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Chapter 2

Pioneering and contemporary challenges in antibiotic discovery

The discovery and introduction of antibiotics into clinical use was the most remarkable
medical breakthrough of the past century. Fleming’s discovery of the first antibiotic, penicillin,
in 1928 marked the beginning of the modern medical era of antibiotics (Katz & Baltz, 2016,
Fleming, 2001). Inspired by Fleming’s discovery, Selman Waksman started a systematic study
of microbes as producers of antimicrobial compounds in the late 1930s (Lewis, 2012). The
canonical “Waksman platform” for antibiotic discovery involved the identification of new
bacterial isolates from the soil samples, antimicrobial screenings, and subsequent bioassay-
guided purification of the bioactive compound (Waksman, 1945). Waksman discovered
fifteen antibiotics made by soil-dwelling actinomycetes, including streptomycin, the first
antibiotic against tuberculosis. Selman Waksman’s pioneering work sparked a significant
turning point in antibiotic discovery and opened the door to the golden era of antibiotic
discovery. This period witnessed a surge in the identification and development of crucial
antibiotics like bacitracin, tetracycline, polymyxin, vancomycin, and many others (Katz &
Baltz, 2016) (Figure 1). More than half of all the classes of clinically used antibiotics came
from actinomycetes, while the rest derived from fungi and Firmicutes (Katz & Baltz, 2016).

Soil bacteria produce a wide range of natural products that protect against insects,
herbivores, and phytopathogens (including bacteria, fungi, nematodes, and viruses), as
extensively highlighted in numerous reviews (Katz & Baltz, 2016, Bérdy, 2005, Newman &
Cragg, 2020, Olishevska et al., 2019). Several theories have been proposed to explain why soil
microbes produce such a diverse array of bioactive natural products (NPs). The most likely
explanation is that they have multiple functions and act as chemical weapons or signaling
molecules; or mediate interactions with eukaryotic hosts such as insects and plants (Seipke
etal., 2012).

Following golden era of antibiotic discovery, the efficiency of classical screening
programs dropped significantly (Figure 1), making them unprofitable for pharmaceutical
companies (Baltz, 2008). Due to the high rediscovery rate, it was hypothesized that the
biosynthetic potential of the traditional producers had been fully explored (Cooper & Shlaes,
2011, Hutchings et al., 2019). Recent advancements in sequencing technologies have resulted
in the availability of a repository of genome sequence information (Katz & Baltz, 2016, Baltz,
2008). Once thought to be largely devoid of new drugs, these technologies revealed evidence
for a treasure trove of yet undiscovered molecules that lie hidden in the biosynthetically
talented bacterial genera (Bentley et al., 2002, Ikeda et al., 2003, Wipat & Harwood, 1999).
Next-generation sequencing of microbial genomes has rejuvenated the discovery and
characterization of diverse natural products and revealed the still largely underexplored

biosynthetic potential of bacteria (Bentley et al., 2002).
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Figure 1. Timeline of antibiotic discovery and antibiotic resistance appearance. The icon marks the origin of
the antibiotic class. The period between the 1950s and 1970s was the golden era of the discovery of novel antibiotic
classes, but the development declined between the 1970s and the 1990s. Note that the increase in antibiotic resistance

parallels a lack of success in discovering new antibacterial drugs.

Genome mining to evaluate the biosynthetic potential of bacteria

Thus, as the bacterial DNA ultimately encodes the production of all specialized metabolites,
genome mining may offer a new route to natural product-based medicine discovery. In the
bacterial genomes, the genes encoding biosynthetic pathways for natural products are usually
organized in so-called biosynthetic gene clusters (BGCs) (Martin & Liras, 1989). It is efficient
for microbes to have all the genes encoding a biosynthetic pathway in the same place; in
this way, the entire production line can be activated by transcribing DNA from this genomic
region. The toolkit for identifying BGCs involves methods to pinpoint key microbial sources,
obtain high-quality genome data through sequencing technologies like Illumina, PacBio, and
Oxford Nanopore, and analyze it using diverse bioinformatic tools (Mullowney et al., 2023).
Genome mining tools antiSMASH (Blin et al., 2023) and PRISM (Skinnider et al., 2020)2020
have been developed to identify and annotate microbial BGCs. With the help of antiSMASH
(Blin et al., 2023) we can identify BGCs in microbial genomes and classify them based on
the type of molecule they are predicted to produce, such as polyketides (Ray & Moore, 2016,
Donadio et al., 2007, Shen, 2003), ribosomally synthesized and post-translationally modified
peptides (RiPP) (Montalban-Lopez et al., 2021), terpenes (Avalos et al., 2022, Schulz &
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Dickschat, 2007), and nonribosomal peptides (Sieber & Marahiel, 2005, Nivina et al., 2019,
Stissmuth & Mainz, 2017). PRISM uses pHMM:s to detect BGCs and additionally predicts
biological activity through machine learning (Skinnider et al., 2020)2020. Alternative deep-
learning genome mining software for BGC prediction, such as ClusterFinder (Cimermancic
et al., 2014), DeepBGC (Hannigan et al., 2019), GECCO (Carroll et al., 2021), and SanntiS
(Sanchez et al., 2023), uncovered undetectable putative BGCs that may code for natural
products with novel bioactivities. BAGEL (van Heel et al, 2013) and RODEO (Tietz et
al., 2017) are two genome mining tools designed explicitly for genome mining of RiPPs.
Additionally, RiPPs may also be identified by their RiPP recognition Element (RRE), and the
recently developed RRE-finder was incorporated into the shell of antiSMASH 6 (Kloosterman
et al., 2020b). Nevertheless, the diversity of RiPPs is vast, and the chemical space is expanding
rapidly. To allow their detection, genome mining algorithms were developed to identify
BGCs not captured using canonical rule-based annotation approaches (de Los Santos, 2019,
Kloosterman et al., 2020a, Merwin et al., 2020, Tietz et al., 2017). This includes the machine
learning-based decRiPPter algorithm, which allowed the identification of a novel subclass
of lanthipeptides that had escaped identification via existing algorithms (Kloosterman et al.,
2020a). The extensive list of the genome-mining software, tools, and databases utilized for NP
discovery is available on the Secondary Metabolite Bioinformatics Portal (SMBP) (Weber &
Kim, 2016).

The immense amount of genome data has prompted genome mining analyses
conducted on a large scale. Rather than mining a single genome at a time, we can now
incorporate big data approaches to mine a large pool of genomes or metagenomes for novel
NPs (Medema & Fischbach, 2015). This approach is called “global genome mining” (Medema
et al., 2021). Bioinformatics tools that facilitate the analysis of big BGC datasets include the
EvoMining (Sélem-Mojica et al., 2019), ARTS (Alanjary et al., 2017), BiG-SCAPE and the
CORASON (Navarro-Muiioz et al., 2020). Moreover, a highly scalable tool BiG-SLiCE was
recently developed to deal with extensive data from global genome mining (Kautsar et al.,
2021b).

With the simultaneous sequencing of hundreds to thousands of microbial genomes
becoming more common, the large quantities of BGC data resulting from this pose an
opportunity and challenge. Databases such as antiSMASH-DB (Blin et al., 2024)2024, IMG-
ABC (Palaniappan et al., 2020), and MIBiG (Terlouw et al., 2023) play a critical role in
analyzing BGCs by enabling the comparison of newly sequenced BGCs with those predicted
and experimentally characterized in the past. In addition to the mentioned databased for
exploring BGCs from the publicly available data, the recently established BiG-FAM database
focuses on the gene cluster family (GCF) relationship of the detected BGCs and enables GCF-
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based exploration and homology searching of >1.2 million BGCs harbored by >200,000

microbial genomes (Kautsar ef al., 2021a).

Translating the genetic code into compounds

Once BGCs of interest have been identified based on compound class, resistance genes, or
phylogeny, predicting the specific final product remains challenging (Scherlach & Hertweck,
2021). For some natural product classes, we have a relatively good understanding of how the
encoded biosynthetic machinery builds a natural product, and thus, we can attempt to predict
the scaffold structure of the produced natural product. Among all natural product classes,
the chemical structure can be predicted for NRPSs, modular polyketide synthase (PKSs), and
RiPPs (Scherlach & Hertweck, 2021). The core structure and post-translational modifications
(PTMs) of the RiPPs can be reliably predicted by RODEO (Tietz et al., 2017), RiPPER (Moffat
et al., 2021), antiSMASH (Blin et al., 2023) and PRISM (Skinnider et al., 2020)2020.

Considering the scope of the thesis, the prediction principle will be illustrated based
on the NRPS assembly line. NRPS machineries are complex, multi-domain enzymes that
select and condensate amino acids iteratively to build up peptidic natural products (Sieber
& Marahiel, 2005, Nivina et al., 2019, Stissmuth & Mainz, 2017). To achieve nonribosomal
peptide synthesis, minimal enzymatic complexes require four distinct domains called core
or essential domains: condensation (C), adenylation (A), peptidyl carrier protein (PCP),
and a terminal thioesterase (TE) domain (Figure 2) (Marahiel, 2016). Three domains make
up the minimum elongation module, with C domains catalyzing condensation, A domains
mediating building block selection through adenylation and subsequent thiolation, and non-
catalytic PCP domains functioning as mechanical arms to which intermediate scaffolds are
tethered between reactions (Winn et al., 2016). An NRPS assembly line only requires a single
TE domain, typically at the end of an NRPS enzyme, which is responsible for chain release
(Mootz et al., 2002).

As A domains govern building block selection, many NRP structure prediction
algorithms attempt to predict the selected substrate from A domain sequence. Examples of
such machine learning algorithms include NRPSpredictor2 (Rottig ef al., 2011), AdenylPred
(Mongia et al., 2023), SANDPUMA (Chevrette et al., 2017), and AdenPredictor (Chevrette et

al., 2017), which were trained on A domain sequences of known specificity.
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Figure 2. Schematic representation of NRP biosynthesis. The NRP biosynthesis involves the activation of amino
acid substrates via ATP, facilitated by the adenylation domain (A). Afterward, the aminoacyl-AMP intermediate is
captured by the thiol group of the flexible 4-phosphopantetheine arm linked to a peptidyl carrier protein (PCP)
domain. Condensation domains (C) subsequently facilitate peptide bond formation between thioester intermediates
loaded onto neighboring PCP domains. Lastly, the final module hosts an additional thioesterase domain (TE), which
is responsible for either hydrolysis or cyclization to release the product from the NRPS (adapted from Winn et al.,
2016).

However, the diversity and complexity of NRPs have made systematic investigation difficult,
and consequently, most genetically encoded NRPs in bacteria have been overlooked. An
alternative way to investigate the potential of novel scaffolds predicted by genome mining
is via organic synthesis or chemoenzymatic total synthesis. The approach of synthetic
bioinformatic natural product (syn-BNP) involves bioinformatic prediction of the natural
product structure based on the genome sequence with subsequent organic synthesis of
compounds, circumventing the need for bacterial culture and gene expression (Scherlach
& Hertweck, 2021, Chu et al., 2020). Concurrently, solid phase peptide synthesis (SPPS) of
structurally diverse peptides has become rapid and economical, making NRPS gene clusters
ideal candidates for a syn-BNP approach. This new methodology completely avoids the issues
of isolation and scalability of target compounds. The syn-BNP approach was successfully
applied to discover new antimicrobial entities from sequenced bacterial genomes or
metagenomes, with an emphasis on the de novo discovery of novel clinically relevant NRP
antibiotics. This approach led to the discovery of humimycin A and B (Chu et al., 2016)2016,
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kanglemycins (Peek et al., 2018), macolacin (Wang et al., 2022c¢), cilagicin (Wang et al., 2022b)
with potent bioactivity against multidrug-resistant (MDR) pathogens.

Examples of clinically used nonribosomal peptides

NRPs are among the most widespread groups of natural products with diverse chemical
structures (Wang et al., 2014). NRPs often contain both proteinogenic and nonproteinogenic
amino acids, significantly expanding their chemical diversity and bioactivity spectrum
(Caboche et al., 2010). The rising issue of antibiotic resistance has led to increased interest in
the therapeutic potential of NRP antibiotics (Hancock & Chapple, 1999). Peptide antibiotics
currently used in clinics, such as bacitracin, daptomycin, polymyxin, and vancomycin
constitute effective treatments for infections caused by multidrug-resistant pathogens (Figure
3) (Felnagle et al., 2008, Liu et al., 2019).
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Figure 3. Structures of clinically used NRPs.

Polymyxins are active against Gram-negative bacteria and are typically only used to treat
infections caused by multidrug-resistant organisms, including carbapenem-resistant
Enterobacterales, Acinetobacter baumannii, and Pseudomonas aeruginosa (Nang et al., 2021,
Slingerland & Martin, 2024). The mode of action of polymyxins involves binding to the lipid A
component of lipopolysaccharides (LPSs) in the outer membrane of Gram-negative bacteria.

The positively charged 2,4-diaminobuturic acid residues of polymyxins electrostatically
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interact with the negatively charged phosphate groups of lipid A, facilitating binding and
leading to membrane disruption and increased permeability (Mohapatra et al., 2021). In
contrast, NRPs like bacitracin, vancomycin, and daptomycin are active preliminary against
Gram-positive bacteria and act as inhibitors of cell wall biosynthesis at the different stages of
this complex process (Buijs ef al., 2023). Daptomycin and vancomycin are considered “last
resort” antibiotics for the treatment of severe Gram-positive infections (Gonzalez-Ruiz et al.,
2016, Griffith, 1981). Vancomycin targets and tightly binds lipid I, an essential building block
of the cell wall, resulting in the cessation of cell wall biosynthesis (Williams & Butcher, 1981,
Williams, 1984). The mode of action of daptomycin is multifaceted and involves the targeting
and depolarization of bacterial cell membrane alongside the inhibition of cell wall biosynthesis
by direct binding to lipid IT (Kotsogianni et al, 2021, Grein et al., 2020). Other NRPs, like
bacitracin, sequester the membrane-associated phospholipid undecaprenyl pyrophosphates
(C,,PP), transport molecule that carries the building blocks of the peptidoglycan bacterial
cell wall (Ming & Epperson, 2002). The binding prevents peptidoglycan synthesis, thereby
inhibiting bacterial cell growth. The recent discovery of cilagicins, which exhibit a unique
mode of action and bind both C, PP and undecaprenyl phosphate (C_,P) involved in cell wall
biosynthesis, highlights the significant untapped potential of nonribosomal peptides (NRPs)

in combating antibiotic-resistant bacteria (Wang et al., 2022b).

Exceptions to the rules of NRP biosynthesis
Still, translating genomic knowledge into molecules remains challenging. The diversity of
NRPS-derived peptides is not only determined by the incorporation of different amino acid
building blocks but also by an ever-increasing number of characterized tailoring reactions
and enzymatic domains (McErlean et al, 2019). Moreover, the promiscuity of NRPS
modules allows the production of multiple compounds encoded by a single BGC (Duban
et al., 2022). In addition, a constantly expanding library of scientific literature unravels new
examples of nonribosomal peptide synthetases exhibiting rare domains and noncanonical
module organization, leading to unique microbial strategies of natural products biosynthesis
(Chevrette et al.,2020). Moreover, recent publications demonstrate a much greater mechanistic
diversity in NRPS assembly lines than previously anticipated. Recent characterization of
several NRPS megasynthases revealed examples of the loss of the co-linearity rule (Wenzel
& Miiller, 2005). It turned out that modules from bacterial NRPSs can be used repeatedly,
skipped, or even split in the biosynthesis of a single product (Gewolb, 2002, Marahiel, 2009,
Wenzel & Miiller, 2005).

One notable example entails collaborative natural product biosynthesis, involving
crosstalk between two separate BGCs. Such pairing of biosynthetic enzymes from distinct

BGCs within the same biosynthetic pathway gives rise to increased chemical diversity
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and an expanded scope of biological activity. Over the past few years, this phenomenon
of collaborative biosynthesis has received increased attention, and specialized metabolites
produced through such strategies are known as ‘hybrid molecules’ or ‘chimeras’ (Mevers et
al., 2019, Yin et al., 2022). Chimeric biosynthesis has previously been observed in various
NRPS and PKS (hybrid) systems, including the biosynthesis of azaphilone (Huang et al.,
2020), penilactones (Fan et al., 2019), spirotryprostatin A (Yan et al., 2019), and echinocandin
B (Cacho et al., 2012).

Despite the impact of genomics, it only delivers possible leads, which needs to be
supported by experimental evidence provided by microbiology, analytical chemistry, and
bioassays to purify and identify the NPs and determine their mode of action. Analytical
chemistry techniques, such as high-resolution mass spectrometry and NMR (nuclear
magnetic resonance spectroscopy), complement theoretical in silico predictions. They play
a crucial role in bridging the gap between genomic potential and the actual production of
metabolites (Caesar et al., 2021).

Expanding chemical space and identification of bioactive natural products
Activation and characterization of cryptic BGCs

Many BGCs are not expressed during standard laboratory conditions, and thus, their cognate
natural products escape attention (Nett et al., 2009, Kolter & van Wezel, 2016). To unlock the
tull potential of bacteria, it’s crucial to understand their ecological context, as this will provide
clues to the activation mechanisms of their biosynthetic pathways (van Bergeijk et al., 2020, Zhu
et al.,2014a). The signals that mediate the production of specialized metabolites are diverse and
include physical cell-cell interactions, nutrient depletion, enzymatic conversion of precursors
to active metabolites and microbial small molecules (Hoskisson & Fernandez-Martinez, 2018,
van der Heul et al., 2018, Huang et al., 2005). However, for many interactions, the signals and
molecular mechanisms remain unknown. Several methods have been developed to boost the
production of hidden natural products, including ribosome engineering, co-culture, varying
culturing conditions, insertion of active promoters, and high-throughput elicitor screening
(Bertrand et al., 2014, Takano, 2006, Zhu et al., 2014a, Bode et al., 2002). The expression of
bacterial BGCs can be manipulated by altering the culturing conditions. This is the basis
of the one-strain-many-compounds (OSMAC) concept, meaning that a strain can produce
a plethora of distinct compounds if exposed to different abiotic or biotic conditions (Bode
et al., 2002). In co-culturing, microbial partners are added to a single culture to trigger the
expression of metabolic programs involved in defense or nutrient competition (Sugiyama et
al., 2015, Hoshino et al., 2015, Bertrand et al., 2014, Wu et al., 2015b, Schroeckh et al., 2009).
As an alternative, high-throughput elicitor screening can be used to induce the expression of

silent BGCs using the small compounds. This is an efficient platform that enables the discovery
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of small molecule activators that lead to the induction of silent biosynthetic clusters as well as
structural and functional elucidation of their products (Seyedsayamdost, 2014, Moon ef al.,
2019a, Moon et al., 2019b). Moreover, advances in synthetic biology enable the engineering
of biological systems to express customized biosynthetic pathways. Synthetic biology tools
can alter the genome of selected microorganisms to induce the expression of BGCs and
the efficient production of natural products (Smanski ef al., 2016, Zhang et al., 2019). The
resulting “cell factory” provides improved genomic stability and allows the optimization of

the targeted biosynthetic pathway in culturable and biochemically characterized systems.

LC-MS-based metabolomics methods for data acquisition

For metabolite profiling, culture extracts are analyzed by NMR spectroscopy, high-
resolution mass spectrometry (HRMS), or combined methods involving upstream liquid
chromatography (LC), such as LC-HRMS and more recent LC-NMR (Atanasov et al., 2021,
Wau et al., 2015a). Compatibility of reversed-phase (RP) LC with biological samples allowed
its utilization in combination with accurate mass MS (QToF or Orbitrap technologies) (Roux
et al., 2011). LC-MS established itself as the technology of choice for microbial metabolic
profiling due to the widespread availability of suitable instrumentation and ease of both
access and use, combined with good sensitivity, specificity, and resolving power. Considering
the scope of the thesis, I will here focus mainly on LC-MS-based metabolomics. For NMR-
based metabolomics the reader is referred to reviews elsewhere (Markley et al., 2017, Wu et
al., 2016a, Grienke et al., 2019), and likewise for reviews of MS-based approaches (Krug &
Miiller, 2014, Bouslimani et al., 2014, Spraker et al., 2020).

The key challenges scientists face when targeting the metabolome are analytical
reproducibility, feature coverage, dynamic range, component annotation, data analysis, and
processing large sample sets. LC-MS has enabled the detection of thousands of mass features
within a single biological sample. Therefore, one of the main challenges in LC-MS-based
metabolomics is the comprehensive and accurate analysis of large datasets. Freely available
data preprocessing tools, such as XCMS (Smith et al., 2006), Mzmine (Pluskal et al., 2010),
MetaboAnalyst (Pang et al., 2022), MetAlign (Lommen, 2009), Metabolomic Analysis and
Visualization Engine (MAVEN) (Clasquin et al., 2012), MET-COFEA (Zhang et al., 2014)
as well as commercial software, have been developed to facilitate data processing. Moreover,
the recently developed publicly available R-based web application Metabolomics Explorer
(MetEx) enables users to quickly and intuitively analyze comprehensive metabolomics
datasets. MetEx facilitates analysis of complex datasets, consisting of retention time, m/z, and
MS intensity features, as a function of hundreds of conditions (Covington & Seyedsayamdost,
2021).
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LC-MS-based metabolomics and the discovery of bioactive compounds

Metabolomics measures multiple metabolic responses in living systems, allowing simultaneous
tracking of changes in hundreds of small molecules. However, the complexity and diversity
of chemical structures make metabolomic analysis challenging. The methodologies employed
to interpret high-throughput metabolomics data mainly derived from earlier emerging omics
technologies. Classic approaches aim to assess group-wise differences, either in a univariate,
parameter-by-parameter fashion, e.g., t-test, analysis of variance (ANOVA), or using
multivariate techniques (e.g., MANOVA, ASCA, PCA, PLS) (Bartel et al., 2013). Statistical
models such as Pearson correlation, partial least squares (PLS), discriminant analysis
(PCA-DA, PLS-DA, OPLS-DA), and hierarchical cluster analysis (HCA) are often used to
link metabolite fingerprints to bioactivity data (Bartel et al., 2013). The general idea behind
supervised methods is to unravel distinct metabolite profiles that are associated with the
observed bioactivity of the sample. A recent extension to the PLS repository is the orthogonal-
PLS (OPLS) method. In the OPLS analysis, the data variation is split into the variance of
interest and a noise part, which is unrelated to the response (Dettmer et al., 2007). This leads
to a simplified interpretability of the resulting components, allowing additional assessment of
within- and between-group variance.

While the approaches mentioned above provide a list of the highlighted features,
the information obtained is at the prediction level. Multiple analytical modules involving
different bioassays and detection technologies should be linked to allow simultaneous
bioactivity evaluation and identification of compounds in complex compound mixtures. Such
approaches may help provide a more comprehensive insight into compounds responsible for

the bioactivity of interest.

GNPS molecular networking and dereplication of natural products

In the pursuit of antibiotic discovery, a pivotal role is played by Global Natural Products
Social molecular networking (GNPS) (Wang et al., 2016). This open-access platform is a
hub for sharing, processing, and visualizing tandem mass spectrometry data (Quinn et al.,
2017). The concept of molecular networking is based on the organization and visualization
of tandem MS data through a spectral similarity map, revealing the presence of homologous
MS$? fragmentations. As structurally related compounds share similar fragmentation spectra,
their nodes tend to connect and create spectral families (Wang et al., 2016). Classical molecular
networking has recently been integrated with feature detection methods to introduce Feature-
Based Molecular Networking (FBMN). This approach enables the discrimination of isomers
within the molecular network and incorporates quantitative information generated by the

feature detection tools (Nothias et al., 2020).
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Molecular networking lays the groundwork for bioactivity-based molecular networking.
Combining the MN with metabolite “bioactivity scores” enables the detection and relative
quantification of LC-MS/MS spectral features across chromatographic fractions. The
“bioactivity scores” are calculated based on the Pearson correlation between feature intensity
across samples and the bioactivity level associated with each sample (Nothias et al., 2018).
The correlation of the metabolite quantity and observed bioactivity facilitates the discovery
of biologically active compounds within complex metabolomic datasets.

The major challenge in metabolomics is the identification of previously reported
compounds, known as structural dereplication (Gaudencio & Pereira, 2015, Hubert et
al., 2017, Silver, 2011). Dereplication approaches include the determination of molecular
formula using the Seven Golden Rules, Sirius 2, and MS-FINDER software and searching for
compounds described by this formula in chemical structure databases (Gaudencio & Pereira,
2015, Mohamed et al., 2016). The primary challenge of these approachs is the exponential
increase in the number of potential formulas as the molecular mass of metabolites grows.
Furthermore, existing chemical databases frequently contain numerous compounds with
identical formulas, which complicates the annotation process.

Currently, the combination of molecular networking with annotation methods such
as MS2LDA (van der Hooft ef al., 2016), Network Annotation Propagation (NAP) (da Silva
et al., 2018) or DEREPLICATOR (Mohimani et al., 2018) accelerates the identification of
unannotated ions. MolNetEnhancer (Ernst et al., 2019) combines outputs from MS2LDA,
NAP, DEREPLICATOR, and molecular networking, along with the automated chemical
classification from ClassyFire (Djoumbou Feunang et al., 2016), to assign structural features
to chemical classes. Algorithms such as DEREPLICATOR or recently published VarQuest
(Gurevich et al., 2018) were designed to expand the library search to identify variants of
known peptidic natural products. The newly developed tool Qemistree is employed to classify
MS data into a tree structure (Tripathi et al., 2021).

Future perspectives
A number of innovative methods have evolved to enhance the synergy between genomics
and metabolomics for natural product discovery. Future developments for the processing of
metabolome data will be focused more on continuous platform improvement, elucidation of
structural identification, and functional interpretation of metabolomic data. As multi-omics
technologies mature, there is an increasing need for data integration between platforms.
One of the key challenges in the field of omics-based natural product discovery is the set-
up of high-quality datasets to train deep learning algorithms and appropriate strategies for
algorithm validation.

Despite the advances in the genomics and metabolomics fields, the current state of

the art regarding BGC and natural product diversity limits our ability to guide drug discovery.
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It is, therefore, necessary to further characterize the extant microbial diversity, pathways,
and regulatory mechanisms for natural product biosynthesis. Moreover, characterizing the
functions and modes of action of natural products in native microbial communities will be
crucial for prioritizing BGCs and eliciting their expression. This should bring many more

natural products to light, potentially contributing to future drug candidates.

25





