hot encoded and each of the continuous vari-

ables (i.e., age, glucose, and haemoglobin) were standardised based on the mean and standard

deviation of each of the training sets with the ‘scikit-learn’ module in Python.

Selection of concise-predictor-based models (CPMs)

We tested four CPM types, each denoted by a subscript: (1) multinomial logistic regression

(CPMMNLR), (2) proportional odds (i.e., ordinal) logistic regression (CPMPOLR), (3) class-

weighted feedforward neural network with a multinomial (i.e., softmax) output layer

(CPMDeepMN), and (4) class-weighted feedforward neural network with an ordinal (i.e., con-

strained sigmoid at each threshold) output layer (CPMDeepOR). These models were selected

because, in the setting of ordinal GOSE prediction, we wished to compare the performance of:

(1) nonparametric logistic regression models (CPMMNLR and CPMPOLR) to nonlinear,

parametric deep learning networks (CPMDeepMN and CPMDeepOR), and (2) multinomial out-

come encoding (CPMMNLR and CPMDeepMN) to ordinal outcome encoding (CPMPOLR and

CPMDeepOR). Each of these model types returns a predicted probability for each of the GOSE

thresholds at 6 months post-injury from the concise set of predictors (Fig 1A). A detailed

explanation of CPM architectures, hyperparameters for the parametric CPMs, loss functions,

and optimisation algorithms is provided in S1 Appendix.

CPMBest denotes the optimal CPM for a given performance metric in the Results.

CPMMNLR and CPMPOLR were implemented with the ‘statsmodels’ module (dev. v0.14.0) [32]

in Python, and CPMDeepMN and CPMDeepOR were implemented with the ‘PyTorch’ (v1.10.0)

[33] module in Python.

Design of all-predictor-based models (APMs)

In contrast to the CPMs, we designed and trained prediction models on all baseline (i.e., avail-

able to ICU clinicians at 24 hours post-admission) clinical information (excluding high-resolu-

tion data such as full brain images or physiological waveforms) in the CENTER-TBI database.

Each of these models is designated as an all-predictor-based model (APM).

For our study population, there are 1,151 predictors [34], each being in one of the 14 cate-

gories listed in Table 3, with variable levels of missingness and frequency per patient. This

information also includes 81 predictors denoting treatments or interventions within the first

24 hours of ICU care (e.g., type and dose of medication administered) and 76 predictors

denoting the explicit impressions or rationales of ICU physicians (e.g., reason for surgical

intervention and expected prognosis with or without surgery).

To prepare this information into a suitable format for training APMs, we tokenised and

embedded heterogenous patient data [35] in a process visualised in Fig 2. Predictor tokens

were constructed in one of the following ways: (1) for categorical predictors, a token was con-

structed by concatenating the predictor name and value, e.g., ‘GCSTotalScore_04,’ (2) for con-

tinuous predictors, a token was constructed by learning the distribution of that predictor from

the training set and discretising into 20 quantile bins, e.g., ‘SystolicBloodPressure_BIN17,’ (3)

for text-based entries, we removed all special characters, spaces, and capitalisation from the

text and appended the unformatted text to the predictor name, e.g., ‘InjuryDescription_skull-

fracture,’ and (4) for missing values, a separate token was created to designate missingness,
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e.g., ‘PriorMedications_NA’ (Fig 2A). The unique tokens from a patient’s first 24 hours of

ICU stay made up his or her individual predictor set, and the median number of unique tokens

(excluding missing value tokens) per patient per predictor category are provided in Table 3.

Notably, this process does not require any data cleaning, missing value imputation, outlier

removal, or domain-specific knowledge for a large set of variables and imposes no constraints

on the number or type of predictors per patients [35]. Additionally, by including missing value

tokens, models can discover meaningful patterns of missingness if they exist [36].

Taking inspiration from artificially intelligent (AI) natural language processing [37, 38], all

the predictor tokens from the training set (excluding the validation set) are used to construct a

token dictionary. APMs learn a lower dimensional vector as well as a positive significance

weight for each entry in the dictionary during training. The vectors for each of the tokens of a

single patient are significance-weight-averaged into a single vector which is then fed into a

class-weighted feedforward neural network (Fig 2B). If the neural network has no hidden lay-

ers, then the APM is analogous to logistic regression, while if it does have hidden layers, the

APM corresponds to deep learning. In this work, we train APMs with one of two kinds of out-

put layers: multinomial, i.e., softmax, (APMMN), or ordinal, i.e., constrained sigmoid at each

GOSE threshold, (APMOR). Both model types output a predicted probability for each of the

GOSE thresholds at 6 months post-injury. A detailed explanation of APM architectures,

hyperparameters, loss functions, and optimisation algorithms is provided in S2 Appendix.

APMBest denotes the optimal APM for a given performance metric in the Results. APMMN

and APMOR were implemented with the ‘PyTorch’ module in Python.

Table 3. Predictor baseline tokens per patient in the CENTER-TBI dataset.

Predictor category Types of tokens

All Fixed at ICU

admission

Continuous

variable

Treatments and

interventions

Physician impression or

rationale

Emergency care and ICU admission 112 (103–

121)

112 (103–121) 13 (10–16) 0 (0–0) 7 (7–8)

Brain imaging 94 (72–114) 74 (68–83) 5 (2–8) 0 (0–0) 9 (8–10)

ICU monitoring and management 63 (52–72) 3 (3–3) 10 (5–13) 40 (34–46) 13 (3–15)

Injury characteristics and severity 55 (49–62) 55 (49–62) 2 (2–2) 0 (0–0) 0 (0–0)

End-of-day assessments 50 (45–54) 0 (0–0) 19 (17–21) 0 (0–0) 0 (0–0)

Laboratory measurements 44 (32–55) 14 (0–20) 42 (31–52) 0 (0–0) 1 (1–1)

Medical and behavioural history 38 (32–51) 38 (32–51) 0 (0–1) 0 (0–0) 0 (0–0)

Medications 30 (21–40) 0 (0–0) 0 (0–0) 22 (15–30) 8 (5–11)

Bihourly assessments 17 (0–32) 0 (0–0) 15 (0–27) 1 (0–2) 0 (0–0)

Demographics and socioeconomic

status

15 (14–16) 15 (14–16) 2 (1–2) 0 (0–0) 0 (0–0)

Protein biomarkers 5 (5–5) 0 (0–0) 5 (5–5) 0 (0–0) 0 (0–0)

Surgery 2 (1–6) 1 (1–2) 0 (0–0) 0 (0–1) 1 (0–3)

Haemostatic markers� 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

Transitions of care� 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–0)

All predictors 532 (486–

580)

315 (288–341) 111 (90–132) 64 (50–75) 37 (29–44)

Data represent median (IQR) number of non-missing, unique tokens per patient. Tokens were extracted from the clinical information available up to 24 hours after ICU

admission for each study patient in the Collaborative European NeuroTrauma Effectiveness Research in TBI (CENTER-TBI) project dataset. Each token may be of only

one predictor category (leftmost column) and of any number of token types (four rightmost columns). ICU = intensive care unit.

�Due to their relative infrequency in the CENTER-TBI dataset, these baseline predictor categories have a 3rd quartile of zero tokens per patient.

https://doi.org/10.1371/journal.pone.0270973.t003
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Predictor importance in all-predictor-based models (APMs)

The relative importance of predictor tokens in the trained APMs was measured with absolute

Shapley additive explanation (SHAP) [39] values, which, in our case, can be interpreted as the

Fig 2. Tokenisation and embedding procedure for the development of ordinal all-predictor-based models (APMs). ICU = intensive care unit.

ER = emergency room. Hx = history. SES = socioeconomic status. CSF = cerebrospinal fluid. GOSE = Glasgow Outcome Scale–Extended at 6 months post-

injury. (A) Process of converting all clinical information, from the first 24 hours of each patient, into an indexed dictionary of tokens during model training.

The tokenisation process is illustrated with three example predictors and their associated values in step 2. The first entry in the trained token dictionary (‘0)

<unrecognised>‘) of step 3 is a placeholder token for any tokens encountered in the testing set that were not seen in the training set. (B) Visual representation

of token embedding and significance-weighted averaging pipeline during APM prediction runs. After tokenising an individual patient’s clinical information,

the vector of tokens is converted to a vector of the indices corresponding to each token in the trained token dictionary. The corresponding vectors and

significance weights of the indices are extracted to weight-average the patient information into a single vector. The embedding layer and significance weights

are learned through stochastic gradient descent during model training, and significance weights are constrained to be positive with an exponential function.

While not explicitly shown, the weighted vectors are divided by the number of vectors during weight-averaging. The individual, weight-averaged vector then

feeds into an ordinal prediction model to return probabilities at each GOSE threshold. The ordinal prediction model could either have multinomial output

encoding (APMMN) or ordinal outcome encoding (APMOR), as represented in Fig 1A.

https://doi.org/10.1371/journal.pone.0270973.g002
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magnitude of the relative contribution of a token towards a model output for a single patient.

For APMMN, this corresponds to the predictor contributions towards each node (after softmax

transformation, Fig 1A) corresponding to the probability at a GOSE score. For APMOR, this

corresponds to the predictor contributions towards each node (after sigmoid transformation,

Fig 1A) corresponding to the probability at a GOSE threshold. Absolute SHAP values were

measured for each patient in the testing set of every repeated cross-validation partition, and we

averaged these values over the partitions to derive our individualised importance scores per

token. These scores were averaged, once again, over the entire patient set to calculate the mean

absolute SHAP values of each token. Finally, to derive importance scores for each predictor,

we calculated the maximum of the mean absolute SHAP values of the possible tokens from the

predictor.

Selection and preparation of extended concise predictor set

We selected a small set of the most important APM predictors by mean absolute SHAP values

to add to the concise predictor set and observe the change in model performance. Since the

concise predictor set does not include any information on intervention decisions or physician

impressions from the first day, we did not consider these predictor types. Moreover, for every

multi-categorical predictor selected, we examined the mean absolute SHAP values of each of

the predictor’s possible tokens to determine which of the categories should be explicitly

encoded (e.g., including 10 categories for employment status or just one indicator variable for

retirement). The extended concise predictor set, including the 10 original concise predictors

and the 8 added predictors, in our study population is listed and characterised in S1 Table.

Each of the models trained on the concise set with these variables added is denoted as an

extended concise-predictor-based model (eCPM).

The process of multiple imputation (m = 100), one-hot encoding, and standardisation of

the extended concise predictor set was identical to that of the concise predictor set, as

described earlier.

Selection of extended concise-predictor-based models (eCPMs)

The four eCPM model types we tested are identical to the four CPM model types, as described

earlier and in S1 Appendix with, however, the extended concise predictor set: (1) multinomial

logistic regression (eCPMMNLR), (2) proportional odds (i.e., ordinal) logistic regression

(eCPMPOLR), (3) class-weighted feedforward neural network with a multinomial (i.e., softmax)

output layer (eCPMDeepMN), and (4) class-weighted feedforward neural network with an ordi-

nal (i.e., constrained sigmoid at each threshold) output layer (eCPMDeepOR).

eCPMBest denotes the optimal eCPM for a given performance metric in the Results.

Assessment of model discrimination and calibration

All model metrics, curves, and associated confidence intervals (CI) were calculated from test-

ing set predictions using the repeated Bootstrap Bias Corrected Cross-Validation (BBC-CV)

method [40] with 1,000 resamples of unique patients for bootstrapping. The collection of met-

rics from the bootstrapped testing set resamples for each model then formed our unbiased esti-

mation distribution for statistical inference (i.e., CI).

In this work, we assess model discrimination performance (i.e., how well do the models sep-

arate patients with different GOSE scores?) and probability calibration (i.e., how reliable are

the predicted probabilities at each threshold?). The metrics and visualisations are explained in

detail, with mathematical derivation and intuitive examples, in S3 Appendix. In this section,

we will only list the metrics, their interpretations, and their range of feasible values. Feasible
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values range from the value corresponding to no model information or random guessing (i.e.,

the no information value [NIV]) to the value corresponding to ideal model performance (i.e.,

the full information value [FIV]).

Our primary metric of model discrimination performance is the ordinal c-index (ORC)

[13]. ORC has two interpretations: (1) the probability that a model correctly separates two

patients with two randomly chosen GOSE scores and (2) the average proportional closeness

between a model’s functional outcome ranking of a set of patients (which includes one ran-

domly chosen patient from each possible GOSE score) to their true functional outcome rank-

ing. In addition, we calculate Somers’ Dxy [41, 42], which is interpreted as the proportion of

ordinal variation in GOSE that can be explained by the variation in model output. Our final

metrics of model discrimination are dichotomous c-indices (i.e., AUC) at each threshold of

GOSE. Each is interpreted as the probability of a model correctly discriminating a patient with

GOSE above the threshold from one with GOSE below. The range of feasible values for each

discrimination metric are: NIVORC = 0.5 to FIVORC = 1, NIVSomers’ Dxy = 0 to FIVSomers’ Dxy =

1, and NIVDichotomous c-index = 0.5 to FIVDichotomous c-index = 1. ORC is the only discrimination

metric that is independent of the sample prevalence of each GOSE category [13].

To assess the calibration of predicted probabilities at each GOSE threshold, we use the logis-

tic recalibration framework [43] to measure calibration slope [44]. A calibration slope less

than one indicates overfitting (i.e., high predicted probabilities are overestimated while low

predicted probabilities are underestimated) while a calibration slope greater than one indicates

underfitting [45]. We also examine smoothed probability calibration curves [46] to detect mis-

calibrations that may be overlooked by the logistic recalibration framework [45]. The ideal cal-

ibration curve is a diagonal line with slope one and y-intercept 0 while one indicative of

random guessing would be a horizontal line with a y-intercept at the proportion of the study

population above the given threshold. We accompany each calibration curve with the inte-

grated calibration index (ICI) [47], which is the mean absolute error between the smoothed

and the ideal calibration curves, to aid comparison of curves across model types. FIVICI = 0,

but NIVICI varies based on the outcome distribution at each threshold (S3 Appendix).

All metrics were calculated using the ‘scikit-learn’ and ‘SciPy’ (v1.6.2) [48] modules in

Python and figures were plotted using the ‘ggplot2’ package (v3.3.2) [49] in R.

Computational resources

All computational and statistical components of this work were performed in parallel on the

Cambridge Service for Data Driven Discovery (CSD3) high performance computer, operated

by the University of Cambridge Research Computing Service (http://www.hpc.cam.ac.uk).

The training of each APM was accelerated with graphical processing units and the ‘PyTorch

Lightning’ (v1.5.0) [50] module. The training of all parametric models (CPMDeepMN, CPMDee-

pOR, APMMN, APMOR, eCPMDeepMN, and eCPMDeepOR) was made more efficient by dropping

out consistently underperforming parametric configurations, on the validation sets, with the

Bootstrap Bias Corrected with Dropping Cross-Validation (BBCD-CV) method [40] with

1,000 resamples of unique patients. The results of hyperparameter optimisation are detailed in

S4 Appendix.

Results

CPM and APM discrimination performance

The discrimination performance metrics for each CPM are listed in S2 Table. Deep learning

models (CPMDeepMN and CPMDeepOR) made no significant improvement (based on 95% CI)

over logistic regression models (CPMMNLR and CPMPOLR). The only significant difference in
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discrimination among the model types was observed in CPMDeepOR, which had a significantly

lower ORC and Somers’ Dxy than the other models. The discrimination performance metrics

for each APM are listed in S3 Table. APMMN had a significantly higher ORC, Somers’ Dxy,

and dichotomous c-indices at lower GOSE thresholds (i.e., GOSE > 1 and GOSE > 3) than

did APMOR. Moreover, in S4 Appendix, we see that the best-performing parametric configu-

rations of APMMN did not contain additional hidden layers between the token embedding and

output layers. Our results of performance within predictor sets consistently demonstrate that

increasing analytical complexity, in terms of using deep learning (for CPMs) or adding hidden

network layers (for APMs), did not improve discrimination of outcomes. In the case of deep

learning models, multinomial outcome encoding significantly outperformed ordinal outcome

encoding (Fig 1A).

The discrimination performance metrics of the best-performing CPMs (CPMBest), com-

pared with those of the best-performing APMs (APMBest), are listed in Table 4. In contrast to

the case of analytical complexity, we observe that expanding the predictor set yielded a signifi-

cant improvement in ORC, Somers’ Dxy, and each threshold-level dichotomous c-index except

for those of the highest GOSE thresholds (i.e., GOSE > 6 and GOSE > 7). On average, models

trained on the concise predictor set (CPMs) correctly separated two randomly selected patients

from two randomly selected GOSE categories 70% (95% CI: 68%– 71%) of the time, while

models trained on all baseline predictors (APMs) in the CENTER-TBI dataset did so 76%

(95% CI: 74%– 77%) of the time. These percentages also correspond to the average propor-

tional closeness of predicted rankings to true GOSE rankings of patient sets. CPMBest

Table 4. Best ordinal model discrimination and calibration performance per predictor set.

Metric Threshold Model

CPMBest APMBest eCPMBest

Ordinal c-index (ORC) 0.70 (0.68–0.71) 0.76 (0.74–0.77) 0.73 (0.71–0.74)

Somers’ Dxy 0.44 (0.41–0.48) 0.57 (0.54–0.60) 0.50 (0.46–0.54)

Threshold-level dichotomous c-index� 0.77 (0.75–0.78) 0.82 (0.80–0.83) 0.79 (0.78–0.80)

GOSE > 1 0.83 (0.81–0.85) 0.90 (0.88–0.92) 0.86 (0.84–0.87)

GOSE > 3 0.81 (0.79–0.83) 0.86 (0.84–0.88) 0.84 (0.83–0.86)

GOSE > 4 0.78 (0.76–0.80) 0.83 (0.80–0.85) 0.82 (0.80–0.83)

GOSE > 5 0.76 (0.74–0.77) 0.80 (0.78–0.83) 0.77 (0.75–0.79)

GOSE > 6 0.72 (0.70–0.74) 0.76 (0.73–0.79) 0.75 (0.73–0.77)

GOSE > 7 0.72 (0.69–0.74) 0.75 (0.72–0.79) 0.72 (0.70–0.75)

Threshold-level calibration slope� 0.98 (0.81–1.12) 0.84 (0.76–0.91) 1.00 (0.78–1.14)

GOSE > 1 0.95 (0.78–1.10) 0.98 (0.86–1.10) 0.98 (0.78–1.14)

GOSE > 3 0.97 (0.80–1.12) 0.90 (0.80–1.02) 1.05 (0.81–1.20)

GOSE > 4 1.06 (0.86–1.23) 0.89 (0.79–1.00) 1.10 (0.85–1.27)

GOSE > 5 1.01 (0.78–1.21) 0.82 (0.72–0.94) 1.01 (0.76–1.22)

GOSE > 6 0.98 (0.73–1.20) 0.74 (0.62–0.87) 0.97 (0.70–1.20)

GOSE > 7 0.92 (0.69–1.18) 0.68 (0.54–0.83) 0.89 (0.61–1.18)

Data represent mean (95% confidence interval) for the best-performing model, per predictor set, based on a given metric. For threshold-level metrics, a single best-

performing model, per predictor set, was determined by the overall unweighted average across the thresholds. Interpretations for each metric are provided in Materials

and methods. Mean and confidence interval values were derived using bias-corrected bootstrapping (1,000 resamples) and represent the variation across repeated k-fold

cross-validation folds (20 repeats of 5 folds) and, for the concise-predictor-based model (CPM) and the extended concise-predictor-based model (eCPM), 100 missing

value imputations. CPMBest = CPM with best value for given metric (S2 Table). APMBest = all-predictor-based model (APM) with best value for given metric (S3 Table).

eCPMBest = eCPM with best value for given metric (S4 Table). GOSE = Glasgow Outcome Scale–Extended at 6 months post-injury.

�Values in these rows correspond to the unweighted average across all GOSE thresholds.

https://doi.org/10.1371/journal.pone.0270973.t004
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explained 44% (95% CI: 41%– 48%) of the ordinal variation in GOSE while APMBest explained

57% (95% CI: 54%– 60%) in their respective model outputs. At increasing GOSE thresholds,

the dichotomous c-indices of CPMBest and APMBest, as well as the gap between them, consis-

tently decreased (Table 4). This signifies that predicting higher 6-month functional outcomes

is more difficult than predicting lower 6-month functional outcomes. Moreover, the gains in

discrimination earned from expanding the predictor set mostly come from improved perfor-

mance at lower GOSE thresholds (i.e., predicting survival, return of consciousness, or recovery

of functional independence).

CPM and APM calibration performance

The calibration slopes and calibration curves for each CPM are displayed in S2 Table and S3 Fig,

respectively. Both logistic regression CPMs (CPMMNLR and CPMPOLR) are significantly overfitted

at the three highest GOSE thresholds (i.e., GOSE> 5, GOSE> 6, and GOSE> 7). The graphical

calibration of CPMDeepOR was significantly worse than that of the other CPMs (S3 Fig). The cali-

bration slopes and calibration curves for each APM are displayed in S3 Table and S4 Fig, respec-

tively. APMOR is poorly calibrated at each threshold of GOSE. APMMN is significantly overfitted

at the three highest GOSE thresholds (i.e., GOSE> 5, GOSE> 6, and GOSE> 7).

The calibration slopes and calibration curves for the best-calibrated CPMs (CPMBest), com-

pared against those for the best-calibrated APMs (APMBest), are displayed in Table 4 and Fig

3, respectively. Unlike CPMBest, APMBest could not avoid significant overfitting at the three

highest GOSE thresholds (i.e., GOSE > 5, GOSE > 6, and GOSE > 7). At these thresholds, we

observe that the calibration curve of APMBest significantly veered off the diagonal line of ideal

calibration for higher predicted probabilities. However, due to the relative infrequency of these

predictions (comparative histograms in Fig 3), the ICI of APMBest is not significantly higher

than that of CPMBest. Our results suggest that APMBest requires more patients with higher

functional outcomes, in both the training and validation sets, to mitigate overfitting [45].

Predictor importance

Given that APMMN significantly outperforms APMOR in discrimination and calibration, we

focus the assessment of predictor importance to APMMN. A bar plot of the mean absolute

SHAP values associated with the 15 most important predictors in APMMN is provided in Fig

4. We find that the subjective early prognoses of ICU physicians had the greatest contribution

towards APMMN predictions, particularly for the prediction of death (GOSE = 1) within 6

months. Initially, this result (along with the high contribution of other physician impressions)

seems to suggest that integration of a physician’s interpretations of a patient’s baseline status

may add important prognostic information. These impressions likely summarise information

from a variable number of other predictors along with the physician’s own experience-based

judgement, resulting in high prediction contributions. However, inclusion of these variables

may result in problematic self-fulfilling prophecies [51]. For instance, a physician’s poor prog-

nosis directly influences WLSM, which was instituted in 144 (70.2%) of the 205 patients who

died in the ICU [52]. Including a variable for physician prognosis may then negatively bias the

outcome prediction and unduly promote WLSM. Therefore, we do not consider physician

impression predictors for our extended concise predictor set. We also observe that ‘age at

admission’ was the only concise predictor among the 15 most important ones. The importance

ranks (out of 1,151) of the concise predictors (Table 2) are: age = 5th, glucose = 23rd, Marshall

CT = 25th, pupillary reactivity = 29th, GCSm = 42nd, haemoglobin = 50th, hypoxia = 284th,

tSAH = 301st, EDH = 414th, and hypotension = 420th. The eight remaining predictors of the

top 15 (Fig 4) were added to the concise predictor set to form our extended concise predictor
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set. Within the tokens for “employment status before injury,” we found that the single token

indicating retirement is much more important than the others. Thus, instead of encoding all

10 options for employment status, we included a single indicator variable for retirement in our

extended concise predictor set. The eight added predictors included 2 demographic variables

(retirement status and highest level of formal education), 4 protein biomarker concentrations

(neurofilament light chain [NFL], glial fibrillary acidic protein [GFAP], total tau protein [T-

tau], and S100 calcium-binding protein B [S100B]), and 2 clinical assessment variables (worst

abbreviated injury score [AIS] among head, neck, brain, and cervical spine injuries and inci-

dence of post-traumatic amnesia at ICU admission). The extended concise predictor set,

including the ten original concise predictors and the eight added predictors, is statistically

characterised in S1 Table.

A bar plot of the mean absolute SHAP values of APMMN for each of the five folds of the

first repeat is provided in S5 Fig. Most of the eight added predictors, along with age at admis-

sion, are consistently represented among the most important predictors across the five folds.

eCPM discrimination and calibration

The discrimination and calibration metrics for the best-performing extended-predictor-based

model (eCPMBest) are listed in Table 4. Inclusion of the eight selected predictors accounted for

about half of the gains in discrimination performance achieved by APMBest over CPMBest

Fig 3. Ordinal calibration curves of best-performing concise-predictor-based model (CPMBest) and best-

performing all-predictor-based model (APMBest). GOSE = Glasgow Outcome Scale–Extended at 6 months post-

injury. In each panel, a comparative histogram (200 uniform bins), centred at a horizontal line in the bottom quarter,

displays the distribution of predicted probabilities for CPMBest (above the line) and APMBest (below the line) at the

given GOSE threshold. CPMBest and APMBest correspond to the CPM (S2 Table) and APM (S3 Table), respectively,

with the lowest unweighted average of integrated calibration indices (ICI) across the thresholds. Shaded areas are 95%

confidence intervals derived using bias-corrected bootstrapping (1,000 resamples) to represent the variation across

repeated k-fold cross-validation folds (20 repeats of 5 folds) and, for CPMBest, 100 missing value imputations. The

values in each panel correspond to the mean ICI (95% confidence interval) at the given threshold. The diagonal dashed

line represents the line of perfect calibration (ICI = 0).

https://doi.org/10.1371/journal.pone.0270973.g003
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according to ORC, Somers’ Dxy, and the dichotomous c-indices. Based on the difference in

Somers’ Dxy, the eight added predictors allowed models to explain an additional 6% of the

ordinal variation in GOSE at 6 months post-injury. Unlike APMBest, eCPMBest is not signifi-

cantly overfitted at any threshold. The calibration curves of eCPMs (S6 Fig) are largely similar

to those of the corresponding CPMs (S3 Fig), except at the highest threshold (i.e., GOSE > 7).

Similar to those of APMMN, the calibration curves of eCPMs veer off the line of ideal calibra-

tion at higher predicted probabilities of GOSE > 7. The eCPM results support the finding that

discrimination performance can be improved with the expansion of the predictor set. Further-

more, by limiting the number of added predictors and the analytical complexity of the model,

eCPM avoided the significant miscalibration of APM at higher thresholds.

The discrimination and calibration metrics for each eCPM are listed in S4 Table.

Discussion

To our knowledge, this is the most comprehensive evaluation of early ordinal outcome prog-

nosis for critically ill TBI patients. Our analysis cross-compares a range of ordinal prediction

Fig 4. Mean absolute shapley additive explanation (SHAP) values of most important predictors for multinomial-encoding all-predictor-based model

(APMMN). ICU = intensive care unit. ER = emergency room. CT = computerised tomography. GOS = Glasgow Outcome Scale (not extended).

UO = unfavourable outcome, defined by functional dependence (i.e., GOSE� 4). AIS = Abbreviated Injury Scale. GOSE = Glasgow Outcome Scale–Extended

at 6 months post-injury. CPM = predictors that are included in the original concise predictor set. eCPM = predictors that are added to the original concise

predictor set to form the extended concise predictor set. The mean absolute SHAP value is interpreted as the average magnitude of the relative additive

contribution of a predictor’s most important token towards the predicted probability at each GOSE score for a single patient. Predictor types are denoted by the

coloured boundary around predictor names. Physician impression predictors denote predictors that encode the explicit impressions or rationales of ICU

physicians and are not considered for the extended concise predictor set.

https://doi.org/10.1371/journal.pone.0270973.g004
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modelling strategies with a large range of available baseline predictors to determine the relative

contribution of each towards model performance. Employing an AI tokenisation and embed-

ding technique, we develop highly flexible ordinal prediction models that can learn from the

entire, heterogeneous set of 1,151 predictors, available within the first 24 hours of ICU stay, in

the CENTER-TBI dataset. This information includes not only all baseline clinical data currently

deemed significant for ICU care of TBI but also advanced sub-study results (e.g., protein bio-

markers, central haemostatic markers, genetic markers, and advanced MRI results) that repre-

sent the experimental frontier of clinical TBI assessment [1, 15, 16]. Therefore, our work reveals

the interpretable limits of baseline ordinal, 6-month GOSE prediction in the ICU at this time.

Our key finding is that augmenting the baseline predictor set was much more relevant for

improving ordinal model prediction performance than was increasing analytical complexity

with deep learning. Within a given predictor set, artificial neural networks did not perform bet-

ter than logistic regression models (S2 and S4 Tables), nor did models with additional hidden

layers for the APMs (S4 Appendix). This result is consistent with findings in the binary predic-

tion case [53]. On the other hand, augmenting the predictor set, from CPM to APM, substan-

tially improved ordinal discrimination (ORC: +8.6%, Table 4) and prediction at lower GOSE

thresholds (e.g., GOSE> 1 c-index: +8.4%, Table 4). Just adding eight predictors to the concise

predictor set accounted for about half of the gains in discrimination. However, the addition of

predictors negatively affected model calibration, particularly at higher GOSE thresholds (Fig 3,

Table 4). This result underlines the need for careful consideration of probability calibration

during model development (e.g., recalibrate with isotonic regression to mitigate overfitting).

At the same time, our results also indicate that ordinal early outcome prognosis for critically

ill TBI patients is limited in capability. The best-performing model, which learns from all base-

line information in the CENTER-TBI dataset, can only correctly discriminate two randomly

chosen patients with two randomly chosen GOSE scores 76% (95% CI: 74%– 77%) of the time.

Equivalently, if the best performing model was tasked with ranking seven randomly chosen

patients–each with a different true GOSE–by predicted GOSE, an average 5.10 (95% CI: 4.74–

5.46) of the 21 possible pairwise orderings will be incorrect. Currently, ordinal model outputs

explain, at best, 57% (95% CI: 54%– 60%) of the ordinal variation in 6-month GOSE. Ordinal

prediction models struggle to reliably predict full recovery (GOSE > 7 c-index: 75% [95% CI:

72%– 79%], Table 4), and gains from expanding the predictor set diminish with higher GOSE

thresholds.

It is important to acknowledge that the predictor importance results of this article should

not be interpreted for predictor discovery or validation. SHAP values are visualised (Fig 4)

solely to globally interpret APMMN predictions and to form the extended concise predictor set.

Risk factor validation, which falls out of the scope of this work, would require investigating the

robustness and clinical plausibility of the relationship between predictor values and their cor-

responding SHAP values [54]. Moreover, causal analysis with apt consideration of confound-

ing factors or dataset biases would be necessary before commenting on the potential effects or

mechanisms of individual predictors.

We recognise several limitations in our study. While the concise predictor set was originally

designed for prognosis after moderate-to-severe TBI [8] (i.e., baseline GCS 3–12), 26.6% of

our study population had experienced mild (i.e., baseline GCS 13–15) TBI (Table 1). Predictor

sets have been designed for mild TBI patients (e.g., UPFRONT study predictors [55]). How-

ever, in line with the aims of the CENTER-TBI project [15], we focus the TBI population not

by initial characterisation with GCS but by stratum of care (i.e., admission to the ICU). There-

fore, we selected the single concise predictor set that was best validated for the majority of criti-

cally ill TBI patients. Our outcome categories (GOSE at 6 months post-injury) were

statistically imputed for 13% of our dataset using available GOSE between 2 weeks and one-
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year post-injury. Although this method was strongly validated on the same (CENTER-TBI)

dataset [18], we do recognise that our outcome labels may not be precisely correct. The focus

of this work is on the prediction of functional outcomes through GOSE; nonetheless, it is

worth considering other outcomes, such as quality-of-life and psychological health, that are

important for clinical decision making [56]. Finally, before the AI models developed in this

work and in subsequent iterations could be integrated into ICU practice, limitations of gener-

alisability must be addressed [57]. Our models were developed on a multicentre, adult popula-

tion, prospectively recruited between 2014 and 2017 [25], across Europe, and may encode

recruitment, collection, and clinical biases native to our patient set. AI models must continu-

ously be updated, iteratively retrained on incoming information, to help fight the effect these

biases may have on returned prognoses for a given patient.

In the setting of TBI prognosis, we encourage the use of AI not to add analytical complexity

(i.e., make models “deeper”) but to expand the predictor set (i.e., make models “wider”). Stud-

ies have uncovered promising prognostic value in neuro-inflammatory markers [58, 59] and

high-resolution TBI monitoring and imaging modalities (e.g., intracranial and cerebral perfu-

sion pressure [60–62], accelerometery [63], and MRI [64–66]), and we recommend integrating

these features into ordinal prognostic models, especially to improve prediction of higher func-

tional outcomes. We also believe that there is a feasible performance limit to reliable ordinal

outcome prognosis if only statically considering the clinical information from the first 24

hours of ICU stay. It would seem far-fetched to expect all relevant information pertaining to

an outcome at 6 months to be encapsulated in the first 24 hours of ICU treatment. Heteroge-

neous pathophysiological processes unfold over time in patients after TBI [67, 68], and

dynamic prediction models, which return model outputs longitudinally with changing clinical

information, are better equipped to consider these temporal effects on prognosis. Dynamic

prognosis models have been developed for TBI patients [69] and the greater ICU population

(not exclusive to TBI) [35, 70, 71], but none of them predict functional outcomes on an ordinal

scale. We suggest that the next iteration of this work should be to develop ordinal dynamic

prediction models on all clinical information available during the complete ICU stay.
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Supporting information

S1 Appendix. Explanation of selected ordinal prediction models for CPM and eCPM.

(PDF)
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S2 Appendix. Explanation of APM for ordinal GOSE prediction.

(PDF)

S3 Appendix. Detailed explanation of ordinal model performance and calibration metrics.

(PDF)

S4 Appendix. Hyperparameter optimisation results.

(PDF)

S1 Fig. CONSORT-style flow diagram for patient enrolment and follow-up.

CENTER-TBI = Collaborative European NeuroTrauma Effectiveness Research in TBI.

ICU = intensive care unit. GOSE = Glasgow Outcome Scale–Extended. MSM = Markov multi-

state model (see Materials and methods). The dashed, olive-green line in the lower-middle of

the diagram divides the enrolment flow diagram (above) and the follow-up breakdown

(below).

(TIF)

S2 Fig. Characterisation of missingness among concise predictor set. U.P. = unreactive

pupils. GCSm = motor component score of the Glasgow Coma Scale. Hb = haemoglobin. Glu.

= glucose. HoTN = hypotension. Marshall = Marshall computerised tomography classification.

tSAH = traumatic subarachnoid haemorrhage. EDH = extradural haematoma. (A) Proportion

of total sample size (n = 1,550) with missing values for each IMPACT extended model predic-

tor. (B) Missingness matrix where each column represents a concise predictor, and each row

represents a combination of missing predictors (red) and non-missing predictors (blue) found

in the dataset. The prevalence of each combination (i.e., row) in the study population is shown

with a horizontal histogram (far right) labelled with the proportion of the study population

with the corresponding combination of missing predictors. For example, the bottom row of

the matrix shows that 54.77% of the study population had no missing concise predictors while

the penultimate row shows that 14.71% of the study population had only glucose and haemo-

globin missing among the concise predictors.

(TIF)

S3 Fig. Ordinal calibration curves of each concise-predictor-based model (CPM).

GOSE = Glasgow Outcome Scale–Extended at 6 months post-injury. Shaded areas are 95% confi-

dence intervals derived using bias-corrected bootstrapping (1,000 resamples) to represent the vari-

ation across repeated k-fold cross-validation folds (20 repeats of 5 folds) and 100 missing value

imputations. The values in each panel correspond to the mean integrated calibration index (ICI)

(95% confidence interval) at the given threshold. The diagonal dashed line represents the line of

perfect calibration (ICI = 0). The CPM types (CPMMNLR, CPMPOLR, CPMDeepMN, and CPMDee-

pOR) are decoded in the Materials and methods and described in S1 Appendix.

(TIF)

S4 Fig. Ordinal calibration curves of each all-predictor-based model (APM).

GOSE = Glasgow Outcome Scale–Extended at 6 months post-injury. Shaded areas are 95%

confidence intervals derived using bias-corrected bootstrapping (1,000 resamples) to represent

the variation across repeated k-fold cross-validation folds (20 repeats of 5 folds). The values in

each panel correspond to the mean integrated calibration index (ICI) (95% confidence inter-

val) at the given threshold. The diagonal dashed line represents the line of perfect calibration

(ICI = 0). The APM types (APMMN and APMOR) are decoded in the Materials and methods

and described in S2 Appendix.

(TIF)
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S5 Fig. Mean absolute SHAP values of the most important predictors for APMMN in each

of the five folds of the first repeat. ICU = intensive care unit. CT = computerised tomogra-

phy. ER = emergency room. GOS = Glasgow Outcome Scale (not extended).

AIS = Abbreviated Injury Scale. UO = unfavourable outcome, defined by functional depen-

dence (i.e., GOSE� 4). FIBTEM = fibrin-based extrinsically activated test with tissue factor

and cytochalasin D. GOSE = Glasgow Outcome Scale–Extended at 6 months post-injury. The

mean absolute SHAP value is interpreted as the average magnitude of the relative additive con-

tribution of a predictor’s most important token towards the predicted probability at each

GOSE score for a single patient.

(TIF)

S6 Fig. Ordinal calibration curves of each extended concise-predictor-based model

(eCPM). GOSE = Glasgow Outcome Scale–Extended at 6 months post-injury. Shaded areas

are 95% confidence intervals derived using bias-corrected bootstrapping (1,000 resamples) to

represent the variation across repeated k-fold cross-validation folds (20 repeats of 5 folds) and

100 missing value imputations. The values in each panel correspond to the mean integrated

calibration index (ICI) (95% confidence interval) at the given threshold. The diagonal dashed

line represents the line of perfect calibration (ICI = 0). The eCPM types (eCPMMNLR, eCPM-

POLR, eCPMDeepMN, and eCPMDeepOR) are decoded in the Materials and methods and

described in S1 Appendix.

(TIF)

S1 Table. Extended concise baseline predictors of the study population stratified by ordi-

nal 6-month outcomes.

(PDF)

S2 Table. Ordinal concise-predictor-based model (CPM) discrimination and calibration

performance.

(PDF)

S3 Table. Ordinal all-predictor-based model (APM) discrimination and calibration perfor-

mance.

(PDF)

S4 Table. Ordinal extended concise-predictor-based model (eCPM) discrimination and

calibration performance.

(PDF)
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Maréchal49, Julia Mattern90, Catherine McMahon91, Béla Melegh92, David Menon47,�, Tomas
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lin, Germany
136Department of Intensive Care Adults, Erasmus MC–University Medical Center Rotter-

dam, Rotterdam, the Netherlands
137icoMetrix NV, Leuven, Belgium
138Movement Science Group, Faculty of Health and Life Sciences, Oxford Brookes Univer-

sity, Oxford, UK
139Psychology Department, Antwerp University Hospital, Edegem, Belgium
140Director of Neurocritical Care, University of California, Los Angeles, USA
141Department of Neurosurgery, St.Olavs Hospital, Trondheim University Hospital, Trond-

heim, Norway
142Department of Emergency Medicine, University of Florida, Gainesville, Florida, USA
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