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Abstract. Combinatorial game theory provides results for the class of two-player, deterministic games with perfect infor-
mation. With the aim of generalizing this theory to the class of non-perfect information games in mind, we introduce and
analyze three variants of the game of Nim. In these variants, the opponent only receives partial information on the move
executed by the opponent. We model the variants as games in extensive form and compute Nash equilibria for different
starting configurations. For one variant, this provides a full characterization of the game. For the other variants, we prove
some partial and structural results, but a full characterization remains elusive.
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1. INTRODUCTION

The field of combinatorial game theory considers the class of two-person, deterministic games
with perfect information. For these games, a beautiful theory has been established, showcased in
Berlekamp et al. (1982), Siegel (2013) and Albert et al. (2019). Games belonging to this class are,
e.g., Nim, Hackenbush, Hex and Domineering. Some recent advances on the latter game can be found
in Uiterwijk (2016), and a comprehensive guide to Hex has been published in Hayward and Toft
(2019).

The central question we will address, is what remains of said theoretical framework if we omit the
assumption of perfect information. In the case of chess, for example, which may also be considered
to belong to the class of combinatorial games, by leaving the premise of perfect information, one may
end up with the game of Kriegspiel. In that game, both players do not see the full state of the board,
and must communicate their moves via an all-seeing umpire. Another game in this category is poker,
in which a player lacks information on the cards in other players’ hands.

In this paper, we introduce three variants of a non-perfect information version of the well-known
impartial game Nim. As a first example, consider a simple Nim configuration, depicted in Fig. 1. In
regular Nim, the winning strategy for the first player is to remove one chip from any heap.

Fig. 1. A simple Nim position with three heaps of sizes 3, 3 and 1, respectively.

The first variant we consider is Schrödinger Nim. The difference with regular Nim is that the opponent
is only told from which heap chips have been removed, but not how many. Hence, a move now consists
of first selecting a heap to inspect, and then removing any amount of chips from it. If a heap is emptied
by a move, this is communicated to the opponent.

*Corresponding author. E-mail: m.j.h.van.den.bergh@math.leidenuniv.nl.

1389-6911/$35.00 © 2022 – IOS Press. All rights reserved.

mailto:m.j.h.van.den.bergh@math.leidenuniv.nl


M. van den Bergh et al. / Nim variants 3

Because of the introduction of imperfect information, a strategy for a player now consists of a proba-
bility distribution over their possible moves. We assign value 1 to a position which is won by the first
player with probability 1, and −1 if the game is won by the second player. The position in Fig. 1 has
value 1/3; a pair of optimal strategies is illustrated in Fig. 2. Here, “optimal” refers to a Nash equilib-
rium: it can be shown that the players cannot improve by one-sided deviation from their strategy.

Fig. 2. Optimal strategies for Schrödinger Nim played on heaps of sizes 3, 3 and 1. The states in dotted ovals cannot be
distinguished by the current player. In the leaves, final values are depicted, omitting further play.

The first player either removes 1 or 2 chips from the first heap, with probability 2/3 and 1/3, respec-
tively. The second player, not knowing how many chips are still in the first heap, removes any number
of chips from the second heap with equal probability. If the second player emptied the second heap,
the game values are easily computed. Otherwise, if the first player removed one chip from the first
heap on the first move, she later proceeds by emptying this heap, winning if and only if the second
heap contains 1 chip. Finally, if the first player removed two chips on the first turn, she later proceeds
to empty the second heap, winning the game.

We show that, if all heaps consist of at most two chips, Schrödinger Nim positions are equivalent
to regular Nim positions. Conversely, if all heaps consist of at least three chips, Schrödinger Nim
positions have value 0, i.e., they do not favor either player (see Theorem 3.1). The truly interesting
positions are those in which there are some heaps of size at most two, and some of size at least three,
as in the above example. We consider such positions with three heaps, and provide several results.

The second variant we consider is Fuzzy Schrödinger Nim, following the same rules as Schrödinger
Nim, except that emptying a heap is no longer signalled to the opponent. In Theorem 4.1 and Theo-
rem 4.2 we give a complete characterization of this game, as well as its misère variant. Finally, we
consider a third version, called Kriegspiel Nim, for which we use a set of rules inspired by the chess
variant Kriegspiel. Theorem 5.1 characterizes games with two heaps.

For both combinatorial games and games without perfect information, research has been done in the
field of artificial intelligence to create powerful agents. Examples include the application of Monte-
Carlo Tree Search (MCTS) and deep neural networks to Go in Silver et al. (2017), using MCTS and
meta position based agents to play Kriegspiel in Ciancarini and Favini (2007, 2010), and exploring
Counterfactual Regret Minimization and deep neural networks in the context of Heads-up No-limit
Poker in Bowling et al. (2017) and Moravčík et al. (2017). Whereas these methods produce powerful
artificial players also in the context of non-perfect information, we are interested in developing a
theory akin to that for combinatorial games, for this class of games.

Research in this direction has been done in the context of synchronizing combinatorial games in
Cincotti and Iida (2007) and Huggan and Nowakowski (2018). In these synchronized versions, both
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players communicate an intended move to an umpire, after which these moves are executed simultane-
ously. Though results are promising for several partisan games, this approach might prove problematic
for impartial games, as both players may have selected the same move to execute.

The introduced (Fuzzy) Schrödinger imperfect information variant of the rules of Nim can be gen-
eralized to any (impartial) game in which the amount of disjunctive components is non-increasing.
Variants of Nim such as arbitrary finite subtraction games come to mind, but also a game like Push
(see Albert et al. (2019)) can be altered in a natural way such that the opponent only hears the compo-
nent on which a move was made, but not the move itself. The Kriegspiel rule variant can be applied
to any combinatorial game.

In Section 2, we more formally outline the rules of the Nim variants, as well as their modelling as
games in extensive form for computational purposes, as outlined in Ferguson (2014); Kuhn (1953);
Nisan et al. (2007); Von Stengel (2002). In Section 3, Section 4 and Section 5, we analyse the three
variants, finding a full characterization for Fuzzy Schrödinger Nim, and partial results for the other
two. We conclude in Section 6.

2. GAME RULES AND NOTATION

In this section, we introduce the rules and notation for three variants of Nim. Furthermore, we intro-
duce notation for games in extensive form, which will be used for the analysis of the variants.

2.1. Nim and its variants

The classic combinatorial game of Nim starts with a configuration of d heaps, the i-th heap consisting
of ni chips. Two players L and R alternate turns, each player being allowed to take any number of
chips from any one heap every turn. The player taking the last chip wins. Nim being an impartial
game, for the remainder of the paper, we assume without loss of generality that L starts. Denoting the
height of the heaps by n = (n1, . . . , nd), we write NIM(n) for the game of Nim with these heaps as
starting configuration.

In the first variant of the game, dubbed Schrödinger Nim, both players know the starting configuration.
During the game, however, when the opponent moves, a player is only told which heap the move was
on, not the amount of chips removed. An exception is when a heap is emptied, which is always
communicated to the opponent. The height of (some of) the heaps may thus be unknown to a player
during the game. A move now consists of first selecting a heap, at which point the height of the heap
becomes known, followed by making a decision on how many chips to remove from the heap. We
denote a game of Schrödinger Nim with starting configuration n = (n1, . . . , nd) by SN(n). Note that
the game is impartial and short.

The second variant, which we will call Fuzzy Schrödinger Nim, is very much like the first, again with
both players knowing the starting configuration. However, in the fuzzy version, emptying a heap is
not signalled to the other player. Now, a player may happen to select an empty heap to move on. In
this case, the player is told the heap is empty, and they must pick another heap to try and remove chips
from. A game of this variant with starting configuration n = (n1, . . . , nd) is denoted by FSN(n). We
will return to this variant in Section 4.

The third variant which we will consider is inspired by Kriegspiel and is therefore named Kriegspiel
Nim. Yet again, both players know the starting configuration. During a player’s turn, a move consists
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of trying to remove i chips from the j -th heap. If this is possible, it is done, and the turn is passed, the
other player not being informed of anything except the fact that a successful move has been executed.
In particular, if a pile is emptied by a move, this is not explicitly communicated to either of the players.
If the requested move is not possible, the player must try another move, continuing until a legal move
is tried and thus performed. For n = (n1, . . . , nd), we denote this variant of the game with starting
position n by KN(n).

To illustrate the three game variants, again consider the Nim position from Fig. 1. Suppose that the
first player removes one chip from the first heap. In both Schrödinger and Fuzzy Schrödinger Nim,
the second player only knows that the first heap has been altered, whereas in Schrödinger Nim he
also knows that the heap is non-empty. The possible moves for the second player are now either to
remove any number of coins from the second or third heap, or to choose to inspect the first heap. If
he chooses to inspect the first heap, he discovers there are two chips left, and may then proceed to
choose to remove one or both of them.

In Kriegspiel Nim, after the first player has removed a chip from the first heap, the second player re-
ceives no information at all. His move now consists of trying to remove any amount of chips from any
heap. If he would try to remove three chips from the first heap, the umpire would respond negatively,
revealing that the first player has removed at least one chip from the first heap. Any other attempted
move that was legal from the (known) starting position can and will be executed. See Fig. 3 for an
illustration of this example.

Fig. 3. The starting position of a game with three heaps of sizes 3, 3 and 1, respectively, as seen by R after L’s first move, in
the three different variants of Nim. The clouds contain the possible heights of the heaps. Notice that in Kriegspiel Nim, R

knows a little more: exactly one of the heaps has been touched.

2.2. Extensive form games

As the players no longer have perfect information in the variants of Nim described above, the variants
are no longer combinatorial games. Instead, we model them as games in extensive form as in Ferguson
(2014); Kuhn (1953); Nisan et al. (2007). In such a game, we have a set of states X. The set T ⊆ X

is the set of terminal states, each having value v(x) ∈ R, x ∈ T , and the non-terminal states are
partitioned into (disjoint) information sets. For every information set S, we define an action set A(S).
Every action a ∈ A(S) made in a state x ∈ S leads to a unique state τ(x, a). We write X(x) for all
states reachable by one action from x. We denote the last action made to reach state x by α(x). An
action sequence is a list of consecutive actions, starting from the initial state: σ = [a1, . . . , an]. The
unique state to which this sequence leads is denoted by τ(σ ). The part of σ consisting of only L’s
actions is denoted by σL; the definition of σR is analogous.
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A common assumption is that of perfect recall: no two different action sequences by one player can
lead to the same information set. That is, if for two sequences σ , σ ′ and a player P ∈ {L, R} we have
σP �= σ ′

P , τ(σ ) ∈ S and τ(σ ′) ∈ S ′, then S �= S ′. Under this assumption, we can denote a player’s
unique action sequence leading to an information set S ∈ S by σP (S). Note that by recording the
sequence leading to an information set in the description of the set, i.e., by assuming that both players
do not forget earlier moves they did, we can always guarantee perfect recall.

A (behavior) strategy π defines on every action set a probability distribution. The probability of
choosing any a ∈ A(S) for S ∈ S is denoted by π(a). The value of a strategy pair (πL, πR) for the
two players L and R is denoted by v(πL, πR). The value of a strategy pair when starting the game in
a state x ∈ X is denoted by vx(π).

For the Nim variants, we take as states the current height of the heaps, and the current player to move.
The terminal states are those with only empty heaps, having value 1 if it is R’s turn (so L, the starting
player, wins) and −1 otherwise, giving rise to a zero-sum game. For the division of the rest of the
states into information sets, we keep track of the current player, the action sequence for that player so
far, and the knowledge of the player of the height of the heaps. For every heap k, this can either be an
exact height, say h, or an upper bound, denoted by h, if the other player has moved on the heap last.

For the games of (Fuzzy) Schrödinger Nim, the current player can either choose to remove any amount
of chips from a known heap, or to take a look at an unknown heap. In the latter case, the player sees the
amount of chips left, entering another information state, from which they can only choose to remove
any amount of chips from the chosen heap. We denote the move of removing i chips from the (known)
k-th heap by ki .

3. SCHRÖDINGER NIM

In this section, we analyze the game of Schrödinger Nim. We first argue that configurations in which
either all heaps are sufficiently small or all heaps are sufficiently large, the outcome is straightforward.
Then, we continue by partially analyzing the game on three heaps of varying size, which proves to be
more complicated.

3.1. Basic cases

First, note that if the other player has moved on a heap i times since the first player has observed its
height to be h, their knowledge of the heap will be h − i. Furthermore, we have that 1 is equivalent
to 1, as the emptying of a heap is signalled. Therefore, if a heap contains two chips, and both players
know, the height of that heap will be known to both players for the rest of the game. Hence, SN(n)

is equivalent to NIM(n) if ni � 2 for all i = 1, . . . , d. Naturally, in the trivial case that the game
starts with only one heap, Schrödinger Nim is also equivalent to regular Nim. Finally, if all remaining
heaps have height 1 at some point in the game, regardless of the information both players have, the
result will be the same as for regular Nim, and is determined by the parity of the number of non-empty
heaps.

In these cases, both players can use a deterministic strategy when playing optimally, and the starting
player L will either always win or always lose if both players play optimally. In other cases, the
game may not be always won or lost by the starting player. Instead, the players will employ a Nash
equilibrium of strategies, having a real value v ∈ [−1, 1], where v+1

2 is the probability of L winning.
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We denote by v(SN(n)) the value of the game, which is the unique value of some Nash equilibrium
for the two players.

Theorem 3.1. Let n ∈ N
d
�3, d � 2. Then v(SN(n)) = 0.

Proof. We proceed by induction on d. For the base case d = 2, we provide an explicit strategy pair
and prove that it is Nash. On the first turn, L reduces one of the heaps to one or two chips, both with
probability 1

2 . Without loss of generality, let this be the first heap. Next, R does the same for the other
heap. Now, if L reduced her heap to two chips, she takes one of the remaining chips there. Otherwise,
she takes one chip from the other heap. R again mirrors. Note that the value of the strategy pair is
indeed 0.

The equilibrium is depicted in Fig. 4. The nodes are states, the dotted boxes show information sets.
Note that in fact every node is contained in an information set, but only the most relevant sets are
displayed. By the discussion above, we may interpret states in which both heaps consist of one chip
as terminal states, yielding a value of either 1 or −1.

(n1, n2)

(2, n2)

(2, 2)

(1, 2)

(1, 1)
−1

1
2

(2, 1)

(1, 1)
1

1
2

1
2

(1, n2)

(1, 2)

(1, 1)
1

1
2

(1, 1)

−1

1
2

1
2

[n1 − 1, n2]

[2, n2 − 1] [1, n2 − 1]

Fig. 4. The Nash equilibrium in action. In black nodes, it is L’s turn; in white nodes, it is R’s turn. The action probabilities
are shown on the edges. The labels of the information sets display the information as known to the active player.

The description of the strategies above is not exhaustive. Therefore, in the sequel, if we encounter an
information set in which no probability distribution over the actions has been defined yet, we must
and will do so, making sure that this does not contradict an earlier definition. For example, it has not
been decided how Left should play in the information set [1, n2], which may be reached by Right
playing on the first heap during his first turn. However, it is clear that, in this case, 2n2−1 is an optimal
move, which we would have filled in only when encountering this information set for the first time.

We prove that the provided strategy pair is indeed Nash. First, suppose R deviates. If R checks and
plays on the first heap during the first move, L is given the state (1, n2) or (0, n2) with perfect knowl-
edge, winning the game by removing all but one or all chips from the second heap, respectively.
Similarly, emptying the second heap leads to a win for L. Therefore, we may suppose that R plays 2i

with probability pi , with
∑n2−1

i=1 pi = 1, pn2 = 0.
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If R was in (2, n2), L will respond by moving to (1, n2 − i), which is a win for R if and only if
n2 − i �= 1. If R was in (1, n2), L will inspect and play on the second heap, which is a win for R if
and only if n2 − i = 1. Both cases occurring with probability 1

2 , we find that R obtains a value of 0
regardless of the pi . Noting that it is clear that R cannot gain by deviating during his second turn, we
conclude that R cannot improve his score by deviating at all.

Next, suppose L deviates. Emptying a heap leads to a win for R, so assume that L plays 1i with
probability pi , where

∑n1−1
i=1 pi = 1, pn1 = 0. Next, R moves to either (n1 − i, 2) or (n1 − i, 1) with

probability 1
2 . If n1 − i = 1, L must play on the second heap to not immediately lose, winning if and

only if R left 2 chips. Otherwise, playing on the second heap allows R to certainly win, so suppose
L plays 1j with probability qj , where

∑n1−i−1
j=1 qj = 1, qn1−i . If R initially left 2 chips, he moves to

(n1 − i − j, 1), which is winning for L if and only if n1 − i − j �= 1. Otherwise, he inspects and
plays on the first heap, which is winning for L if and only if n1 − i − j = 1. Hence, L obtains value
0 regardless of the pi and qj and cannot gain by deviating. We conclude that the given strategy pair is
Nash.

Finally, suppose v(SN(n)) = 0 for any n ∈ N
d
�3 and consider the game SN(n) with n ∈ N

d+1
�3 . If L

empties any heap in the first move, this guarantees a value of 0. Otherwise, R is faced with d heaps
of known height and one of unknown height. Now, by checking and emptying the heap of unknown
height, R can again guarantee a value of 0. By playing on any other heap, he might force a value of
less than 0. Therefore, the best L can do is to prevent this by emptying any heap on the first move,
obtaining value 0. �

The above theorem shows that either player wins with probability 1
2 if all heaps contain at least 3

chips at the start of the game. For the game with two heaps, if either heap is initially of height 1 or
2, L can win by reducing the other heap to the same size. Games with three or more heaps, in which
some heaps have at most 2 chips and some at least 3, however, turn out to be more difficult to analyze,
as we will see in the next subsection.

3.2. Three heaps

In this section, we give a partial characterization of v(SN(n)) for n ∈ N
3. The values for all starting

configurations except for (n1, n2, 1) with n1, n2 � 4 are given in Table 1. These values have been
determined as follows. First, we computed Nash equilibria and their values for some small cases of
the game using the sequence form and linear programming, see, e.g., (Nisan et al., 2007, Chapter 3).
Consequently, having found structure in the equilibria, we constructed a strategy pair for the general
case and proved that it is Nash similar to the proof of Theorem 3.1. Note that the heaps may be
permuted in any way without changing the value of the game. The game (1, n1, 1), for example, also
has value 1 for all n1 � 3.

Table 1

Values of three-heap games

(n1, 1, 1) (3, 2, 1) (n1, 2, 1) (n1, 3, 1) (n1, 2, 2) (n1, n2, 2) (n1, n2, n3)

n1 � 1 n1 � 4 n1 � 3 n1 � 3 n1, n2 � 3 n1, n2, n3 � 3
1 0 1/2 1/3 1 1/3 0

The games SN(n1, n2, 1) with n1, n2 � 4 do not have a constant value. Some computed values for
small n1 and n2 are shown in Table 2.



M. van den Bergh et al. / Nim variants 9

Table 2

Values for the game SN(n1, n2, 1)

n2\n1 4 5 6 7
4 1/5 1/4 1/4 1/4
5 3/13 5/21 5/21
6 4/17 13/55

For this configuation of the game, we present some structural results. The proofs of these results
(partly) rely on the following observation, stating the principle of indifference for games in extensive
form. Note that this is true for these games in general, not only for Schrödinger Nim.

Theorem 3.2. Let π = (πL, πR) be a Nash equilibrium for a two-player zero-sum game in extensive
form with perfect recall, in which L moves first and R moves second. Write v = v(π), and let r be the
root of the Kuhn tree of the game. Then

(1) vx(π) = v for all x ∈ X(r) with πL(α(x)) > 0.
(2)

∑
x∈S πL(α(x))vτ(x,a)(π) = ∑

x∈S πL(α(x))v for all a ∈ A(S) with πR(a) > 0, where S is an
information set for which σR(S) = ∅.

The proof is relatively straightforward and consists of showing that, if a move made with positive
probability would yield any other value than the value of the game, it would be beneficial to play this
move with a different lower probability, contradicting the fact that the players follow an equilibrium
strategy.

Lemma 3.1. Let n2 ∈ N, n2 � 3. Then v(SN(n1, n2, 1)) is non-decreasing in n1, for n1 � n2.

Proof. Consider the game SN(n2, n2, 1). Suppose first that there exists a Nash equilibrium (πL, πR)

for which πL(31) = 0 with payoff v := v(SN(n2, n2, 1)). Then, for the game SN(n1, n2, 1) with
n1 > n2, L may use the same strategy as for the game SN(n2, n2, 1), playing 1i with i > n1 − n2 on
the first turn to obtain a value of v in this game, as well.

If such an equilibrium does not exist, let π = (πL, πR) be Nash such that πL(31) > 0. Note that
0 = v(SN(n2, n2, 0)) = v31(π) = v(SN(n2, n2, 1)) by Theorem 3.2. Therefore, we may define
π ′ = (π ′

L, πR) with π ′
L(31) = 1 as another Nash equilibrium strategy pair. Now, for SN(n1, n2, 1)

with n1 > n2, L may also force a value of 0 by picking 31 with probability 1 as first move. Hence,
indeed v(SN(n1, n2, 1)) � v(SN(n2, n2, 1)) for n1 > n2. �

Lemma 3.2. Let n1, n2 ∈ N, n1, n2 � 4. Then v(SN(n1, n2, 1)) ∈ [0, 1
4 ].

Proof. By playing 31 as first move, L guarantees a value of 0 by Theorem 3.1. Therefore,
v(SN(n1, n2, 1)) � 0.

To prove the upper bound of 1
4 , we give an explicit strategy for R against which L cannot obtain a

value of more than 1
4 . Suppose without loss of generality that L plays on the first heap during her

first move. Emptying this heap leads to a win for R, so we may assume that L plays 1i for some
i ∈ {1, . . . , n1 − 1}.
Now, let R play 2n2−3 with probability 1

8 , 2n2−2 or 2n2−1 both with probability 2
8 and 2n2 with prob-

ability 3
8 . If L played 1n1−1, this yields a value of 1

8 + 2
8 + 2

8 − 3
8 = 2

8 . If L played 1i for any



10 M. van den Bergh et al. / Nim variants

i ∈ {1, . . . , n1 − 2}, R’s move 2n2 leads to a win for L, whereas any of his other moves leads to the
information set [n1 − i, n2 − 1, 1] for L. We continue by showing that L cannot obtain more than a
value of − 1

8 in any of these information sets, so the total value obtained will be at most − 1
8 + 3

8 = 2
8 .

First, note that in these information sets, inspecting the second heap will lead to a loss for L if it was
of height 2 or 1, which is the case with probability 4

8 . Hence, this move will yield a value of at most
1
8 − 4

8 = − 3
8 < − 1

8 . Similarly, playing 1n1−i yields a win for L if and only if the height of the second
heap was 1, so this move results in a value of − 1

8 − 2
8 + 2

8 = − 1
8 . We may thus assume that L plays 1j

with probability qj for j ∈ {1, . . . , n1 − i − 1}, facing R with the information set [n1 − 2, �, 1] with
� ∈ {1, 2, 3}; or that L plays 31 with probability r , leading to [n1 − 1, �, 0] with � ∈ {1, 2, 3}.
In [n1 − 2, 3, 1], let R play 21. In [n1 − 2, 2, 1], R plays 21 or 22 both with probability 1

2 . This leaves L
either in [n1−i−j, n2 − 2, 1] or [n1−i−j, 0, 1]. In the latter case, L wins if and only if n1−i−j �= 1.
In the former case, choosing to empty the first heap, say with probability s, leads to a win for L if the
second heap consists of one chip, and a loss if it consists of two. Doing anything else leads to a loss
for L if the second heap contains one chip. Finally, in [n1 − 2, 1, 1], R inspects and empties the first
heap, which leads to a loss for L.

In [n1 − 1, 3, 0], let R play 21. Consequently, R will play as if he leaves L with two heaps of height
2, winning if and only if this is the case. In [n1 − 1, 2, 0], R inspects the first heap, and reduces it to
height 2 if possible, winning if this is the case, and losing otherwise. In [n1 − 1, 1, 0], R also inspects
the first heap, and consequently reduces it to one chip, winning the game.

Altogether, starting from the information set [n1 − i, n2 − 1, 1] with n1 − i � 3, L will thus obtain a
value of at most

1

8

(
n1−i−2∑

j=1

qj

(
(1 − s) − s

) + qn1−i−1 + r

)

+ 2

8

(
n1−i−2∑

j=1

qj

(
1

2

(−(1 − s) + s
) + 1

2

)
+ qn1−i−1

(
1

2
− 1

2

)
− r

)
− 2

8

= 1

8

n1−i−1∑
j=1

qj − 1

8
r − 2

8
� −1

8
.

If n1 − i = 2, the signs in front of the r’s are flipped, also leading to a total of at most − 1
8 . Hence, we

indeed see that L indeed cannot obtain a value of more than 2
8 . �

Corollary 3.1. Let n1 ∈ N, n1 � 5. Then v(SN(n1, 4, 1)) = 1
4 .

Proof. We compute that v(SN(5, 4, 1)) = 1
4 using a sequence form linear programming formulation

of the game. The result then immediately follows from Lemma 3.1 and Lemma 3.2. �

Corollary 3.2. Let n1, n2 ∈ N, n1, n2 � 3, n1 � n2. Then there exists a Nash equilibrium π =
(πL, πR) for which

1 − 2πL(1n1−1) = 1 − 2πR(2n2)
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for the first turns of L and R. Moreover, if πL(1n1−1) > 0, it holds that

v
(
SN(n1, n2, 1)

) = 1 − 2πL(1n1−1).

Proof. If πL(1n1−1) = πR(2n2) = 0, the statement is trivial. If v(SN(n1, n2, 1)) = 0, there exists an
equilibrium for which this holds, with πL(31) = 1. Therefore, we may assume for the remainder of
the proof that v(SN(n1, n2, 1)) > 0 and πL(31) = 0.

Next, by Theorem 3.2, if πL(1i) > 0 for some i ∈ {1, . . . , n1 − 1}, as all these moves lead to the
information set [n1 − 1, n2, 1] for Right, there exists a Nash equilibrium for which

∑n1−1
i=1 πL(1i) = 1.

If πL(1n1−1) > 0, by Theorem 3.2, v = v(1,n2,1)(π) with R moving. Noting that R wins if and only if
he removes all chips from the second heap, we find

v = vπ(1, n2, 1) = −πR(2n2) + (
1 − πR(2n2)

) = 1 − 2πR(2n2).

Conversely, if πR(2n2) > 0, again by Theorem 3.2, we find

n1−1∑
i=1

πL(1i)v =
n1−1∑
i=1

πL(1i)v(i,0,1)(π) =
n1−2∑
i=1

πL(1i) − πL(1n1−1).

If also πL(1n1−1) > 0, then we may assume that
∑n1−1

i=1 πL(1i) = 1 so that v = 1 − 2πL(1n1−1).
Hence, if both πL(1n1−1) > 0 and πR(2n2) > 0, we are done.

Therefore, suppose that πL(1n1−1) > 0, but πR(2n2) = 0. Then v = 1. However, this is a contradiction
with Lemma 3.2 and the values for SN(n1, n2, 1) with n1 = 3 or n2 = 3.

Finally, suppose that πR(2n2) > 0, but πL(1n1−1) = 0. Then
∑n1−2

i=1 πL(1i)v = ∑n1−2
i=1 πL(1i), so

again v = 1, which is a contradiction. This completes the argument. �

4. FUZZY SCHRÖDINGER NIM

In this section, we consider the variant of the game in which the emptying of a heap is not signalled
to the other player. Now, it may happen that a player inspects the height of a heap only to find out that
it is empty. In this case, the player must choose another heap to perform a move on, continuing until
the player has successfully removed at least one chip. Recall that a game of this variant with starting
configuration n ∈ N

d is denoted by FSN(n).

We have the following complete characterization.

Theorem 4.1. Let n ∈ N
d . Then

v
(
FSN(n)

) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1 if maxk=1,...,d nk = 1 and d is even,

1 if maxk=1,...,d nk = 1 and d is odd,

or if nk > 1 for precisely one k,

0 otherwise.
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Proof. If we have maxk=1,...,n nk = 1, the game is equivalent to regular Nim, so L wins if and only
if there is an odd number of chips available. If nk > 1 for precisely one k, L can reduce this heap to
either 1 or 0 chips, depending on the parity of d, winning the game. This settles the first two cases.

For the last case, we distinguish between two situations. First, suppose that nk � 2 for all k =
1, . . . , d. The proof for this situation is analogous to that of Theorem 3.1, employing induction on d.
For the base case d = 2, we use a similar Nash strategy pair. Now, L reduces the first heap to size 0
or 1 both with probability 1

2 , and R does the same to the second heap. L wins precisely if one of the
heaps has size 1 after the initial moves, which happens with probability 1

2 , hence the value is indeed
0. Proving that the pair is indeed Nash is analogous to the proof in Theorem 3.1.

For the induction step, suppose v(FSN(n)) = 0 for all n ∈ N as above and consider the game FSN(n)

for some n ∈ N
d+1 with nk � 2 for all k. Without loss of generality, let L play on the first heap on

her first turn. Now, by also playing on the first heap during his first turn, R can guarantee a value of
at most 0. Indeed, if the heap was already emptied by L, R will find out and be in the case n ∈ N

d .
Otherwise, R can empty the heap himself. Therefore, the best L can do is to empty any heap, giving
value 0. This concludes the first situation.

For the second situation, in which at least one of the nk equals 1, we split the proof into three parts.
First, consider the game FSN(n1, n2, 1) with n1, n2 � 2. We will show that the value of this game
is 0. First, note that emptying the third heap on the first move of L leads to a value of 0. Remains to
show that L cannot achieve a payoff of more than 0 by choosing another strategy. Hence, without loss
of generality, let L pick i chips from the first heap with probability pi . We give an explicit strategy for
R which prohibits L from obtaining a payoff larger than 0.

On his first move, R is faced with the information set [n1 − 1, n2, 1]. With probability 1
2 , R reduces

the second heap to height 1, and with equal probability, R empties the heap. L is thus given the info
set [n1 − i, n2 − 1, 1].
For the case n1 − i = 1, this yields either the state (1, 1, 1) or (1, 0, 1), which gives value 1 or
−1, respectively. For n1 − i = 0, it results in the state (0, 1, 1) or (0, 0, 1), giving value −1 or 1,
respectively.

Now, suppose n1 − i > 1, and let L take j chips from the first heap with probability q
n1−i
j , j ∈

{1, . . . , n1 − i}. L inspects the second heap with probability r
n1−i
1 and L empties the third heap with

probability r
n1−i
2 . For j = 1, . . . , n1 −i−2, R ends up in the state (n1 −i−j, 1, 1) or (n1 −i−j, 0, 1)

with n1 − i − j � 2. Hence, by inspecting the first heap and reducing it to height 0 or 1, respectively,
R can win. For j = i−1, R ends up in (1, 1, 1) or (1, 0, 1), having value −1 or 1, respectively. Taking
j = i leads to (0, 1, 1) or (0, 0, 1), having values 1 and −1.

If L chooses to inspect the second heap, she must empty it if it was of height 1, leading to (n1 − i, 0, 1)

for R, who will win as n1 − i > 1 by assumption. If it was already empty, L may choose another move
on (n1 − i, 0, 1) and thus win. Emptying the third heap leads to either (n1 − i, 1, 0) or (n1 − i, 0, 0),
which are both winning for R.

Hence, in summary, the value obtained by L playing any strategy against the fixed strategy of R is

pn1

(
−1

2
+ 1

2

)
+ pn1−1

(
1

2
− 1

2

)

+
n1−2∑
i=1

pi

(
1

2

(
n1−i−2∑

j=1

−q
n1−i
j − q

n1−i
n1−i−1 + q

n1−i
n1−i − r

n1−i
1 − r

n1−i
2

)
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+ 1

2

(
n1−i−2∑

j=1

−q
n1−i
j + q

n1−i
n1−i−1 − q

n1−i
n1−i + r

n1−i
1 − r

n1−i
2

))

= −
n1−2∑
i=1

pi

(
n1−i−2∑

j=1

q
n1−i
j + r

n1−i
2

)

Maximizing her payoff, L will thus choose the variables such that the value becomes 0. This proves
that v(FSN(n1, n2, 1)) = 0 and concludes the first part.

Next, let n ∈ N
d , d � 3 be such that n1, n2 � 2 and n3 = · · · = nd = 1. We will again show that the

value of this game is 0. We apply induction on d. The base case is FSN(n1, n2, 1), which was shown
to have value 0 above. Hence, let d � 4. If L picks any of the heaps except the first two, R finds
himself in the situation d − 1 immediately and we are done. Remains to show that L cannot obtain a
payoff larger than 0 by choosing any other strategy.

Denote by 1k the vector (1, 1, . . . , 1) ∈ N
k. Abusing notation, we may thus represent the starting

configuration by (n1, n2, 1d−2). Without loss of generality, suppose L picks i chips from the first heap
in the first turn with probability pi , i ∈ {1, . . . , n1}. Again, we give an explicit strategy for R which
prevents L from scoring higher than 0.

On his first move, R is given the information set [n1 − 1, n2, 1d−2]. With probability 1
2 , R reduces

the second heap to height 1, and with equal probability, R empties the heap. L is thus faced with the
information set [n1 − i, n2 − 1, 1d−2].
For the case n1 − i = 1, this gives either the state (1, 1, 1d−2) or (1, 0, 1d−2), which yields value
(−1)d−1 or (−1)d , respectively. For n1 − i = 0, it results in the state (0, 1, 1d−2) or (0, 0, 1d−2),
giving value (−1)d or (−1)d−1, respectively.

Now, suppose n1 − i > 1, and let L remove i chips from the first heap with probability q
n1−i
j ,

j ∈ {1, . . . , n1 − i}. L inspects the second heap with probability r
n1−i
1 , and, without loss of generality,

L empties the third heap with probability r
n1−i
2 . For j ∈ {1, . . . , n1 − i − 2}, R is given the state

(n1 − i − j, 1, 1d−2) or (n1 − i − j, 0, 1d−2), with n1 − i − j � 2. Hence, by inspecting the first
heap and reducing it to height 1{d even} or 1{d odd}, respectively, R can win. For j = i − 1, R is led to
(1, 1, 1d−2) or (1, 0, 1d−2), having value (−1)d or (−1)d−1, respectively. Taking j = i gives rise to
(0, 1, 1d−2) or (0, 0, 1d−2), having values (−1)d−1 and (−1)d .

If L chooses to inspect the second heap, she must empty it if it contained a chip, leading to (n1 −
i, 0, 1d−2) for R, who will win as n1 − i > 1 by assumption. If it was empty, L must choose another
move on (n1 − i, 0, 1d−2) and thus win. Emptying the third heap leads to either (n1 − i, 1, 0, 1d−3) or
(n1 − i, 0, 0, 1d−3), which are both winning for R.

Hence, in summary, the value obtained by L playing any strategy against the fixed strategy of R is

pn1

(
1

2
(−1)d + 1

2
(−1)d−1

)
+ pn1−1

(
1

2
(−1)d−1 + 1

2
(−1)d

)

+
n1−2∑
i=1

pi

(
1

2

(
n1−i−2∑

j=1

−q
n1−i
j + q

n1−i
n1−i−1(−1)d + q

n1−i
n1−i (−1)d−1 − r

n1−i
1 − r

n1−i
2

)

+ 1

2

(
n1−i−2∑

j=1

−q
n1−i
j + q

n1−i
n1−i−1(−1)d−1 + q

n1−i
n1−i (−1)d + r

n1−i
1 − r

n1−i
2

))
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= −
n1−2∑
i=1

pi

(
n1−i−2∑

j=1

q
n1−i
j + r

n1−i
2

)

Again maximizing her payoff, L will make sure to obtain a value of 0. This concludes the second part
of the proof.

For the final part, let n ∈ N
d , d � 3 be such that nk > 1 for more than one k ∈ {1, . . . , d}.

Again, we show that the value is 0. Suppose without loss of generality that n1, . . . , nc > 1 and
nc+1 = · · · = nd = 1 for some c ∈ {2, . . . , d}. We use induction on c. The base case c = 2 is proven
above. Hence, consider c > 2.

Suppose first that L plays on one of the first c heaps. As a fixed strategy for R in this case, we let him
inspect this heap, and empty it if it was not yet so. This leads to a configuration with c − 1 either for
L or R to move on, resulting in value 0 in any case.

Next, suppose that L plays on one of the last d − c heaps. R can then force a value of 0 by emptying
the first heap and moving to a situation with c − 1 in this case. �

Note that a very similar result holds for the misère version of the game. Denoting FSN−(n) to be the
misère version of Fuzzy Schrödinger Nim, we obtain the following.

Theorem 4.2. Let n ∈ N
d . Then

v
(
FSN−(n)

) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1 if maxk=1,...,d nk = 1 and d is odd,

1 if maxk=1,...,d nk = 1 and d is even,

or if nk > 1 for precisely one k,

0 otherwise.

Indeed, in the proof above, the signs of the base cases are flipped. For the explicit strategies described
for R in the proof, we can mirror the behaviour for d being odd or even, resulting in the same value of
the game as before, being zero. For this misère variant of the game, we find that the values somewhat
resemble those for the misère version of the regular game of Nim.

5. KRIEGSPIEL NIM

Finally, we consider the Nim variant inspired by Kriegspiel, described in Ciancarini and Favini (2010).
Recall that, for n ∈ N

d , we denote this variant of the game with starting position n by KN(n). We
only consider the game with at most two heaps.

For d = 1, the game is trivially won by Left, removing all chips on her first turn. For KN(n, 1), Left
removes all but one chip from the first heap on her first turn, winning the game. For the other cases
with d = 2, we have the following result.

Theorem 5.1. Let n1, n2 ∈ N, n1, n2 � 2. Then v(KN(n1, n2)) = 0.

Proof. We give an explicit Nash equilibrium pair, depicted in Fig. 5. On the first turn, L reduces the
first heap to size 1 or 0, both with probability 1

2 . Next, R tries to empty either heap with probability 1
2 .

The attempt to empty the first heap will fail, after which R reduces the second heap to size 1.
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(n1, n2)

(1, n2)

(1, n2)

(1, 1)
−1

1
2

(1, 0)
1

1
2

1
2

(0, n2)

(0, n2)

(0, 1)
1

1
2

(0, 0)
−1

1
2

1
2

Fig. 5. A Nash equilibrium for KN(n1, n2).

Suppose R deviates. Because we assume the strategy of L to be fixed, we may assume R to know that
he is either in the state (1, n2) or (0, n2), both with probability 1

2 . Hence, picking any move which
tries to remove more than 1 chip from the first heap needs not be considered. Now, suppose R tries to
pick a single chip from the first heap with probability p, and picks k chips from the second heap with
probability qk, k = 1, . . . , n2.

Moving from (0, n2), trying to move on the first heap will fail, telling R that the heap is empty. Hence,
R may proceed to empty the second heap and win. Also, if R removes all n2 chips from the second
heap immediately, he wins. Otherwise, he leaves only chips on the second heap for L, who knows
that the first heap is empty. Therefore, L can and will empty the second heap on her next turn and
therewith win.

Now, consider the case where R moves from (1, n2). We define the strategy of L for her next turn(s) as
follows: first, L will try to remove n2 chips from the second heap. If this fails, she will try to remove 1
chip from the second heap. Finally, if this fails, she removes the single chip from the first heap. If and
only if R has removed the single chip from the first heap, L will be able to remove n2 chips from and
therewith empty the second heap, winning the game. If R emptied the second heap, L will empty the
first, again winning. If R removed all but one chip from the second heap, L is faced with (1, 1) losing
in any case. Otherwise, L moves from (1, n2 − k) to (1, n2 − k − 1). For k = n2 − 2, this leads R
to the state (1, 1), where he loses. For any other k ∈ {1, . . . , n2 − 3}, R can proceed by reducing the
second heap to size 1, giving the state (1, 1) to L, and winning.

Hence, the payoff of the game now becomes

1

2

(
p −

n2−3∑
k=1

qk + qn2−2 − qn2−1 + qn2

)
+ 1

2

(
−p +

n2−1∑
k=1

qk − qn2

)
= qn2−2,

so, minimizing, R will choose qn2−2 = 0, yielding a value of 0. Hence, deviating does not lead to a
better payoff for R.

Next, suppose L deviates. Let L remove k chips from the first heap with probability pk, k = 1, . . . , n1,
or k chips from the second heap with probability qk , k = 1, . . . , n2. From (n1 − k, n2), R will play to
either (n1 − k, 1) or (n1 − k, 0), both with probability 1

2 . From (n1, n2 − k), R will move to (0, n2 − k)

or (1, n2 − k), again both with probability 1
2 . We will analyse the strategies going from (n1 − k, n2);

the strategies moving from (n1, n2 − k) are symmetrical.
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Similar to the discussion above, L knows that she is in either (n1 − k, 1) or (n1 − k, 0), both with
probability 1

2 . Therefore, we may discard all moves trying to take more than 1 chip from the second
heap. Now, let L remove i chips from the first heap with probability r

n1−k
i , i = 1, . . . , n1 − k, and

let L try to remove the single chip in the second heap with probability s. If this fails, she proceeds to
empty the first heap and win.

For R, we define the follow-up strategies as follows. If he emptied the second heap on his first move,
he will empty the first heap and win the game on his next turn. If he left a chip in the second heap, he
will try to remove it. If this fails, he empties the first heap and wins. If it succeeds, L can proceed by
emptying the first heap and winning.

All in all, this leads to the following total payoff, considering only the strategies in which L moves on
the first heap in the first turn:

n1−2∑
k=1

pk

(
1

2

(
n1−k−1∑

i=1

r
n1−k
i − r

n1−k
n1−k − s

)
+ 1

2

(
−

n1−k−1∑
i=1

r
n1−k
i + r

n1−k
n1−k + s

))
= 0.

Note that we have excluded the cases k = n1 − 1 and k = n1, which both clearly lead to value 0, as
well. Moreover, moving on the second heap in any way leads to the same payoff. Hence, deviating
gives no larger payoff for L and we are done. �

To conclude, we consider one more variant of Kriegspiel Nim. In this variant, during a player’s turn,
a move still consists of trying to remove i chips from the j -th heap. If this is possible, it is done;
otherwise, as many chips as possible are removed and the heap is left empty. In any case, the turn is
passed, the other player not being informed of anything. It can be proven, analogous to the arguments
above, that for this variant, the values for up to two heaps coincide with the values of Kriegspiel Nim.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have considered three non-perfect information variants of the game Nim. For the first
variant, Schrödinger Nim, we provided a partial characterization, and a set of structural results. For
the second variant, Fuzzy Schrödinger Nim, we provided a complete characterization. For the third
variant, Kriegspiel Nim, we gave some preliminary results.

A full solution to the first variant remains elusive, and is a natural direction for further research. One
might try to replicate Lemma 3.2 with tighter bounds for higher heaps, for example. Moreover, it
would be interesting to look at the misère version of this first variant.

The aim of introducing these variants is to generalize the theory of combinatorial games to the class
of non-perfect information games. With this aim in mind, the third variant of Kriegspiel Nim is the
most widely applicable. Therefore, not only is it interesting to further research this game, but using a
similar setup, one might create non-perfect information variants of all combinatorial games. Consider,
e.g., the game of Hackenbush. A move will now consist of asking the umpire whether it is possible
to remove an edge. If so, it is done; otherwise, the player has to try and remove a different edge.
Similarly, in Domineering, a move might be to try to place a stone until the placement is successful.
By analysing these non-perfect information variants of different combinatorial games and comparing
the results, we hope to distinguish some structure akin to that in the class of combinatorial games.
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