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ABSTRACT

Introduction To minimize the risk of local tumor progression rates after thermal
ablation of liver malignancies, complete tumor ablation with sufficient ablation
margins is a prerequisite. This has resulted in ablation margin quantification to
become a rapidly evolving field. The aim of this systematic review is to give an
overview of the available literature with respect to clinical studies and technical
aspects potentially influencing the interpretation and evaluation of ablation margins.

Methods The Medline database was reviewed for studies on radiofrequency and
microwave ablation of liver cancer, ablation margins, image processing and tissue
shrinkage. Studies included in this systematic review were analyzed for qualitative
and quantitative assessment methods of ablation margins, segmentation and co-
registration methods, and the potential influence of tissue shrinkage occurring during
thermal ablation.

Results 75 articles were included of which 58 were clinical studies. In most clinical
studies the aimed minimal ablation margin (MAM) was =5 mm. In 10/31 studies, MAM
quantification was performed in 3D rather than in three orthogonal image planes.
Segmentations were performed either semi-automatically or manually. Rigid and
non-rigid co-registration algorithms were used about as often. Tissue shrinkage rates
ranged from 7% to 74%.

Conclusions There is a high variability in ablation margin quantification methods.
Prospectively obtained data and a validated robust workflow are needed to better
understand the clinical value. Interpretation of quantified ablation margins may be
influenced by tissue shrinkage, as this may cause underestimation.

Keywords: thermal ablation; RFA; MWA; ablation margin quantification; image co-
registration; tissue shrinkage
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INTRODUCTION

Thermal ablation is an effective treatment for primary and secondary liver tumors [1-3].
For tumors of limited size (<2cm) thermal ablation using radiofrequency ablation (RFA) or
microwave ablation (MWA) is a first line therapy, particularly in patients with co-morbidity,
underlying liver cirrhosis and/or centrally located tumors. Nevertheless, surgical resection is
generally considered to be more effective, as thermal ablation is associated with higher local
tumor progression (LTP) rates. To minimize the risk of LTP after thermal ablation, complete
tumor ablation with sufficient ablation margins is essential. The correlation between ablation
margins and LTP was first demonstrated in 2008 by Kei et al. [4]. Later, this was confirmed
by other large trials [5-7].

Most commonly, ablation margins after thermal ablation are assessed by side-by-side
comparison of pre- and post-ablation cross-sectional images. This method is usually
based on visual assessment, i.e. eye-balling, but may be aided by two-dimensional
measurements using anatomical landmarks on both scans. The use of software-assisted
quantitative assessment of ablation margins has gained interest in literature over the last
years [6-9]. Several studies indicate it could contribute to better determine technical success
of thermal ablation treatments and estimate the risk of LTP [7-9]. However, there is wide
variation in methods used for margin quantification and the optimal method has not yet
been established.

Ablation margin quantification is performed using software with specific segmentation and
image co-registration algorithms. The co-registration algorithms may differ by design as co-
registration can be performed either in a rigid or non-rigid way. In rigid co-registration, the
images are registered using only rotation and translation of the images whereas non-rigid
co-registration also allows deformation of the images. Besides the differences between
rigid and non-rigid co-registration, the co-registration could be performed manually, semi-
automatically or fully automatically. Other differences may be with respect to volume of
interest selection or usage of landmarks.

Besides the more technical variety among co-registration algorithms, patient and treatment
related factors may affect the result of ablation margin quantification. Differences in
respiration mode and patient positioning may cause considerable variation in the shape and
position of the liver between the pre- and post-ablation scans. Moreover, tissue shrinkage
as a direct result of tissue heating possesses an important challenge on ablation margin
interpretation [10]. As the ablated tissue tends to shrink during thermal ablation, the ablation
margins may be underestimated. Unfortunately, the degree and direction of tissue shrinkage
is unpredictable [10].
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Quantitative ablation margin assessment holds great promise as a tool to better predict
patients at risk for LTP after thermal ablation. The aim of this systematic review is to create
an overview of the current evidence with respect to qualitative and quantitative evaluation
methods of ablation margins, image processing tools, and the potential influence of tissue
shrinkage occurring during thermal ablation.

METHODS

Search strategy
The electronic database Medline was searched on 01/02/2021 for all studies describing

» o« » o«

“image segmentation”, “image registration”,

» o«

ablation margins”, “treatment success” or
“tissue shrinkage” during treatment of liver tumors using thermal ablation techniques,
i.e. “RFA” or “MWA”, since 01/01/2009 as techniques have constantly been improving and
the quality of ablation of >12 years old was not considered representative. The full search
term used can be found in Appendix A. Articles were sequentially evaluated based on title,
abstract and full text for meeting all in- and exclusion criteria. The literature search, study
selection, data extraction and study quality assessment were independently conducted by
two reviewers (P.H. and F.B.). Any disagreements were resolved in consensus.

Exclusion criteria

Articles were excluded if they did not relate to percutaneous thermal ablation of malignant
liver tumors with RFA or MWA,; if surgical resection was performed; and if the aim of the
article was to evaluate combination therapy with ablation and trans-arterial or systemic
therapy. Articles related to liver segmentation or co-registration were excluded if they did
not define the segmentation or co-registration method used; and if ultrasound (US), positron
emission tomography (PET), or single photon emission computed tomography (SPECT)
images were used for image segmentation or co-registration. Articles using hybrid imaging
modalities were not excluded if tumor and/or ablation zone segmentation was performed
using (contrast-enhanced) CT or MRI. Articles related to evaluation of ablation margins
were excluded if they did not provide a definition for technical success or minimal ablation
margins. Finally, systematic reviews, reviews, letters to the editor, conference abstracts and
full-text articles in other languages than English were excluded. References of systematic
reviews and reviews were evaluated for further inclusion of articles missed in the initial
search.

Data extraction

Foreach article, the following information was extracted if present: first author, publication
year, journal, study type, imaging modality, tumor type, mean tumor size, number of subjects
and tumors, ablation method, software used, intended minimal ablation margin (MAM), LTP
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rate, method of MAM determination, segmentation method, co-registration method, other
treatment success outcome measures, and validation of segmentation and registration.

RESULTS

The search strategy initially resulted in 215 articles, that were screened by title and abstract
(Figure 1). Subsequently, 110 articles were analyzed in full-text for eligibility, resulting in the
inclusion of 71 articles. Another 4 articles were included from references of (systematic)
reviews. Eventually, a total of 75 articles were included in this review, see Figure 1. Thirty-
one articles described a method for determination of technical success or measurement
of MAM [5-9, 11-36]. Thirteen articles described segmentation methods for segmentation
of the tumor and the ablation zone [8, 9, 22, 31, 37-45]. Twenty-five articles reported on co-
registration methods for either pre- and postinterventional image co-registration, or pre- and
intraoperative image co-registration [6-9, 12, 24, 26-28, 31, 32, 34, 36, 42, 44-54]. Finally, ten
articles evaluated tissue shrinkage due to thermal ablation [10, 55-63].

Records identified through
Medline search (n=215)

Records excluded on title and
abstract screening (n=105):
Treatment method (n=61)
Imaging modality (n=35)
QOutcome measure (n=1)
Other (n=8)

A

Titles/abstracts screened for
eligibility (n=215)

A 4

Full-text articles assessed for
eligibility (n=110)

Records excluded on full text
assessment (n=39):
Treatment method (n=9)
Imaging modality (n=2)
Outcome measure (n=27)

h 4

Records found to be eligible Other (n=1)
(n=71)
< Studies included from

references (n=4)

Studies included (n=75)

Figure 1: Overview of the article selection process, specified per step.

Clinical studies

In total, 58 clinical studies with 4,311 tumors were included in the results. RFA was the
ablation method used most frequently and HCC patients (n=3,431 tumors) formed the main
population in most studies. Intrahepatic cholangiocarcinoma (n=57) and hepatic metastases
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from other primary origin (predominantly colorectal cancer, n=456) were other pathologies
included. All studies were performed in a single center and most of them had a retrospective
study design. A high variety in population size was found (7-211, median: 36.5). Mean or
median lesion sizes were <30 mm for all clinical studies. An overview of all included clinical
studies can be found in Table 1.

MAM assessment

In general, three ways of pre- and post-ablation imaging assessment were identified from
the results, see Table 2. Analysis with side-by-side projection of pre- and post-scans was
performed in 14/31 studies [5, 8, 13-21, 27, 28, 35]. As part of this assessment MAM was
determined in the axial plane (n=13) [5, 8, 13, 15-21, 26, 28, 35] or in the coronal and sagittal
imaging planes too (n=10) [5, 8, 13, 16, 17, 19, 20, 26, 28, 35]. Manual 2D measurements using
anatomical landmarks were performed to quantify the ablation margins in these studies
using mostly anatomical landmarks. In 21/31 studies co-registration software for MAM
quantification was used [6-9, 11, 12, 22-36]. The software used can further be categorized
into a) non-dedicated co-registration software combined with manual measurements (n=17)
[6-9, 11, 12,22, 24-30, 32-34, 36] and b) dedicated MAM quantification software that allows
segmentation of tumor and ablation necrosis (n=3) [22, 23, 31].

Euclidian distance measurements were used to quantify the MAM in 3D in case of dedicated
MAM quantification software. In non-dedicated co-registration software, either a visual
assessment (n=1) [30], in-plane measurements (n=10) [6, 11, 25-30, 33, 34] or 3D MAM
measurements (n=6) [7-9, 12, 24, 36] was used.

In all studies, the MAM was expressed as the smallest distance from the tumor boundary
to the nearest border of the ablation zone. In general, the intended MAM was =5 mm, as
can be seen in Table 1. In a few studies additional quantification measures were used,
such as the coverage of the tumor by the ablation zone, or the extent that a 5 mm ablation
margin was reached in all directions. In 36 studies, the quantified MAM was correlated with
the occurrence of LTP. Figure 2 shows the correlation between the intended MAM and the
occurrence of LTP. In one study immunohistology of a post-ablation biopsy was correlated
with the occurrence of LTP [35].

Segmentation methods

Table 3 describes the different methods used for segmentation of the tumor and ablation
zone. Semi-automatic segmentation methods were used in 12/13 studies [8, 9, 22, 31, 37-44]
and manual segmentation was used in only one study [45]. Semi-automatic segmentation
methods used included edge detection [8, 9, 44], region growing based algorithms [22, 40,
41, 45], and machine learning based algorithms involving classification [39] and clustering
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Figure 2: Violin plot showing the local tumor progression (LTP) rates for different intended minimal abla-
tion margins (MAM). Horizontal width of the plot represents the density of the data along the Y-axis. Each
individual dataset is represented as a dot, where larger dots represent studies with more tumors treated

[37,38, 42]. In four of these papers in-house segmentation software was used [37-39, 42] and
in the other studies commercially available software [8, 9, 22, 31, 40, 41, 43, 44].

The accuracy of segmentation was qualitatively assessed by radiologists in all studies.
Quantitative inter- or intra-observer agreement methods were used in eight studies,
comparing semi-automatic segmentation with manual segmentation of an observer or the
interobserver agreement between manual segmentation of multiple observers. Outcome
measures used were the dice similarity coefficient (DSC) [37, 38], volumetric overlap error [39],
volume difference [39], average symmetric surface distance [39], root mean square symmetric
surface distance [39], maximum symmetric surface distance [39], Lin’s concordance
correlation coefficient [40, 41], percentage match [42], positive and negative predictivity
[42], specificity [42], and Pearson correlation [43].

Registration and MAM quantification software

Table 4 provides an overview of the different software used for co-registration and MAM
quantification. CECT-images were used for co-registration in 22/25 studies [6-9, 24, 26-28,
31, 34, 36, 42, 44-46, 48, 50, 51, 53, 54], and MRI-images were used in 10/25 studies [12, 24,
26,28, 32,36,44, 45,52, 53]. In-house developed software was used in 9/25 studies [12, 42,
46-48,50, 51, 53, 54].
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Rigid co-registration algorithms that only allowed for translation and rotation of images
for optimal co-registration were used in 11/25 studies [6, 7, 26, 27, 31, 32, 34, 44, 45,52, 53].
Reasons for choosing rigid co-registration could be speed, and availability. In 14/25 studies,
non-rigid co-registration algorithms were used that also allowed for deformation of the scans
to locally optimize the co-registration [8, 9, 12, 24, 28, 31, 36, 42, 46-51, 53, 54]. Reasoning
behind the choice of a non-rigid approach were to allow for local liver deformations and
to reduce the influence of respiratory motion, adjacent organ movement, heart pulsations
and patient positioning. In two studies, both co-registration methods were used [31, 53].

Anatomical landmark placement on the liver surface, hepatic arteries, portal veins and
hepatic veins near the tumor were (optionally) used as input parameters in 16/25 different
studies [6-9, 24, 26, 32, 34, 36, 44, 45, 47-49, 51, 52]. Placement of anatomical landmarks near
the tumor and ablation necrosis was used for local optimization of the image co-registration.

Fully automated co-registration algorithms were used in 6/25 studies [12, 26, 31, 42, 50, 53].
Semi-automatic co-registrations algorithms were used in 14/25 studies [7-9, 24, 32, 34, 36,
45-49, 51, 54]. Manual translation and rotation was possible to adjust the co-registrations in
these software packages. Three commercial software packages were used that only allowed
for manual co-registration [6, 26, 52]. One software platform was commercially available and
dedicated to ablation margin quantification [31].

Quiality of co-registration was described in 22/25 studies [6-9, 12, 24, 26, 27,32, 34, 36, 44, 46-
54]. This was qualitatively scored in 12/22 software packages using e.g. a three- or five-points
scale [6-9, 24,32, 34, 36, 44,45, 49, 52]. Quantitative quality assessment measures included
distances between one or multiple pairs of landmarks, and distances between surface areas.
Another quantitative quality assessment tool was the use of the Dice similarity coefficient
between segmented liver volumes.

Tissue shrinkage

Tissue shrinkage was evaluated using ex vivo bovine or porcine livers [10, 55-60], in vivo porcine
livers [61, 62] or pre- and post-ablation imaging of patients with HCC or metastases [63]. In
the ex vivo animal models, the liver was divided in test samples, after which ablation was
performed using either RFA or MWA. In the in vivo animal model, the ablation was performed
in different segments of the liver. The samples consisted of normal liver parenchyma without
tumors. Ablation times ranged from 1 minute to 20 minutes, with power settings between
20 and 200 W. Tissue shrinkage was measured through the dimensions of the samples pre-
and post-ablation, or the displacement of markers inserted into the tissue sample. Tissue
shrinkage was expressed as the contraction ratio, or contraction measured in percentage,
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see Table 5. Noteworthy, in the study by Weiss et al. the contraction was expressed as planar
strain, which showed tissue expansion for ablation times <10 minutes [59].

In the in vivo human study, measurements were performed using landmarks on both pre-
and post-ablation images by two radiologists. A relative ablation zone contraction of 7.11%
(+/-13.3) and 2.39% (+/- 12.7), and tumor contraction of 9.95% (+/- 10.4) and 1.31% (+/- 13.2)
were found for MWA and RFA, respectively [63].

DISCUSSION

Ablation margin quantification has been a topic of high interest in literature. In this systematic
review, we have evaluated clinical study methodology, MAM quantification software methods,
imaging co-registration methods, segmentation methods and tissue shrinkage. In general,
a high variety in methodology was found between different studies.

With respect to the clinical studies, a MAM of =5 mm was intended mostly, in accordance with
ablation guidelines [81]. Although the studies were very heterogeneous, and only limited data
were available of studies with an intended MAM of =3 mm and =10 mm, LTP rates tended to
decrease at larger intended MAM.

In studies that aimed at retrospective quantification of the ablation margins, the properties
of the ablation margin quantification tools or software were evaluated. The MAM (i.e. smallest
distance between outer boundaries of tumor and ablation zone) was the outcome measure
used in all studies. Only 3 studies used other additional outcome measures, such as ablation
surface area or volumetric data. In a limited number of studies, the MAM could also be
quantified in 3D rather than the standard orthogonal image planes. With the emerging field
of dedicated ablation margin quantification software and incorporation of ablation margin
quantification in clinical trials, it is expected that this more thorough analysis will become
the new standard.

Segmentation of tumor and ablation zone plays a major role in objectively quantifying
ablation margins. Several segmentation algorithms were used in the included studies,
most of them were semi-automatic and based on underlying grey-scale or region-growing
algorithms. Multiple methods were used to validate segmentations among different
interpreters or against a golden standard. Although the results of these validations are not
directly comparable, the overall performance seems good. To be better able to compare
the robustness and accuracy of each segmentation tool, a standardized validation method
would be needed, despite their specific advantages and disadvantages. The DSC is suitable
for comparing two segmentations based on their overlap, but its sensitivity is dependent on
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the size of the segmented structure. Besides the technical aspects of segmentation, several
clinicalimplications should be taken into consideration. The size and shape of a tumor may
appear differently on arterial and venous phases. Choosing the right scan phase is therefore
crucial for obtaining the correct ablation margin. Moreover, for a smooth incorporation in
the clinical workflow it is important that segmentation algorithms are fast, accurate and
easily correctable.

Image co-registration between pre- and post-ablation imaging is the basis for quantifying
distances between boundaries of the tumor and ablation zone. Rigid and non-rigid co-
registration techniques were used about as often and most of the co-registration methods
included in this systematic review were semi-automatically. Non-rigid co-registration
algorithms usually result in visually better outcomes for the entire liver, as deformational
differences of the liver between the pre- and post-ablation scans are adjusted for. However,
local tissue deformations as a result of thermal ablation may result in inaccurate MAM
measurements. Luu et al. proposed to manually penalize local areas with large erroneous
non-rigid deformations by enforcing local rigidity [50]. Similarly, Passera et al. replaced these
local areas with synthetic patterns to be able to use a non-rigid co-registration approach
without the undesired, erroneous deformations in the ablation zone that hamper correct
MAM measurements [42]. Locally optimized co-registration between pre- and post-ablation
imaging in the tumor region is the main objective. The use of local landmark placement is
possible in many co-registration algorithms and may be used for this sake.

To reduce co-registration errors in a clinical setting, the pre- and post-ablation imaging are
best obtained during the ablation procedure with the patient in an identical bed position
and with a similar inhalation mode. Although thermal ablation could be performed using
intravenous sedation, general anesthesia has the advantage of being able to use high-
frequency jet ventilation or breath hold [81]. This may help reducing differences in inhalation
mode, and therefore co-registration errors. It has yet to be established which scanning
protocol and phase is most suitable for accurate and reproducible quantification of ablation
margins.

Tissue shrinkage during ablation may be of high influence on the outcome of ablation
margin quantification, with substantial tissue shrinkage rates reported in animal studies.
As a result of tissue shrinkage, ablation margins may be underestimated. During the follow-
up after thermal ablation, the ablation zone may shrink further on imaging [82]. Therefore,
ablation margin quantification should be determined based on images acquired directly after
treatment. This systematic review only included articles using CECT or MRI for immediate
ablation margin evaluation. For clinical purpose, hybrid imaging with PET-CT or PET-MRI
may help identifying patients at risk of developing LTP [83]. Besides direct tissue shrinkage
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during ablation, local edema around the ablation zone may cause the opposite effect directly
surrounding the ablation necrosis, and my influence image co-registration.

The evidence available on the use of ablation margin quantification is currently based on
retrospective studies with a high variability in study methodology. Both clinical factors
and technical factors, in terms of image acquisition, reconstruction algorithms, and image
processing play major roles in the quantification of ablation margins. A better understanding
is needed of how these factors affect the outcome, and what combination of factors results
in a robust and accurate method of ablation margin quantification. With this standard at
hand, the correlation between measured MAM and the occurrence of LTP could ultimately
be better understood and incorporated in the standard workflow.

Several prospective clinical trials are currently performed trying to bridge this gap, such
as the PROMETHEUS (Netherlands Trial Register NL9713) [84], ACCLAIM (Clinicaltrials.gov:
NCT03753789), COVER-ALL (Clinicaltrials.gov: NCT04083378) [85], RFA physics library - PGP
(Clinicaltrials.gov: NCT04152343) and IAMCOMPLETE (Clinicaltrials.gov: NCT04123340)
trials. Moreover, companies are developing solutions for ablation margin quantification and
raising precision e.g. with dedicated ablation margin quantification software [31], ablation
needle guidance and integrated ablation margin confirmation software [86], or an ablation
system with integrated imaging co-registration and ablation margin verification software
[87]. Moreover, the wider application of dual-energy CT and spectral CT may contribute to
optimized tumor and ablation zone segmentation [88]. The combination of prospective
clinical trials and technological advancements is what is needed to push ablation margin
quantification to the next stage.

CONCLUSION

Ablation margin quantification is emerging to become a valuable tool in optimizing minimally
invasive treatment of hepatic tumors. This systematic review shows that there is currently
a high variability in ablation margin quantification methodology in terms of image co-
registration, segmentation methods, and interpretation. Although the method for reaching
the maximum precision in a robust way may still be unknown, the correct clinical use and
interpretation will be very important as the ultimate goal is to interpret ablation margins at
a millimeter level of accuracy. Optimization of scanning protocols, time reduction between
pre- and post-ablation scans, and quality assessment of image co-registration are therefore
of great importance.
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Table 1: Characteristics of all clinical studies included.

Authors Study type (Ret- Ablation Tumor Type Numberof Tumor size Intend-
rospective R, method patients ed MAM
Prospective P) (tumors)
Abdel-RehimM R RFAand  HCC(17),CRLM 23(23) Range8-40mm  =5mm
etal. [11] MWA (3), BCLM (1),
CCA(2)
AnCetal.[12] R MWA HCC 141 (141) Mean23 mm+ =5mm
9mm
Beyer LP et al. Rand P MWA HCC (20), CRCM 36 (36) Mean 21.2 mm -
[64] (16)
Biondetti P et R MWA HCC 74 (74) Mean17.1mm, =5mm
al. [13] range 7 -30mm
BoulkhrifHet R RFAand  HCC(35),CRLM 35 (56) Mean20.4+9.4 -
al. [46] MWA (16), neuro- mm, range 6.1 -
endocrine (3), 60 mm; median
gastric (1), 18.3mm
BCLM (1)
CaoFetal.[65] R MWA MLM 7(22) Median 16.37 -
(melanoma mm, range 6.66
liver -43.72mm
metastases)
ChaDletal.[66] R RFA HCC 146 (146) Median 16 mm, =5mm
range 7-42 mm
Choi JWetal. P RFA HCC 79 (98) Mean19+7mm =5mm
[67]
Choi JWetal. P RFA HCC 77 (86) Mean 16.5 mm >5mm
[14]
El-GendiAet P RFA HCC 24 (24) Mean20.4+4.4 =210mm
al. [68] mm
FukudaKetal. P RFA HCC 76 (85) Median 15mm, =10 mm
[15] range 8-30 mm
FumarolaEMet R MWA HCC 50 (50) Mean 17.6 mm,
al. [69] range 7 -35mm
HameY et al. R RFA - 9(11) <5mm -
[39]
Hendriks P et R RFA HCC 25(25) Median20 mm, =5mm
al. [8] range 12 - 45
mm
HocqueletAet R RFA HCC 16 (16) Mean 29 mm =5mm
al. [22]
lwazawa J et R RFA HCC (8), 12(12) Mean 16.3mm, =5mm
al. [16] metastatic (4) range 8 -20 mm
lyer RS et al. R RFA HCC (20), 29 (39) - >10 mm
[44] metastatic (19)
Jiang Cetal. R RFA HCC 134 (159) Mean20+9 mm, =5mm
[23] range 10 - 49
mm
KameiSetal. R RFA HCC 19(22) Mean17.5+7.9 =5mm
[70] mm, range 9 -
34mm
Kang TW et al. R RFA HCC 211(211) Mean 21 mm =5mm
[71]
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Table 1: Characteristics of all clinical studies included. (continued)

Authors Study type (Ret- Ablation Tumor Type Numberof Tumor size Intend-
rospective R, method patients ed MAM
Prospective P) (tumors)
KayeEAatal. R RFA CRLM 72(93) Mean 18 mm, -
[45] range 6-55mm
KeilSetal.[40] R RFA BCLM (15), 25 (50) - -
CRLM (35)
KeilSetal.[41] R RFA BCLM (15), 25(50) Mean 23 mm -
CRLM (35)
Kim KW et al. R RFA HCC 31(38) Mean 19 mm, -
[49] range 10 - 35
mm
Kim SM et al. P RFA HCC 33(42) Mean15.8+5.9, -
[17] range7-33mm
KimYSetal.[6] P RFA HCC 103 (110) Mean27+6mm, =5mm
range21-48
mm
KobeAetal. R RFA HCC 39 (43) Median 16.9 -
[24] mm, range 14.6
-22.4mm
Koh YH et al. R RFA HCC 64 (75) Mean 14.0+£4.6 =5mm
[18] mm, range 10 -
37mm
Laimer G et R RFA HCC 110 (176) Mean25.2+14.9 -
al. [7] mm
Lee JKetal.[63] R RFAand  HCC (49) and 65 (75) Range 10 - 65 -
MWA metastatic (26) mm
Lee MW et al. R RFA HCC 18 (19) Mean 25 mm, =5mm
[72] median 23 mm,
range 20 - 42
mm
LiXetal. [73] R MWA NPC 18 (24) Maximum >5mm
metastases diameter of 42
mm
LiaoMetal.[25] P RFA HCC 80 (83) Mean 24.5 mm >5mm
LiuZYetal.[74] P RFA CRLM 12 (20) Mean 28 mm, =5 mm
range 15-52
mm
Makino Y et al. R RFA HCC 85 (94) Mean14.0+5.2 -
[27] mm
Makino Y et al. R RFA HCC 67 (92) Median 12.9 -
[26] mm, range 4.8 -
41.4 mm
MotoyamaTet R RFA HCC 66 (95) Median18 mm, =5mm
al. [19] range 7 -33mm
ParkJetal.[28] R RFA HCC 178 (178) Mean 17.3+6.1 -
mm
Park Sletal. R RFA HCC (15), 15(17) Mean 15.68 + >10mm
[75] rectosigmoid 5.29 mm, range
metastases (1), 10-26 mm
CCA(1)
ParkYetal.[20] R RFA HCC 146 (167) Mean 19 mm, =25 mm

median 18 mm,
range 8 - 40 mm

48



SYSTEMATIC REVIEW OF ABLATION MARGIN QUANTIFICATION TECHNIQUES

Table 1: Characteristics of all clinical studies included. (continued)

Authors Study type (Ret- Ablation Tumor Type Numberof Tumor size Intend-
rospective R, method patients ed MAM
Prospective P) (tumors)
PasseraKetal. R RFA HCC (5), 10 (10) Range 10-40 mm -
[42] metastatic (5)
Ringe Kl et al. R RFA and 32 (48) Mean 24 mm, -
[21] MWA range 9 - 64 mm
SakakibaraMet R RFA HCC 84 (139) Mean13.8+4.6 =5mm
al. [29] mm
ShinSetal.[30] P RFA HCC 150 (150) Mean19.5+7.9 =5mm
mm
Sibinga Mulder R RFA CRLM 29 (29) Median22 mm, =5mm
BGetal.[9] range 8 -22 mm
Solbiati M et R MWA HCC 50 (90) Mean 27 + 20 =5mm
al. [31] mm
SotirchosVSet P RFA CRLM 47 (67) Mean 21 mm, =5mm
al. [35] range 6 -43 mm
TakeyamaNet R RFA HCC 29 (59) Mean11.2+4.4 =3mm
al. [32] mm, range 5 - 24
mm
VanTilborgAA R RFAand  HCC(7),CRLM  20(38) Mean 22 mm =5mm
etal. [76] MWA (29), CCA(2)
Tinguely P et R MWA HCC (174), 153 (301) Median 15mm, =5mm
al. [33] CRLM (87), NET IQR11-21mm
(17), other (23)
Vandenbroucke R RFA CRLM (16), 20 (45) Mean 18.6 mm, -
Fetal. [34] melanoma median 18 mm,
metastases (3), range 6 -41 mm
BCLM (1)
Vo ChieuVDet R MWA HCC/CCA* (97), 94 (174) Median 19 mm, =5mm
al. [77] metastases range4-51 mm
(77)
Vo ChieuVDet R MWA HCC (17),CCA 27 (40) Mean17.3+6.5 =5mm
al. [43] (3), metastases mm, range 6 -
(20) 31.5mm
Wang XL et al. R RFA HCC 52 (62) Mean 20 + 10 -
[52] mm, range 10 -
31mm
YanYetal.[7T8] R RFAand  Primary (7), 12 (14) Mean 16.6+13.4 =5mm
MWA secondary (7) mm, range 3 -
45 mm
Yoon JH et al. P RFA HCC 36 (43) Mean24.5mm, =5mm
[79] range 20 - 47
mm
Yoon JH et al. P RFA HCC 68 (88) Mean 16 mm + =5mm
[36] 6 mm, range 6 -
32mm
ZhangQetal. R RFA HCC(29),CCA  37(37) Mean26.6+15.1 =5mm
[80] (1), CRLM (9), mm, range 9.1 -

OCLM (2), PNET
metastases (1)

66.7 mm

RFA: radiofrequency ablation. MWA: microwave ablation. HCC: hepatocellular carcinoma. CRLM: colorectal liver
metastasis. BCLM: breast cancer liver metastasis. CCA: cholangiocarcinoma. GEP-NET: gastroenteropancreatic
neuroendocrine tumors. NET: neuroendocrine tumors. NPC: nasopharyngeal carcinoma. OCLM: ovarian cancer liver
metastases. PNET: primitive neuroectodermal tumor. MAM: minimal ablative margin. *Not further specified, considered
50% HCC and 50% CCA
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Table 5: Tissue shrinkage

Authors Ablation Study subjects Contraction ratio Tissue shrinkage [%]
method (number of tests)
Amabile Cetal. [55] RFA Ex vivo bovine 0.88+0.05
(n=6)
MWA Ex vivo bovine Radial: 0.83 Radial: 20.5
(n=4) Longitudinal: 0.82 Longitudinal: 22.5
Brace CL et al. [56] RFA Ex-vivo porcine In 1 diameter: 15
(n=20)
MWA Ex-vivo porcine In 1 diameter: 30
(n=8)
Bressem KK et al. MWA In-vivo porcine 4
[61] (n=10)
Erxleben Cetal.[62] MWA In-vivo porcine 1-12
(n=19)
Farina L etal. [10] MWA Ex-vivo bovine 28-74
Ex-vivo turkey muscle
(total: n=119)
Lee JKetal. [63] MWA In-vivo human Absolute ablation
(n=31) zone: 2.45 +0.47
Absolute tumor: 2.37
+0.28 mm
RFA In-vivo human Absolute ablation
(n=44) zone: 0.94+0.38 mm
Absolute tumor: 0.55
+0.26 mm
LiuDetal. [57] MWA Ex-vivo bovine Radial: 10
(n=6) Longitudinal: 20
Volumetric:40
Liu D etal. [60] MWA Ex-vivo porcine Radial: 11-35
(n=16)
Rossmann Cetal. RFA Ex-vivo porcine 12.3-21.7
[58] (n=35)
Weiss N et al. [59] MWA Ex-vivo porcine Planar strain:

(n=16)

10 min: 0.97 £0.02
1,2,3,6 min: all>1

RFA = radiofrequency ablation, MWA = microwave ablation
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