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ABSTRACT

Introduction To minimize the risk of local tumor progression rates after thermal 
ablation of liver malignancies, complete tumor ablation with sufficient ablation 
margins is a prerequisite. This has resulted in ablation margin quantification to 
become a rapidly evolving field. The aim of this systematic review is to give an 
overview of the available literature with respect to clinical studies and technical 
aspects potentially influencing the interpretation and evaluation of ablation margins. 

Methods The Medline database was reviewed for studies on radiofrequency and 
microwave ablation of liver cancer, ablation margins, image processing and tissue 
shrinkage. Studies included in this systematic review were analyzed for qualitative 
and quantitative assessment methods of ablation margins, segmentation and co-
registration methods, and the potential influence of tissue shrinkage occurring during 
thermal ablation.

Results 75 articles were included of which 58 were clinical studies. In most clinical 
studies the aimed minimal ablation margin (MAM) was ≥5 mm. In 10/31 studies, MAM 
quantification was performed in 3D rather than in three orthogonal image planes. 
Segmentations were performed either semi-automatically or manually. Rigid and 
non-rigid co-registration algorithms were used about as often. Tissue shrinkage rates 
ranged from 7% to 74%.

Conclusions There is a high variability in ablation margin quantification methods. 
Prospectively obtained data and a validated robust workflow are needed to better 
understand the clinical value. Interpretation of quantified ablation margins may be 
influenced by tissue shrinkage, as this may cause underestimation.

Keywords: thermal ablation; RFA; MWA; ablation margin quantification; image co-
registration; tissue shrinkage
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INTRODUCTION

Thermal ablation is an effective treatment for primary and secondary liver tumors [1-3]. 
For tumors of limited size (≤2cm) thermal ablation using radiofrequency ablation (RFA) or 
microwave ablation (MWA) is a first line therapy, particularly in patients with co-morbidity, 
underlying liver cirrhosis and/or centrally located tumors. Nevertheless, surgical resection is 
generally considered to be more effective, as thermal ablation is associated with higher local 
tumor progression (LTP) rates. To minimize the risk of LTP after thermal ablation, complete 
tumor ablation with sufficient ablation margins is essential. The correlation between ablation 
margins and LTP was first demonstrated in 2008 by Kei et al. [4]. Later, this was confirmed 
by other large trials [5-7].

Most commonly, ablation margins after thermal ablation are assessed by side-by-side 
comparison of pre- and post-ablation cross-sectional images. This method is usually 
based on visual assessment, i.e. eye-balling, but may be aided by two-dimensional 
measurements using anatomical landmarks on both scans. The use of software-assisted 
quantitative assessment of ablation margins has gained interest in literature over the last 
years [6-9]. Several studies indicate it could contribute to better determine technical success 
of thermal ablation treatments and estimate the risk of LTP [7-9]. However, there is wide 
variation in methods used for margin quantification and the optimal method has not yet 
been established.

Ablation margin quantification is performed using software with specific segmentation and 
image co-registration algorithms. The co-registration algorithms may differ by design as co-
registration can be performed either in a rigid or non-rigid way. In rigid co-registration, the 
images are registered using only rotation and translation of the images whereas non-rigid 
co-registration also allows deformation of the images. Besides the differences between 
rigid and non-rigid co-registration, the co-registration could be performed manually, semi-
automatically or fully automatically. Other differences may be with respect to volume of 
interest selection or usage of landmarks.

Besides the more technical variety among co-registration algorithms, patient and treatment 
related factors may affect the result of ablation margin quantification. Differences in 
respiration mode and patient positioning may cause considerable variation in the shape and 
position of the liver between the pre- and post-ablation scans. Moreover, tissue shrinkage 
as a direct result of tissue heating possesses an important challenge on ablation margin 
interpretation [10]. As the ablated tissue tends to shrink during thermal ablation, the ablation 
margins may be underestimated. Unfortunately, the degree and direction of tissue shrinkage 
is unpredictable [10].

3
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Quantitative ablation margin assessment holds great promise as a tool to better predict 
patients at risk for LTP after thermal ablation. The aim of this systematic review is to create 
an overview of the current evidence with respect to qualitative and quantitative evaluation 
methods of ablation margins, image processing tools, and the potential influence of tissue 
shrinkage occurring during thermal ablation.

METHODS

Search strategy
The electronic database Medline was searched on 01/02/2021 for all studies describing 
“image segmentation”, “image registration”, “ablation margins”, “treatment success” or 
“tissue shrinkage” during treatment of liver tumors using thermal ablation techniques, 
i.e. “RFA” or “MWA”, since 01/01/2009 as techniques have constantly been improving and 
the quality of ablation of >12 years old was not considered representative. The full search 
term used can be found in Appendix A. Articles were sequentially evaluated based on title, 
abstract and full text for meeting all in- and exclusion criteria. The literature search, study 
selection, data extraction and study quality assessment were independently conducted by 
two reviewers (P.H. and F.B.). Any disagreements were resolved in consensus.

Exclusion criteria
Articles were excluded if they did not relate to percutaneous thermal ablation of malignant 
liver tumors with RFA or MWA; if surgical resection was performed; and if the aim of the 
article was to evaluate combination therapy with ablation and trans-arterial or systemic 
therapy. Articles related to liver segmentation or co-registration were excluded if they did 
not define the segmentation or co-registration method used; and if ultrasound (US), positron 
emission tomography (PET), or single photon emission computed tomography (SPECT) 
images were used for image segmentation or co-registration. Articles using hybrid imaging 
modalities were not excluded if tumor and/or ablation zone segmentation was performed 
using (contrast-enhanced) CT or MRI. Articles related to evaluation of ablation margins 
were excluded if they did not provide a definition for technical success or minimal ablation 
margins. Finally, systematic reviews, reviews, letters to the editor, conference abstracts and 
full-text articles in other languages than English were excluded. References of systematic 
reviews and reviews were evaluated for further inclusion of articles missed in the initial 
search.

Data extraction
For each article, the following information was extracted if present: first author, publication 
year, journal, study type, imaging modality, tumor type, mean tumor size, number of subjects 
and tumors, ablation method, software used, intended minimal ablation margin (MAM), LTP 
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rate, method of MAM determination, segmentation method, co-registration method, other 
treatment success outcome measures, and validation of segmentation and registration.

RESULTS

The search strategy initially resulted in 215 articles, that were screened by title and abstract 
(Figure 1). Subsequently, 110 articles were analyzed in full-text for eligibility, resulting in the 
inclusion of 71 articles. Another 4 articles were included from references of (systematic) 
reviews. Eventually, a total of 75 articles were included in this review, see Figure 1. Thirty-
one articles described a method for determination of technical success or measurement 
of MAM [5-9, 11-36]. Thirteen articles described segmentation methods for segmentation 
of the tumor and the ablation zone [8, 9, 22, 31, 37-45]. Twenty-five articles reported on co-
registration methods for either pre- and postinterventional image co-registration, or pre- and 
intraoperative image co-registration [6-9, 12, 24, 26-28, 31, 32, 34, 36, 42, 44-54]. Finally, ten 
articles evaluated tissue shrinkage due to thermal ablation [10, 55-63].

Figure 1: Overview of the article selection process, specified per step.

Clinical studies
In total, 58 clinical studies with 4,311 tumors were included in the results. RFA was the 
ablation method used most frequently and HCC patients (n=3,431 tumors) formed the main 
population in most studies. Intrahepatic cholangiocarcinoma (n=57) and hepatic metastases 

3

VB_Pim Hendriks v10-6.indd   33VB_Pim Hendriks v10-6.indd   33 03/07/2024   10:1103/07/2024   10:11



34

C H A P T E R 3

from other primary origin (predominantly colorectal cancer, n=456) were other pathologies 
included. All studies were performed in a single center and most of them had a retrospective 
study design. A high variety in population size was found (7-211, median: 36.5). Mean or 
median lesion sizes were <30 mm for all clinical studies. An overview of all included clinical 
studies can be found in Table 1.

MAM assessment
In general, three ways of pre- and post-ablation imaging assessment were identified from 
the results, see Table 2. Analysis with side-by-side projection of pre- and post-scans was 
performed in 14/31 studies [5, 8, 13-21, 27, 28, 35]. As part of this assessment MAM was 
determined in the axial plane (n=13) [5, 8, 13, 15-21, 26, 28, 35] or in the coronal and sagittal 
imaging planes too (n=10) [5, 8, 13, 16, 17, 19, 20, 26, 28, 35]. Manual 2D measurements using 
anatomical landmarks were performed to quantify the ablation margins in these studies 
using mostly anatomical landmarks. In 21/31 studies co-registration software for MAM 
quantification was used [6-9, 11, 12, 22-36]. The software used can further be categorized 
into a) non-dedicated co-registration software combined with manual measurements (n=17) 
[6-9, 11, 12, 22, 24-30, 32-34, 36] and b) dedicated MAM quantification software that allows 
segmentation of tumor and ablation necrosis (n=3) [22, 23, 31].

Euclidian distance measurements were used to quantify the MAM in 3D in case of dedicated 
MAM quantification software. In non-dedicated co-registration software, either a visual 
assessment (n=1) [30], in-plane measurements (n=10) [6, 11, 25-30, 33, 34] or 3D MAM 
measurements (n=6) [7-9, 12, 24, 36] was used.

In all studies, the MAM was expressed as the smallest distance from the tumor boundary 
to the nearest border of the ablation zone. In general, the intended MAM was ≥5 mm, as 
can be seen in Table 1. In a few studies additional quantification measures were used, 
such as the coverage of the tumor by the ablation zone, or the extent that a 5 mm ablation 
margin was reached in all directions. In 36 studies, the quantified MAM was correlated with 
the occurrence of LTP. Figure 2 shows the correlation between the intended MAM and the 
occurrence of LTP. In one study immunohistology of a post-ablation biopsy was correlated 
with the occurrence of LTP [35].

Segmentation methods
Table 3 describes the different methods used for segmentation of the tumor and ablation 
zone. Semi-automatic segmentation methods were used in 12/13 studies [8, 9, 22, 31, 37-44] 
and manual segmentation was used in only one study [45]. Semi-automatic segmentation 
methods used included edge detection [8, 9, 44], region growing based algorithms [22, 40, 
41, 45], and machine learning based algorithms involving classification [39] and clustering
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Figure 2: Violin plot showing the local tumor progression (LTP) rates for different intended minimal abla-
tion margins (MAM). Horizontal width of the plot represents the density of the data along the Y-axis. Each 
individual dataset is represented as a dot, where larger dots represent studies with more tumors treated

[37, 38, 42]. In four of these papers in-house segmentation software was used [37-39, 42] and 
in the other studies commercially available software [8, 9, 22, 31, 40, 41, 43, 44]. 

The accuracy of segmentation was qualitatively assessed by radiologists in all studies. 
Quantitative inter- or intra-observer agreement methods were used in eight studies, 
comparing semi-automatic segmentation with manual segmentation of an observer or the 
interobserver agreement between manual segmentation of multiple observers. Outcome 
measures used were the dice similarity coefficient (DSC) [37, 38], volumetric overlap error [39], 
volume difference [39], average symmetric surface distance [39], root mean square symmetric 
surface distance [39], maximum symmetric surface distance [39], Lin’s concordance 
correlation coefficient [40, 41], percentage match [42], positive and negative predictivity 
[42], specificity [42], and Pearson correlation [43].

Registration and MAM quantification software
Table 4 provides an overview of the different software used for co-registration and MAM 
quantification. CECT-images were used for co-registration in 22/25 studies [6-9, 24, 26-28, 
31, 34, 36, 42, 44-46, 48, 50, 51, 53, 54], and MRI-images were used in 10/25 studies [12, 24, 
26, 28, 32, 36, 44, 45, 52, 53]. In-house developed software was used in 9/25 studies [12, 42, 
46-48, 50, 51, 53, 54].

3
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Rigid co-registration algorithms that only allowed for translation and rotation of images 
for optimal co-registration were used in 11/25 studies [6, 7, 26, 27, 31, 32, 34, 44, 45, 52, 53]. 
Reasons for choosing rigid co-registration could be speed, and availability. In 14/25 studies, 
non-rigid co-registration algorithms were used that also allowed for deformation of the scans 
to locally optimize the co-registration [8, 9, 12, 24, 28, 31, 36, 42, 46-51, 53, 54]. Reasoning 
behind the choice of a non-rigid approach were to allow for local liver deformations and 
to reduce the influence of respiratory motion, adjacent organ movement, heart pulsations 
and patient positioning. In two studies, both co-registration methods were used [31, 53].

Anatomical landmark placement on the liver surface, hepatic arteries, portal veins and 
hepatic veins near the tumor were (optionally) used as input parameters in 16/25 different 
studies [6-9, 24, 26, 32, 34, 36, 44, 45, 47-49, 51, 52]. Placement of anatomical landmarks near 
the tumor and ablation necrosis was used for local optimization of the image co-registration.

Fully automated co-registration algorithms were used in 6/25 studies [12, 26, 31, 42, 50, 53]. 
Semi-automatic co-registrations algorithms were used in 14/25 studies [7-9, 24, 32, 34, 36, 
45-49, 51, 54]. Manual translation and rotation was possible to adjust the co-registrations in 
these software packages. Three commercial software packages were used that only allowed 
for manual co-registration [6, 26, 52]. One software platform was commercially available and 
dedicated to ablation margin quantification [31].

Quality of co-registration was described in 22/25 studies [6-9, 12, 24, 26, 27, 32, 34, 36, 44, 46-
54]. This was qualitatively scored in 12/22 software packages using e.g. a three- or five-points 
scale [6-9, 24, 32, 34, 36, 44, 45, 49, 52]. Quantitative quality assessment measures included 
distances between one or multiple pairs of landmarks, and distances between surface areas. 
Another quantitative quality assessment tool was the use of the Dice similarity coefficient 
between segmented liver volumes.

Tissue shrinkage
Tissue shrinkage was evaluated using ex vivo bovine or porcine livers [10, 55-60], in vivo porcine 
livers [61, 62] or pre- and post-ablation imaging of patients with HCC or metastases [63]. In 
the ex vivo animal models, the liver was divided in test samples, after which ablation was 
performed using either RFA or MWA. In the in vivo animal model, the ablation was performed 
in different segments of the liver. The samples consisted of normal liver parenchyma without 
tumors. Ablation times ranged from 1 minute to 20 minutes, with power settings between 
20 and 200 W. Tissue shrinkage was measured through the dimensions of the samples pre- 
and post-ablation, or the displacement of markers inserted into the tissue sample. Tissue 
shrinkage was expressed as the contraction ratio, or contraction measured in percentage, 
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see Table 5. Noteworthy, in the study by Weiss et al. the contraction was expressed as planar 
strain, which showed tissue expansion for ablation times <10 minutes [59].

In the in vivo human study, measurements were performed using landmarks on both pre- 
and post-ablation images by two radiologists. A relative ablation zone contraction of 7.11% 
(+/- 13.3) and 2.39% (+/- 12.7), and tumor contraction of 9.95% (+/- 10.4) and 1.31% (+/- 13.2) 
were found for MWA and RFA, respectively [63].

DISCUSSION

Ablation margin quantification has been a topic of high interest in literature. In this systematic 
review, we have evaluated clinical study methodology, MAM quantification software methods, 
imaging co-registration methods, segmentation methods and tissue shrinkage. In general, 
a high variety in methodology was found between different studies.

With respect to the clinical studies, a MAM of ≥5 mm was intended mostly, in accordance with 
ablation guidelines [81]. Although the studies were very heterogeneous, and only limited data 
were available of studies with an intended MAM of ≥3 mm and ≥10 mm, LTP rates tended to 
decrease at larger intended MAM.

In studies that aimed at retrospective quantification of the ablation margins, the properties 
of the ablation margin quantification tools or software were evaluated. The MAM (i.e. smallest 
distance between outer boundaries of tumor and ablation zone) was the outcome measure 
used in all studies. Only 3 studies used other additional outcome measures, such as ablation 
surface area or volumetric data. In a limited number of studies, the MAM could also be 
quantified in 3D rather than the standard orthogonal image planes. With the emerging field 
of dedicated ablation margin quantification software and incorporation of ablation margin 
quantification in clinical trials, it is expected that this more thorough analysis will become 
the new standard.

Segmentation of tumor and ablation zone plays a major role in objectively quantifying 
ablation margins. Several segmentation algorithms were used in the included studies, 
most of them were semi-automatic and based on underlying grey-scale or region-growing 
algorithms. Multiple methods were used to validate segmentations among different 
interpreters or against a golden standard. Although the results of these validations are not 
directly comparable, the overall performance seems good. To be better able to compare 
the robustness and accuracy of each segmentation tool, a standardized validation method 
would be needed, despite their specific advantages and disadvantages. The DSC is suitable 
for comparing two segmentations based on their overlap, but its sensitivity is dependent on 
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the size of the segmented structure. Besides the technical aspects of segmentation, several 
clinical implications should be taken into consideration. The size and shape of a tumor may 
appear differently on arterial and venous phases. Choosing the right scan phase is therefore 
crucial for obtaining the correct ablation margin. Moreover, for a smooth incorporation in 
the clinical workflow it is important that segmentation algorithms are fast, accurate and 
easily correctable.

Image co-registration between pre- and post-ablation imaging is the basis for quantifying 
distances between boundaries of the tumor and ablation zone. Rigid and non-rigid co-
registration techniques were used about as often and most of the co-registration methods 
included in this systematic review were semi-automatically. Non-rigid co-registration 
algorithms usually result in visually better outcomes for the entire liver, as deformational 
differences of the liver between the pre- and post-ablation scans are adjusted for. However, 
local tissue deformations as a result of thermal ablation may result in inaccurate MAM 
measurements. Luu et al. proposed to manually penalize local areas with large erroneous 
non-rigid deformations by enforcing local rigidity [50]. Similarly, Passera et al. replaced these 
local areas with synthetic patterns to be able to use a non-rigid co-registration approach 
without the undesired, erroneous deformations in the ablation zone that hamper correct 
MAM measurements [42]. Locally optimized co-registration between pre- and post-ablation 
imaging in the tumor region is the main objective. The use of local landmark placement is 
possible in many co-registration algorithms and may be used for this sake.

To reduce co-registration errors in a clinical setting, the pre- and post-ablation imaging are 
best obtained during the ablation procedure with the patient in an identical bed position 
and with a similar inhalation mode. Although thermal ablation could be performed using 
intravenous sedation, general anesthesia has the advantage of being able to use high-
frequency jet ventilation or breath hold [81]. This may help reducing differences in inhalation 
mode, and therefore co-registration errors. It has yet to be established which scanning 
protocol and phase is most suitable for accurate and reproducible quantification of ablation 
margins.

Tissue shrinkage during ablation may be of high influence on the outcome of ablation 
margin quantification, with substantial tissue shrinkage rates reported in animal studies. 
As a result of tissue shrinkage, ablation margins may be underestimated. During the follow-
up after thermal ablation, the ablation zone may shrink further on imaging [82]. Therefore, 
ablation margin quantification should be determined based on images acquired directly after 
treatment. This systematic review only included articles using CECT or MRI for immediate 
ablation margin evaluation. For clinical purpose, hybrid imaging with PET-CT or PET-MRI 
may help identifying patients at risk of developing LTP [83]. Besides direct tissue shrinkage 
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during ablation, local edema around the ablation zone may cause the opposite effect directly 
surrounding the ablation necrosis, and my influence image co-registration.

The evidence available on the use of ablation margin quantification is currently based on 
retrospective studies with a high variability in study methodology. Both clinical factors 
and technical factors, in terms of image acquisition, reconstruction algorithms, and image 
processing play major roles in the quantification of ablation margins. A better understanding 
is needed of how these factors affect the outcome, and what combination of factors results 
in a robust and accurate method of ablation margin quantification. With this standard at 
hand, the correlation between measured MAM and the occurrence of LTP could ultimately 
be better understood and incorporated in the standard workflow.

Several prospective clinical trials are currently performed trying to bridge this gap, such 
as the PROMETHEUS (Netherlands Trial Register NL9713) [84], ACCLAIM (Clinicaltrials.gov: 
NCT03753789), COVER-ALL (Clinicaltrials.gov: NCT04083378) [85], RFA physics library – PGP 
(Clinicaltrials.gov: NCT04152343) and IAMCOMPLETE (Clinicaltrials.gov: NCT04123340) 
trials. Moreover, companies are developing solutions for ablation margin quantification and 
raising precision e.g. with dedicated ablation margin quantification software [31], ablation 
needle guidance and integrated ablation margin confirmation software [86], or an ablation 
system with integrated imaging co-registration and ablation margin verification software 
[87]. Moreover, the wider application of dual-energy CT and spectral CT may contribute to 
optimized tumor and ablation zone segmentation [88]. The combination of prospective 
clinical trials and technological advancements is what is needed to push ablation margin 
quantification to the next stage.

CONCLUSION

Ablation margin quantification is emerging to become a valuable tool in optimizing minimally 
invasive treatment of hepatic tumors. This systematic review shows that there is currently 
a high variability in ablation margin quantification methodology in terms of image co-
registration, segmentation methods, and interpretation. Although the method for reaching 
the maximum precision in a robust way may still be unknown, the correct clinical use and 
interpretation will be very important as the ultimate goal is to interpret ablation margins at 
a millimeter level of accuracy. Optimization of scanning protocols, time reduction between 
pre- and post-ablation scans, and quality assessment of image co-registration are therefore 
of great importance.

3
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Table 1: Characteristics of all clinical studies included.

Authors Study type (Ret-
rospective R, 
Prospective P)

Ablation 
method

Tumor Type Number of 
patients 
(tumors)

Tumor size Intend-
ed MAM

Abdel-Rehim M 
et al. [11]

R RFA and 
MWA

HCC (17), CRLM 
(3), BCLM (1), 
CCA (2)

23 (23) Range 8-40 mm ≥5 mm

An C et al. [12] R MWA HCC 141 (141) Mean 23 mm ± 
9 mm

≥5 mm

Beyer LP et al. 
[64]

R and P MWA HCC (20), CRCM 
(16)

36 (36) Mean 21.2 mm -

Biondetti P et 
al. [13]

R MWA HCC 74 (74) Mean 17.1 mm, 
range 7 – 30 mm

≥5 mm

Boulkhrif H et 
al. [46]

R RFA and 
MWA

HCC (35), CRLM 
(16), neuro-
endocrine (3), 
gastric (1), 
BCLM (1)

35 (56) Mean 20.4 ± 9.4 
mm, range 6.1 - 
60 mm; median 
18.3 mm

-

Cao F et al. [65] R MWA MLM 
(melanoma 
liver 
metastases)

7 (22) Median 16.37 
mm, range 6.66 
– 43.72 mm

-

Cha DI et al. [66] R RFA HCC 146 (146) Median 16 mm, 
range 7-42 mm

≥5 mm

Choi JW et al. 
[67]

P RFA HCC 79 (98) Mean 19 ± 7 mm ≥5 mm

Choi JW et al. 
[14]

P RFA HCC 77 (86) Mean 16.5 mm ≥5 mm

El-Gendi A et 
al. [68]

P RFA HCC 24 (24) Mean 20.4 ± 4.4 
mm

≥10 mm

Fukuda K et al. 
[15]

P RFA HCC 76 (85) Median 15 mm, 
range 8 -30 mm

≥10 mm

Fumarola EM et 
al. [69]

R MWA HCC 50 (50) Mean 17.6 mm, 
range 7 – 35 mm

-

Hame Y et al. 
[39]

R RFA - 9 (11) < 5mm -

Hendriks P et 
al. [8]

R RFA HCC 25 (25) Median 20 mm, 
range 12 – 45 
mm

≥5 mm

Hocquelet A et 
al. [22]

R RFA HCC 16 (16) Mean 29 mm ≥5 mm

Iwazawa J et 
al. [16]

R RFA HCC (8), 
metastatic (4)

12 (12) Mean 16.3 mm, 
range 8 – 20 mm

≥5 mm

Iyer RS et al. 
[44]

R RFA HCC (20), 
metastatic (19)

29 (39) - ≥10 mm

Jiang C et al. 
[23]

R RFA HCC 134 (159) Mean 20 ± 9 mm, 
range 10 – 49 
mm

≥5 mm

Kamei S et al. 
[70]

R RFA HCC 19 (22) Mean 17.5 ± 7.9 
mm, range 9 – 
34 mm

≥5 mm

Kang TW et al. 
[71]

R RFA HCC 211 (211) Mean 21 mm ≥5 mm

3
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Table 1: Characteristics of all clinical studies included. (continued)
Authors Study type (Ret-

rospective R, 
Prospective P)

Ablation 
method

Tumor Type Number of 
patients 
(tumors)

Tumor size Intend-
ed MAM

Kaye EA at al. 
[45]

R RFA CRLM 72 (93) Mean 18 mm, 
range 6 - 55 mm

-

Keil S et al. [40] R RFA BCLM (15), 
CRLM (35)

25 (50) - -

Keil S et al.[41] R RFA BCLM (15), 
CRLM (35)

25 (50) Mean 23 mm -

Kim KW et al. 
[49]

R RFA HCC 31 (38) Mean 19 mm, 
range 10 – 35 
mm

-

Kim SM et al. 
[17]

P RFA HCC 33 (42) Mean 15.8 ± 5.9, 
range 7 - 33 mm

-

Kim YS et al. [6] P RFA HCC 103 (110) Mean 27 ± 6 mm, 
range 21 – 48 
mm

≥5 mm

Kobe A et al. 
[24]

R RFA HCC 39 (43) Median 16.9 
mm, range 14.6 
– 22.4 mm

-

Koh YH et al. 
[18]

R RFA HCC 64 (75) Mean 14.0 ± 4.6 
mm, range 10 - 
37 mm

≥5 mm

Laimer G et 
al. [7]

R RFA HCC 110 (176) Mean 25.2 ± 14.9 
mm

-

Lee JK et al. [63] R RFA and 
MWA

HCC (49) and 
metastatic (26)

65 (75) Range 10 – 65 
mm

-

Lee MW et al. 
[72]

R RFA HCC 18 (19) Mean 25 mm, 
median 23 mm, 
range 20 – 42 
mm

≥5 mm

Li X et al. [73] R MWA NPC 
metastases

18 (24) Maximum 
diameter of 42 
mm

≥5 mm

Liao M et al. [25] P RFA HCC 80 (83) Mean 24.5 mm ≥5 mm
Liu ZY et al. [74] P RFA CRLM 12 (20) Mean 28 mm, 

range 15 – 52 
mm

≥5 mm

Makino Y et al. 
[27]

R RFA HCC 85 (94) Mean 14.0 ± 5.2 
mm

-

Makino Y et al. 
[26]

R RFA HCC 67 (92) Median 12.9 
mm, range 4.8 – 
41.4 mm

-

Motoyama T et 
al. [19]

R RFA HCC 66 (95) Median 18 mm, 
range 7 – 33 mm

≥5 mm

Park J et al. [28] R RFA HCC 178 (178) Mean 17.3 ± 6.1 
mm

-

Park SI et al. 
[75]

R RFA HCC (15), 
rectosigmoid 
metastases (1), 
CCA (1)

15 (17) Mean 15.68 ± 
5.29 mm, range 
10 – 26 mm

≥10 mm

Park Y et al. [20] R RFA HCC 146 (167) Mean 19 mm, 
median 18 mm, 
range 8 – 40 mm

≥5 mm
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Table 1: Characteristics of all clinical studies included. (continued)
Authors Study type (Ret-

rospective R, 
Prospective P)

Ablation 
method

Tumor Type Number of 
patients 
(tumors)

Tumor size Intend-
ed MAM

Passera K et al. 
[42]

R RFA HCC (5), 
metastatic (5)

10 (10) Range 10-40 mm -

Ringe KI et al. 
[21]

R RFA and 
MWA

32 (48) Mean 24 mm, 
range 9 – 64 mm

-

Sakakibara M et 
al. [29]

R RFA HCC 84 (139) Mean 13.8 ± 4.6 
mm

≥5 mm

Shin S et al. [30] P RFA HCC 150 (150) Mean 19.5 ± 7.9 
mm

≥5 mm

Sibinga Mulder 
BG et al. [9]

R RFA CRLM 29 (29) Median 22 mm, 
range 8 – 22 mm

≥5 mm

Solbiati M et 
al. [31]

R MWA HCC 50 (90) Mean 27 ± 20 
mm

≥5 mm

Sotirchos VS et 
al. [35]

P RFA CRLM 47 (67) Mean 21 mm, 
range 6 – 43 mm

≥5 mm

Takeyama N et 
al. [32]

R RFA HCC 29 (59) Mean 11.2 ± 4.4 
mm, range 5 – 24 
mm

≥3 mm

Van Tilborg AA 
et al. [76]

R RFA and 
MWA

HCC (7), CRLM 
(29), CCA (2)

20 (38) Mean 22 mm ≥5 mm

Tinguely P et 
al. [33]

R MWA HCC (174), 
CRLM (87), NET 
(17), other (23)

153 (301) Median 15 mm, 
IQR 11 - 21 mm

≥5 mm

Vandenbroucke 
F et al. [34]

R RFA CRLM (16), 
melanoma 
metastases (3), 
BCLM (1)

20 (45) Mean 18.6 mm, 
median 18 mm, 
range 6 – 41 mm

-

Vo Chieu VD et 
al. [77]

R MWA HCC/CCA* (97), 
metastases 
(77)

94 (174) Median 19 mm, 
range 4 – 51 mm

≥5 mm

Vo Chieu VD et 
al. [43]

R MWA HCC (17), CCA 
(3), metastases 
(20)

27 (40) Mean 17.3 ± 6.5 
mm, range 6 – 
31.5 mm

≥5 mm

Wang XL et al. 
[52]

R RFA HCC 52 (62) Mean 20 ± 10 
mm, range 10 – 
31 mm

-

Yan Y et al. [78] R RFA and 
MWA

Primary (7), 
secondary (7)

12 (14) Mean 16.6 ± 13.4 
mm, range 3 – 
45 mm

≥5 mm

Yoon JH et al. 
[79]

P RFA HCC 36 (43) Mean 24.5 mm, 
range 20 – 47 
mm

≥5 mm

Yoon JH et al. 
[36]

P RFA HCC 68 (88) Mean 16 mm ± 
6 mm, range 6 – 
32 mm

≥5 mm

Zhang Q et al. 
[80]

R RFA HCC (29), CCA 
(1), CRLM (9), 
OCLM (2), PNET 
metastases (1)

37 (37) Mean 26.6 ± 15.1 
mm, range 9.1 - 
66.7 mm

≥5 mm

RFA: radiofrequency ablation. MWA: microwave ablation. HCC: hepatocellular carcinoma. CRLM: colorectal liver 
metastasis. BCLM: breast cancer liver metastasis. CCA: cholangiocarcinoma. GEP-NET: gastroenteropancreatic 
neuroendocrine tumors. NET: neuroendocrine tumors. NPC: nasopharyngeal carcinoma. OCLM: ovarian cancer liver 
metastases. PNET: primitive neuroectodermal tumor. MAM: minimal ablative margin. *Not further specified, considered 
50% HCC and 50% CCA

3
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Table 5: Tissue shrinkage

Authors Ablation 
method

Study subjects 
(number of tests)

Contraction ratio Tissue shrinkage [%]

Amabile C et al. [55] RFA Ex vivo bovine
(n = 6)

0.88 ± 0.05

MWA Ex vivo bovine
(n = 4)

Radial: 0.83
Longitudinal: 0.82

Radial: 20.5
Longitudinal: 22.5

Brace CL et al. [56] RFA Ex-vivo porcine
(n = 20)

In 1 diameter: 15

MWA Ex-vivo porcine
(n = 8)

In 1 diameter: 30

Bressem KK et al. 
[61]

MWA In-vivo porcine
(n = 10)

4

Erxleben C et al. [62] MWA In-vivo porcine
(n = 19)

1-12

Farina L et al. [10] MWA Ex-vivo bovine
Ex-vivo turkey muscle
(total: n = 119)

28-74

Lee JK et al. [63] MWA In-vivo human
(n = 31)

Absolute ablation 
zone: 2.45 ± 0.47
Absolute tumor: 2.37 
± 0.28 mm

RFA In-vivo human
(n = 44)

Absolute ablation 
zone: 0.94 ± 0.38 mm
Absolute tumor: 0.55 
± 0.26 mm

Liu D et al. [57] MWA Ex-vivo bovine
(n = 6)

Radial: 10
Longitudinal: 20
Volumetric:40

Liu D et al. [60] MWA Ex-vivo porcine
(n = 16)

Radial: 11-35

Rossmann C et al. 
[58]

RFA Ex-vivo porcine
(n = 35)

12.3 – 21.7

Weiss N et al. [59] MWA Ex-vivo porcine
(n = 16)

Planar strain:
10 min: 0.97 ± 0.02
1,2,3, 6 min: all >1

RFA = radiofrequency ablation, MWA = microwave ablation
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