
Comparison and benchmark of structural variants detected from long
read and long-read assembly
Lin J., Jia Peng, Wang Songbo, Kosters W.A., Ye K.

Citation
Lin J., J. P. , W. S. , K. W. A. , Y. K. (2023). Comparison and benchmark of structural
variants detected from long read and long-read assembly. Briefings In Bioinformatics,
24(4). doi:10.1093/bib/bbad188
 
Version: Publisher's Version
License: Licensed under Article 25fa Copyright Act/Law (Amendment Taverne)
Downloaded from: https://hdl.handle.net/1887/4082074
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:4
https://hdl.handle.net/1887/4082074


Jiadong Lin is an assistant professor of School of Automation Science and Engineering at Xi’an Jiaotong University.
Peng Jia is PhD student of School of Automation Science and Engineering at Xi’an Jiaotong University.
Songbo Wang is a PhD student of School of Automation Science and Engineering at Xi’an Jiaotong University.
Walter Kosters is an associated professor of Leiden Institute of Advanced Computer Science at Leiden University.
Kai Ye is a professor of School of Automation Science and Engineering at Xi’an Jiaotong University.
Received: January 16, 2023. Revised: April 25, 2023. Accepted: April 26, 2023
© The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

Briefings in Bioinformatics, 2023, 24(4), 1–12

https://doi.org/10.1093/bib/bbad188
Advance access publication date 17 May 2023

Review

Comparison and benchmark of structural variants
detected from long read and long-read assembly
Jiadong Lin, Peng Jia, Songbo Wang, Walter Kosters and Kai Ye
Corresponding author. Kai Ye, School of Automation Science and Engineering, Xi’an Jiaotong University, Xi’an, 710049, China. Tel.: +86-82664955;
Email: kaiye@xjtu.edu.cn

Abstract

Structural variant (SV) detection is essential for genomic studies, and long-read sequencing technologies have advanced our capacity
to detect SVs directly from read or de novo assembly, also known as read-based and assembly-based strategy. However, to date, no
independent studies have compared and benchmarked the two strategies. Here, on the basis of SVs detected by 20 read-based and
eight assembly-based detection pipelines from six datasets of HG002 genome, we investigated the factors that influence the two
strategies and assessed their performance with well-curated SVs. We found that up to 80% of the SVs could be detected by both strategies
among different long-read datasets, whereas variant type, size, and breakpoint detected by read-based strategy were greatly affected by
aligners. For the high-confident insertions and deletions at non-tandem repeat regions, a remarkable subset of them (82% in assembly-
based calls and 93% in read-based calls), accounting for around 4000 SVs, could be captured by both reads and assemblies. However,
discordance between two strategies was largely caused by complex SVs and inversions, which resulted from inconsistent alignment of
reads and assemblies at these loci. Finally, benchmarking with SVs at medically relevant genes, the recall of read-based strategy reached
77% on 5X coverage data, whereas assembly-based strategy required 20X coverage data to achieve similar performance. Therefore,
integrating SVs from read and assembly is suggested for general-purpose detection because of inconsistently detected complex SVs
and inversions, whereas assembly-based strategy is optional for applications with limited resources.
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INTRODUCTION
Structural variants (SVs, ranging from 50 bp to megabases of
sequence) comprise different subclasses, such as deletions, inser-
tions, etc., and play important roles in both healthy and disease
genomes. Calling SVs between an individual’s genome and a
reference genome has been the standard practice for genomic
studies since the completion of Human Genome Project. Over the
past decade, researchers have made great progress in discover-
ing and genotyping SVs in diverse populations with short-read
data, but SVs such as insertions or those at repetitive regions
remain challenging due to the limited read length [1]. Long-read
sequencing technologies, such as Pacific Bioscience (PacBio) and
Oxford Nanopore Technology (ONT), have emerged as superior
to short-read sequencing for SV detection and thus reveal a
number of novel SV functional impacts missed by short-read data
[2–5]. Long-read also improved SV detection in genetic diseases
[6–8] and cancers [9–15] where SVs are usually undetectable or
misinterpreted by short-read [16]. In addition, long-read sequenc-
ing have inspired dramatic improvements of assembly methods
and promote de novo assembly-based SV detection, such as the
study conducted by the Human Genome Structural Variation
Consortium, revealing 107 590 SVs with HiFi (High-Fidelity reads
generated by PacBio CCS technology) assemblies, of which 68% are
not discovered by short-read sequencing [2, 17].

Currently, almost all long-read based studies use either the
read-based (i.e. detecting from read alignments) or the assembly-
based strategy (i.e. detecting from assembly alignments) for SV
detection. The assembly-based strategy is consisted of de novo
assembly, alignment and calling, whereas the read-based strategy
only contains alignment and calling. The calling step of the two
strategies is similar and usually contains two parts. First, the SV
signatures are identified and gathered from two types of aberrant
alignments: intra-read and inter-read. Intra-read alignments are
derived from reads spanning the entire SV locus, whereas inter-
read alignments are usually obtained from the supplementary
alignments [1]. Second, callers typically cluster and merge similar
signatures from multiple aberrant alignments, delineating prox-
imal signatures that support putative SV. Nearly all read-based
callers developed in the past 5 years, such as Sniffles [18], pbsv,
cuteSV [19], SVIM [20], NanoVar [21], NanoSV [22], and Picky [10],
detect SVs through combinations of signatures obtained from
inter-read and intra-read alignments but differ in their signature
clustering heuristics. Although different from the above methods,
SVision [23] applies a deep-learning approach to directly recog-
nize different SV types from the variant signature sequences.
Assembly-based callers, such as Phased Assembly Variant (PAV)
and SVIM-ASM [20] also collect aberrant inter-contig and intra-
contig alignments for SV detection. However, PAV adopts align-
ment trimming for the detection at complex genomic regions.
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The above detection methods have undoubtedly deepened our
understanding of SVs and their related biological and pathological
process. Although a number of studies have demonstrated the
advances of using long-read over short-read data [2, 24], the
properties of SVs accessible to long read and long-read assembly
are largely unknown. Here, we used HG002 genome and its
well-curated benchmarks from Genome in a Bottle Consortium
(GIAB) to compare benchmark and establish expectations for
these two strategies. We selected four read aligners, three
assemblers, one contig aligner, five read-based callers and two
assembly-based callers according to methods reviewed by a
recent study [25] (Methods). Based on SVs detected from three
HiFi and three ONT datasets of different sequencing libraries
(Supplementary Table S1), we assessed these two strategies from
the following perspectives (Figure 1): (i) the impact of dataset,
aligner and assembler on each strategy, (ii) the concordant SVs
between read and assembly as well as SVs specifically detected
from read and assembly, (iii) the recall and precision of detecting
SVs at simple and complex genomic regions. Our findings would
help researchers choose appropriate detection strategy for their
genomic studies, and they also help developers to know how
dataset-specific attributes, various methods and variant types
influence the performance of these detection strategies.

RESULTS
Impact of dataset, aligners and assemblers on
each strategy
Overall, assembly-based strategy detects more SVs, especially
insertions, than read-based strategy and the difference was even
remarkable on ONT datasets (Figure 2A, Figure S1). For both
strategies, around 78 and 82% of the WGS-SVs (SVs at whole
genome scale) and ExTD-SVs (SVs outside of tandem repeat
regions) were concordant among three HiFi datasets, respectively
(Figure 2B, Figure S2A). On the contrary, the percentage of concor-
dant SVs detected from ONT datasets was much lower and diver-
gent for assembly-based strategy. For example, the percentage of
concordant WGS-SVs was around 30 and 65% when detected from
assemblies created by shasta and flye, respectively (Figure 2B,
Figure S2B). HiFi datasets also enabled accurate breakpoint
identification, where both strategies could detect 15% more BSD-
0 (BSD equals 0 bp, BSD indicates breakpoint standard deviation)
WGS-SVs and 27% more BSD-0 ExTD-SVs than that detected
on ONT datasets (Figure 2C). Remarkably, for assembly-based
strategy, the percentage of BSD-0 WGS-SVs was similar to that
of BSD-0 ExTD-SVs detected on HiFi datasets, suggesting TD-SVs
(i.e. SVs at tandem repeat regions) were also consistently detected
from assemblies generated on different datasets (Figure 2C). For
read-based strategy, only pbsv and Sniffles detected the most
accurate breakpoint for datasets concordant SVs, and it was
comparable to assembly-based strategy (Figure 2C).

In addition, when detecting SVs with the same caller but differ-
ent aligners or assemblers on a dataset, the read-based strategy
was greatly affected by the choice of read aligners comparing
to the influence of assemblers on assembly-based strategy. For
example, calling from HiFi datasets, around 76 and 48% of the
WGS-SVs were concordant among two assemblers and four read
aligners, respectively (Figure 2D). We further compared two align-
ers and two assemblers to avoid bias caused by an unequal num-
ber of methods, where the SV concordant rate of two assemblers
was still higher than the highest one achieved by any aligners
pair (Figure S3A). We then assessed the breakpoint identity of the
assembler and read aligner concordant SVs. Specifically, most of
the concordant SVs detected by assembly-based strategy shared

identical breakpoints, whereas similar performance could only be
achieved by read-based strategy when pbsv was used for calling
(Figure 2E). On ONT dataset, the percentage of BSD-0 SVs among
concordant SVs detected by pbsv, PAV and SVIM-asm increased as
the read length increases. Interestingly, given that incremented
versions of Guppy were used as base caller for three ONT datasets,
the percentage of breakpoint identical concordant SVs was also
positively correlated with the read length (Figure 2E). This is
because breakpoint identity largely relies on read mapping accu-
racy, which could be improved by the higher base-calling accuracy.

We next investigated the impact of aligners and assemblers
on SV types. For read-based strategy, each caller was applied
to the alignments generated by the four aligners, from which
read-aligner-specific SVs were obtained for further analysis
(Figure S3B). Overall, the size distribution of aligner-specific SVs
differed between read aligners. For example, an SV size peak
at 300 bp was observed for SVs detected from ngmlr-aligned
HiFi and ONT reads, while more SVs smaller than 100 bp were
detected from lra-aligned ONT reads (Figure 2F). In addition,
around 17, 39, 38 and 33% of the aligner-specific ExTD-SVs
were deletions when detected from ngmlr, minimap2, lra and
winnowmap alignments, respectively (Figure 2G). Notably, 37%
of the ngmlr-specific ExTD-SV were duplications, but they were
seldom observed in other aligners’ specific ExTD-SVs. Such bias
was also observed in pairwise aligner comparisons (Figure S3C).
This aligner-induced SV type and size bias was largely due to the
mapping strategy adopted by ngmlr, which splits reads into non-
overlapping 256 bp sub-reads and maps them independently of
each other [18]. As for the impact of different aligners on each
caller, the SV types predicted by pbsv were less consistent than
other callers among different alignments (Figure S4A). Moreover,
we examined whether different callers would predict the SV of
the same type from one alignment. As a result, the percentage
of discordant SV type was 11.83, 12.08, 12.29 and 18.22% when
SVs were detected from lra, minimap2, winnowmap and ngmlr
alignments, where insertions and duplications contributed to the
majority of the discordant SV types (Figure S4B). For assembly-
based strategy, the impact of contig aligner and assembler on
SV types was examined separately. In general, we found that
the SV type bias was more likely to be affected by sequencing
platforms rather than contig aligners or assemblers. For instance,
among the assembler-specific ExTD-SVs (Figure S5A), we only
noticed variability caused by assemblers on the ONT dataset.
Specifically, 88% of the specific ExTD-SVs detected from shasta
assemblies were insertions, which was 13% higher than the
average percentage of assembler-specific insertions detected from
HiFi assemblies (Figure S5B), whereas an opposite trend for the
distribution of insertions and deletions was observed on ONT
dataset among contig aligner-specific ExTD-SVs (Figure S5C).

Accordingly, we concluded that both strategies were able to
detect SVs consistently among HiFi datasets, but assembly-based
strategies identified more accurate breakpoints without being
affected by the dataset or assembler. Though read-based strategy
was versatile to different sequencing technologies, the reported
variant size, type and breakpoints were greatly affected by align-
ers, even for SVs outside of tandem repeat regions.

Analysis of SVs captured by both assembly and
read
On each dataset, 20 read-based callsets and 4 assembly-based
callsets were obtained from different callers, and subsequent
comparisons were made between read-based callsets and
assembly-based callsets (Methods). On average, a remarkable sub-
set of ExTD-SVs (81% for assembly-based and 82% for read-based)
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Figure 1. Schematic summaries of assessing two strategies. Based on three HiFi and three ONT datasets, we used four read aligners (i.e. mininimap2,
ngmlr, winnowmap and lra) and five read-based callers (i.e. SVIM, pbsv, SVision, cuteSV and Sniffles) to generate the 120 read-based callsets. Moreover,
we used two assembly aligners (i.e. minimap2 and lra), three assemblers (i.e. hifiasm and flye for HiFi data, flye and shasta for ONT data) and two
assembly-based callers (i.e. SVIM-asm and PAV) to generate 48 assembly-based callsets. On the basis of the 120 read-based and 48 assembly-based
callsets, we (1) examined the impact of dataset, aligner and assembler on each strategy, (2) examined the impact of dataset, aligner and assembler on
concordant SVs captured by read and assembly, (3) examined the false discoveries and the impact of variant types on high-confident insertions and
deletions captured by both read and assembly and (4) measured the recall and precision of detecting SVs at simple and complex genomic regions.

were captured by both read-based and assembly-based callers
when detected on HiFi datasets (Figure 3A). The percentage of
concordant WGS-SVs and ExTD-SVs was also positively correlated
with the read length because assemblers essentially created
longer DNA sequences for SV detection (Figure 3A). We also

noticed that minimap2 paired with hifiasm led to the highest
percentage of concordant WGS-SVs and ExTD-SVs on HiFi
datasets, whereas the highest percentage was achieved by flye
paired with minimap2 on ONT datasets (Figure 3B). Besides,
aligner was also critical for detecting consistent breakpoints
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Figure 2. Overview of detected SVs and the detection variability of each strategy. (A) The number of SVs and the percentage of insertions detected by
two strategies on each dataset. (B) The percentage of dataset concordant WGS-SVs and ExTD-SVs detected by two strategies on HiFi and ONT datasets.
(C) The percentage of breakpoint identically (i.e. breakpoint standard deviation equals 0 bp, BSD-0 SVs) detected concordant WGS-SVs and ExTD-SVs
among ONT and HiFi datasets as well as the distribution of concordant SVs’ BSD of each caller. (D) The percentage of aligner and assembler concordant
WGS-SVs and ExTD-SVs. (E) For each caller, the percentage of BSD-0 aligner concordant SVs and assembler concordant SVs detected on different HiFi
and ONT datasets. (F) The size distribution of aligner-specific ExTD-SVs. (G) The SV types of aligner-specific ExTD-SVs at different genomic regions.
WGS-SVs: SVs at whole genome scale, ExTD-SVs: SVs outside of tandem repeat regions.
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Figure 3. The analysis of SVs detected by both read and assembly. (A) The average percentage of concordant SVs among total number of SVs detected
by read and assembly. (B) The impact of aligner and assembler on the percentage of concordant SVs between read and assembly. (C) The impact of
aligner on the breakpoint of SVs captured by both read and assembly. (D) Using minimap2 for alignment and assemblies created by hifiasm (HiFi) and
flye (ONT), the percentage of insertions and deletions detected by one of the callers or all callers. (E) The number of high-confident WGS-INS/DEL and
ExTD-INS/DEL detected from HiFi and ONT datasets. (F) The percentage of concordant SVs and specific SVs detected on ONT-30 kb and HiFi-18 kb
datasets. WGS-INS/DEL: insertions and deletions at whole genome scale, ExTD-INS/DEL: insertions and deletions outside of tandem repeat regions.

of SVs captured by both read and assembly. For instance, on
HiFi-18 kb dataset, the highest percentage of BSD-10 (i.e. break-
point standard deviation smaller than 10 bp) ExTD-INS/DEL (i.e.
insertions and deletions outside of tandem repeats) was achieved
when detected from minimap2-aligned reads and assemblies
(Figure 3C). Therefore, minimap2 combined with hifiasm or flye
would minimize the impact of assemblers and aligners on the
number of concordant SVs and their breakpoints’ identity.

However, even using minimap2 for alignment and hifiasm and
flye for sequence assembly, around 60 and 65% of the deletions
were detected by five-read based callers and two assembly-
based callers, respectively, and it was even lower for insertions
(Figure 3D). Thus, to avoid caller bias, we compared high-
confident callset of insertions and deletions that were detected
by all read-based callers and assembly-based callers (Figure 3E,
Figure S6A). Further comparison revealed that the majority of the
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insertions (90% on ONT-30 kb and 96% on HiFi-18 kb) detected by
reads were also captured by assemblies, whereas only half of the
insertions (46% on ONT-30 kb and 47% for HiFi-18 kb) detected
by assembly were captured by read (Figure 3F, Figure S6B). For
the ExTD-INS/DEL, a large subset of insertions and deletions
could be captured by both assembly and read and we only
observed slightly difference between sequencing technologies
(Figure 3F). Of note, at non-tandem repeat regions, the percentage
of assembly insertions captured by read increased to 80 and 83%
on HiFi-18 kb and ONT-30 kb datasets, respectively. This result was
significantly higher than previous reported insertions captured
by both short-read and assembly at non-tandem repeat regions
[24]. Therefore, we reasoned that most of the ExTD-INS/DEL were
able to be detected by read and assembly without technology
bias, whereas assembly-based strategy could resolve more SVs at
tandem repeat regions.

Assessing SVs only accessible to assembly or
read
We further investigated the factors that have the greatest influ-
ence on false discoveries and discordance between assembly
and read calls. To accomplish this, we proposed an in silico trio-
based SV assessment workflow, where paternal and maternal
data and two evaluation tools (VaPoR [26] and TT-mars [27]) were
used to examine the correctness of assembly and read specific
ExTD-INS/DEL. Considering that some SVs were not able to be
evaluated by VaPoR or TT-mars, our procedure classified these
specifically detected SVs into: (i) Valid SVs were SVs validated
in both parents or in one of the parents; (ii) Invalid SVs were
SVs not validated in parents; (iii) Inconclusive SVs were SVs only
evaluated in one of the parents or none of the parents (Methods).
Excluding inconclusive SVs, the average validation rate for read-
specific ExTD-INS/DEL was higher than assembly-specific ExTD-
INS/DEL, especially on ONT-30 kb dataset. For read-specific ExTD-
INS/DEL, 89.2 (207 out of 232 evaluated SVs) and 88.3% (379 out of
429 evaluated SVs) of them were validated on HiFi-18 kb and ONT-
30 kb, respectively (Figure 4A, Figure S6C). In contrast, the valida-
tion rates for assembly-specific ExTD-INS/DEL were 85.3 (635 out
of 745 evaluated SVs on HiFi-18 kb) and 75% (533 out of 644 evalu-
ated SVs on ONT-30 kb) (Figure 4B). We also observed a big differ-
ence between the percentage of validated deletions on ONT-30 kb
dataset, where 59.5 and 86.8% of the assembly-specific and read-
specific deletions were correct discoveries, respectively (Figure 4A
and B). Moreover, the genomic hotspots for those invalid assembly
ExTD-INS/DEL also varied between sequencing technologies, such
as more than half of the invalid assembly-specific ExTD-SVs
detected from HiFi-18 kb were enriched at RepeatMasker (RM)
annotated regions, but 90% of the ONT-30 kb invalid SVs were
located in segmental duplication (SD) regions (Figure 4C).

Furthermore, we analyzed the HG002’s read alignments at 110
(43 deletions and 67 insertions detected on HiFi-18 kb) invalid
assembly-specific SV loci and revealed that 60 out of 110 loci were
not supported by any SV signature reads, indicating they were
substantial false discoveries (Figure 4D). For the rest of the 50 SV
loci containing signature reads, our analysis revealed that seven
SVs were supported by less than five read signatures, eight SVs
were misclassified as assembly-specifics because these SVs were
not detected by all five read-based callers, and there were only two
assembly novel SVs (Figure 4D). Notably, 33 of the 50 SV loci con-
tained inversion and complex SV (CSV) signatures derived from
read alignments, but more than one SV signatures were identified
from assembly alignments (Figure 4D, Supplementary File 1). For
instance, a ∼1.3 kb inversion was detected as 683 bp insertion and
684 bp deletion by assembly-based callers (Figure 4E). Moreover,

a CSV locus of ∼3kbp, consisting of a deletion and two segment
switch, was detected as three separate SVs (a 320 bp insertion, a
305 bp deletion and a 1867 bp deletion) from assembly (Figure 4F).
This phenomenon was mainly caused by ambiguous alignments
at inversion and CSV loci, such that the 33 assembly-specific
SVs were considered as different calls from those detected from
read alignments. Taken together, the above results suggested that
around 90% of the read and assembly-specific ExTD-SVs were
true positive discoveries when detected from HiFi dataset, thereby
indicating the integration of read and assembly calls was neces-
sary for comprehensive SV profile. In addition, SV loci containing
inversion or CSV were not only difficult to assess by existing
evaluation tools but also challenging to detect consistently from
read and assembly.

Performance at genomic regions of different
complexity
So far, GIAB had released one truthset containing SVs at simple
regions, and another one at medically relevant genes (CMRGs)
surrounded by complex genomic context. To evaluate, SVs were
called on reads and assemblies aligned with minimap2 to avoid
the performance bias caused by aligners (Methods). For the SVs at
simple regions, the highest recall was achieved by assembly-based
strategy but read-based strategy resulted in the highest precision
(Figure 5A). Moreover, the recall of both strategies was positively
correlated with read length on both HiFi and ONT datasets, but
large precision variance was observed for assembly-based calls
on ONT datasets (Figure 5A, Supplementary Table S2). As for SVs
at CMRGs, the highest recall of the assembly-based strategy was
96% and it was 7% higher than the highest one achieved by read-
based strategy (Figure 5B, Supplementary Table S3). We further
compared the false negative (i.e. missed benchmark SVs) and false
positive (i.e. novel SVs outside of benchmark) discoveries assessed
by SVs at CMRGs. For example, 71 (54/76, read-based) and 53%
(26/49, assembly-based) of the false negative discoveries were
concordant among HiFi datasets, whereas only 30% of the false
negatives detected from assemblies were concordant among ONT
datasets (Figure 5C, Figure S7A). In addition, the percentage of the
false positive SVs only accessible to one dataset was even higher
for assembly-based strategy, i.e. 73% for HiFi and 80% for ONT
(Figure 5C, Figure S7B), suggesting that it was difficult to create
consistent assemblies at CMRGs consisted of repetitive elements.
We also noticed that the two strategies detected more concordant
false negatives, whereas false positives were found to be strategy
specific (Figure 5D).

In addition, CMRGs were well-documented genes across multi-
ple diseases but often excluded from standard targeted or whole-
genome sequencing analysis [28], enabling the evaluation for
potential clinical application. The above analysis used the 35X
coverage datasets, which was not applicable to clinical settings
due to the high sequencing cost and computational cost. There-
fore, we subsampled the 35X coverage datasets to 5X, 10X and 20X
coverage and examined the performance of each strategy. Overall,
the read-based strategy outperformed the assembly-based strat-
egy on both HiFi and ONT datasets when the coverage was below
20X (Figure 5E, Figure S7C, Supplementary Table S4). Especially
for 5X ultra-low coverage data, the average recall of the read-
based strategy was 78% for HiFi-18 kb and ONT-30 kb, where
SVision and cuteSV outperformed others (Figure 5F). Accordingly,
we reasoned that the assembly-based strategy required at least
20X coverage data to perform similarly to the read-based strategy
on 5X coverage data, thereby suggesting a great potential of the
read-based strategy for clinical applications.
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Figure 4. The validation and analysis of strategy-specific SVs. (A) The results summary of validating read-specific SVs with VaPoR, including inconclusive
SVs, valid SVs and invalid SVs. (B) The results summary of validating assembly-specific SVs with TT-mars, including inconclusive SVs, valid SVs and
invalid SVs. (C) The genomic region distribution of invalid SVs (RM: RepeatMakser annotated regions, SD: segmental duplication, SR: simple regions). (D)
The analysis of invalid assembly-specific SVs. (E) The IGV alignment view of an inversion, where the read alignment signature is inconsistent with the
SV size detected by assembly-based callers (i.e. a 683 bp insertion and a 684 bp deletion). (F) The IGV alignment view (left) and the diagram (right) of a
CSV, spanning 3 kb of the genome, which is detected as three single SVs (a 320 bp insertion, a 305 bp deletion and a 1867 bp deletion) by assembly-based
strategy.

CONCLUSION
In this study, we compared and investigated the factors that affect
the most widely used long-read based SV detection strategies. We
also analyzed and emphasized the discordance caused by CSVs
and inversions, which were excluded in the previous comparison
study of short-read and assembly-based detection. This is an
important step toward the in-depth understanding of the usability
and stability of detecting SVs from read or assembly.

In general, our analysis first showed that the assembly-based
strategy was able to detect SVs consistently from HiFi assemblies
without assembler bias, especially for SVs at complex genomic
regions. In contrast, the read-based strategy was versatile to

different sequencing technologies, but it was greatly affected
by aligners, such as an unexpected large number of duplica-
tions detected from ngmlr-aligned reads. Second, by comparing
SVs detected from read and assemblies, our analysis revealed a
positive correlation between the percentage of concordant SVs
and read length. Incorporating recent achievements in gener-
ating reads of 4Mbp and longer [29], the percentage of con-
cordant SV is expected to be even higher. In addition, at non-
tandem repeat regions, encompassing most the protein-coding
sequences, a remarkable subset of high-confident ExTD-INS/DEL
were captured by both read and assembly, and 90% of the read and
assembly-specific SVs detected from HiFi dataset were validated
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Figure 5. Summaries of benchmarking callers with well-curated SVs. (A) The recall and precision of detecting SVs at simple regions. (B) The recall and
precision of detecting SVs at challenging medically relevant autosomal genes (CMRGs) surrounded by repetitive elements. (C) Evaluated with SVs at
CMRGs, percentage of false positive and false negative SVs among HiFi and ONT datasets i.e. SVs in three, two and one dataset. (D) The Venn-diagram
of false positive and false negatives detected by both strategies on HiFi and ONT datasets. (E) The impact of sequencing coverage on the recall and
precision of detecting SVs at CMRGs. (F) At 5X coverage, the recall and precision of each read-based callers benchmarked with SVs at CMRGs.

by our in silico assessment workflow. Most importantly, for those
invalid assembly-specific SVs supported by SV read signatures,
multiple alignment signatures induced by CSV and inversion were
identified in 66% of these loci and thus made them difficult
to detect consistently. Finally, considering the sequencing and
computational cost for future clinical application, the read-based
strategy was able to effectively detect SVs at CMRGs with 5X cover-
age data, and the sensitivity was 25% higher than assembly-based
strategy. As for the potential limitations, a collection of high-
confident simple and complex regions is anticipated to further
benchmark the two strategies, because the current GIAB high-
confident simple genomic regions are unable to assess SV detec-
tion at complex regions. The evaluation is also limited to diploid
genomes, whereas the performance of two strategies on cancers,
affecting by purity, heterogeneity and aneuploidy, requires further
investigation. Moreover, with the recent advances in graph-based

pangenome study, it is also critical to assess several new strategies
in the future, such as aligning reads or assemblies to a graph-
based pangenome.

Taken together, the assembly-based strategy will access com-
plex genomic regions that are intractable to read-based strat-
egy, which is expected to provide exciting new insights into the
SVs at such regions. We confirmed that reads and assemblies
are usually inconsistently aligned at genomic loci containing
inversions and CSVs, thereby leading to discordance or even false
discoveries. Therefore, integration of read-based and assembly-
based calls is necessary for comprehensive SV detection, even
for SVs at non-tandem repeat regions. Moreover, the performance
of assembly-based strategy is especially pronounced at complex
genomic regions, such as SVs at CMRGs could be more accurately
detected from assembly than read. As the long-read sequencing
price drops to $1000 for a human genome, we expect this work
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will help users to select proper SV detection strategy for different
applications and foster future development of SV detection algo-
rithms at complex genomic regions.

METHODS
Read mapping and sequence assembly
The three HiFi datasets (i.e. HiFi-10 kb, HiFi-15 kb and HiFi-18 kb)
and the three ONT datasets (i.e. ONT-9 kb, ONT-19 kb, ONT-30 kb)
are all publicly available. Based on a recent review [25], aligners
containing minimap2, lra, winnowmap and ngmlr were included
in our study, and assemblers including hifiasm, flye and shasta
were used.

First of all, HiFi and ONT reads were mapped to human ref-
erence genome hg19 with minimap2 (v2.20), lra (v1.3.2), win-
nowmap (v2.03) and ngmlr (v0.2.7). Parameters used for each
mapper were as follows:

• minimap2: parameters ‘-a -H -k 19 -O 5,56 -E 4,1 -A 2 -B 5 -z
400,50 -r 2000 -g 5000’ were applied to align HiFi reads, and ‘-a
-z 600,200 -x map-ont’ were used for ONT reads.

• ngmlr: parameters ‘-x pacbio’ and ‘-x ont’ were used to align
HiFi and ONT reads, respectively.

• winnowmap: parameters ‘-ax map-ont’ and ‘-ax map-pb’ of
winnowmap were used to map ONT and HiFi reads, respec-
tively.

• lra: ‘-CCS’ and ‘-ONT’ were set to map HiFi and ONT reads,
respectively. We then applied each read-based caller with
default parameters except for the minimum number of SV
supporting reads. Since the sequencing coverage was around
35X for all datasets, the minimum SV supporting read for
each read-based caller was set to five for the detection of
both homozygous and heterozygous SVs. For 5X coverage, the
minimum SV supporting read for each read-based caller was
set to one.

For sequence assembly, we use minimap2-aligned reads and
phased SNPs released by GIAB to obtain phased reads via the
whatshap [30] ‘haplotag’ option. Those unphased reads are ran-
domly assigned as either haplotype 1 and haplotype 2, which are
also used in further sequence assembly. Given the phased reads,
we then apply assemblers with default parameters to create the
haplotype-aware assemblies.

SVs detection and post-processing
To detect SVs, methods were further excluded from the recent
review [25] based on several criteria: (a) lack of detailed user man-
ual; (b) no programming interface; (c) reported bias on aligners; (d)
unresolved errors during wrapping. In the end, cuteSV (v1.0.10),
pbsv (v2.2.2), SVIM (v1.4.0), Sniffles (v1.0.12) and SVision (v1.3.6)
were selected as callers for read-based strategy, whereas PAV and
SVIM-asm were selected for assembly-based strategy. Note that
SVIM and SVIM-asm are two independent methods, where SVIM-
asm requires genome assemblies as input for SV detection.

Read-based callers were directly applied to reads aligned by
minimap2, ngmlr, lra and winnowmap with default parameters.
Note that the minimum SV supporting read is set to five so
that both homozygous and heterozygous germline SVs can
be effectively detected from the 35X coverage datasets. For
the assembly-based strategy, five most-widely used assembly
aligners (i.e. LAST, MUMmer, minimap2, Cactus and SibeliaZ)
were reviewed by Wouter De Coster et al, whereas PAV and
SVIM-asm were only compatible with the alignments gen-
erated by minimap2 or lra. For PAV, the phased assemblies

were directly used as input for the detection, and we run
PAV with default parameters. For SVIM-asm, assemblies were
first mapped to reference hg19 with minimap2 parameters
‘-x asm20 -m 10000 -z 10000,50 -r 50000 –end-bonus=100 –
secondary=no -O 5,56 -E 4,1 -B 5 -a’, these parameters were used
in minimap2 embedded in PAV. Then, we run SVIM-asm with
parameters ‘svim-asm diploid –tandem_duplications_as_insertions –
interspersed_duplications_as_insertions’ for SV detection.

For each callsets, a BED file obtained from a publication
[31] was used to exclude SVs located at centromere and other
low mapping quality regions. SVs overlapped with regions in
the BED file were ignored in the downstream analysis. For the
rest of the autosome SVs, we then annotated their associated
repetitive elements using Tandem Repeat Finder, RM and SD
results provided by UCSC Genome Browser. The original files
downloaded from the genome browser were first processed based
on scripts introduced by CAMPHOR [32] (https://github.com/
afujimoto/CAMPHOR). Repeat element associated with each SV is
assigned based on a recent publication [33]. In particular, Variable
Number Tandem Repeat (VNTR) was assigned if the length of
the repeat unit was longer than 7 bp; otherwise, we considered
it as Short Tandem Repeat (STR). It should be noted that simple
repeat annotated by RM was also classified into VNTR and STR.
For SVs overlapping repetitive element, we prioritized the highest
percentage of overlaps on the entire length of SV when multiple
repeat types are annotated. For example, if 70% of an SV was
composed of STR and 50% of the SV overlapped by ALU, then STR
was assigned correspondingly. Moreover, according to the repeti-
tive elements, we divided the genome into four different regions
i.e. Tandem Repeat, Repeat Masked, Segment Dup and Simple
Region. Tandem Repeat represented regions containing either
VNTR or STR. Repeat Masked were those annotated as SINE, LINE,
etc., by RM. Segment Dup represented regions overlapping with
SDs. The rest of the genomic regions outside of Tandem Repeats,
Repeat Masked and Segment Dup were termed as Simple Regions.

Analysis of concordant and specific SVs
The SV comparison tools are selected based on a recent review
[25], which introduces Jasmine, SVanalyer, Truvari [34] and SUR-
VIVOR. Jasmine is selected because of the following two reasons.
First, we need to compare more than two callsets at once, whereas
SVanalyzer and Truvari is only applicable to two callsets. Second,
the Mendelian discordance of Jasmine is lower than that of SUR-
VIVOR [35], despite their similar appearance.

According to different comparison purpose, we first obtained
the nonredundant SVs of different callsets by the running
command ‘Jasmine file_list=vcf_list.txt out_file=nonredundant_SVs.vcf
max_dist=1000 spec_len=50 spec_reads=1’. Then, using the VCF file
generated by Jasmine, we were able to identify concordant and
specific calls as well as the breakpoint standard deviation of
concordant SVs. The breakpoint standard deviation was indicated
in ‘STARTVARIANCE’ and ‘ENDVARIANCE’ in the Jasmine merged
VCF file, which were directly used to analyze the breakpoint
consistency of concordant SVs. The major steps for analyzing
SV reproducibility among datasets and strategies were listed as
below:

• Dataset concordant and specific: Each caller was applied
to six datasets for SV detection, and a nonredundant SV
set was generated via Jasmine accordingly. SVs reproduced
in three HiFi or ONT datasets were indicated by ‘SUPP = 3’,
whereas dataset-specific calls were indicated by ‘SUPP = 1’.
Then, the percentage of dataset concordant SVs among
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total number of SVs in the nonredundant SV callset was
calculated.

• Aligner concordant and specific: On each dataset, the reads
were aligned with four aligners and SVs were detected sub-
sequently with each caller. For a caller, we merged its four
callsets originated from four aligners and obtained the nonre-
dundant SV callset, from which aligner concordant SVs were
obtained with ‘SUPP = 4’ and aligner-specific SVs were labeled
by ‘SUPP = 1’. Then, the percentage of aligner concordant SVs
among total number of SVs in the nonredundant SV callset
was calculated.

• Assembler concordant and specific: On HiFi dataset, the
reads were assembled by two assemblers (i.e. hifiasm, flye),
and the assemblies were mapped with minimap2. For a caller,
we merged its two callsets originated from two assemblers
and obtained the nonredundant SV callset, from which
assembler concordant SVs were obtained with ‘SUPP = 2’ and
assembler-specific SVs were labeled by ‘SUPP = 1’. Similar
process was applied to ONT dataset, but the assemblies
were created by flye and shasta. Then, the percentage of
assembler concordant SVs among total number of SVs in the
nonredundant SV callset was calculated.

• Callers concordant and specific: On each dataset, we
obtained a nonredundant SV set between a read-based caller
and an assembly-based caller. From each nonredundant SV
set, callers concordant and specific SVs were marked as
‘SUPP = 2’ and ‘SUPP = 1’, respectively. Then, the percentage of
callers concordant SVs among total number of SVs detected
by a caller was calculated.

Obtain and compare high-confident callsets
This study aims to evaluate SV detection at whole genome scale,
including complex genomic regions such as tandem repeats and
SDs. Thus, the high-confident callset at whole genome scale was
created by integrating outputs from different callers, whereas the
GIAB high-confident regions were not used because they were
limited to simple genomic regions.

To obtain the high-confident callset, insertions and duplica-
tions were first written to the insertion VCF file, and deletions
were written to a separate VCF file. Note that (1) read-based inser-
tions and deletions were detected from minimap2-aligned reads
and (2) assembly-based insertions and deletions were detected
from minimap2-aligned contigs created by hifiasm and flye on
HiFi and ONT dataset, respectively. Afterwards, we followed the
following process to obtain the high-confident insertions and
deletions:

• High-confident insertion: Since the insertion VCF file
contains two types i.e. insertion and duplication, we first
run ‘Jasmine file_list=vcf_list.txt out_file=nonredundant_SVs.vcf
max_dist=1000 –dup_to_ins genome_file=hs37d5.fa spec_len=50
spec_reads=1’ and obtained the integrated callset of callers.
Then, from the integrated callset of five read-based callers,
high-confident insertions were those marked by ‘SUPP = 5’.
The assembly-based insertions were marked by ‘SUPP = 2’
from the integrated callset of two read-based callers.

• High-confident deletion: We first run ‘Jasmine file_list=vcf_
list.txt out_file=nonredundant_SVs.vcf max_dist=1000 spec_len=50
spec_reads=1’ and obtained an integrated callset of
callers. Then, we followed the same procedure as above
to obtain high-confident deletions from the integrated
callsets.

Given the read and assembly high-confident callsets, we
first obtained the concordant high-confident insertions by
running ‘Jasmine file_list=vcf_list.txt out_file=nonredundant_SVs.vcf
max_dist=1000 –dup_to_ins genome_file=hs37d5.fa spec_len=50
spec_reads=1’, concordant deletions were obtained via com-
mand ‘Jasmine file_list=vcf_list.txt out_file=nonredundant_SVs.vcf
max_dist=1000 spec_len=50 spec_reads=1’. Second, in the integrated
VCF file, the read and assembly concordant insertions and
deletions were those marked as ‘SUPP = 2’, whereas ‘SUPP = 1’
indicated the read and assembly-specific calls.

Trio-based validation of read and
assembly-specific SVs
The HiFi sequencing data of HG003 and HG004 were obtained
from the GIAB. The HG003 and HG004 assemblies were created
by hifiasm via default parameters for further usage. The details
of the validation steps for specifically detected SVs were listed as
below:

• Read specific: SVs were validated via VaPoR with HG003
and HG004 HiFi reads separately. Those SVs not able to be
processed by VaPoR were considered as ‘Inconclusive SVs’. For
SVs that could be evaluated by VaPoR on both maternal and
paternal data, if a SV was scored zero (i.e.‘VaPoR’ = 0) in both
parents, it was classified as ‘Invalid SVs’, whereas others were
considered as ‘Valid SVs’.

• Assembly specific: SVs were validated via TT-mars with
HG003 and HG004 HiFi assemblies separately. Those SVs
not able to be processed by TT-mars were considered as
‘Inconclusive SVs’. For SVs that could be evaluated by TT-
mars on both maternal and paternal data, if a SV was labeled
as ‘False’ in both parents, it was classified as ‘Invalid SVs’,
whereas others were considered as ‘Valid SVs’.

Read alignment analysis for assembly-specific
SVs
We applied the following steps to examine whether assembly-
specific SV loci contain aberrant read alignment i.e. the abnormal
inter-read and intra-read alignments used to detect SVs by read-
based callers.

• Step1. The assembly-based strategy specifically detected SVs
were classified into three types of regions according to the
average read mapping quality (avg_mapq) obtained from
minimap2-aligned reads:

1) No read mapping region (No_reads)
2) Low-mapping quality regions (Low_mapq, avg_mapq <

20)
3) High-confident mapping regions (High_mapq,

avg_mapq ≥ 20).

• The average mapping quality threshold 20 was set according
to the default minimum read quality used for SV detection.

• Step2. The potential SV signature reads of those assembly-
specific SVs at high-confident mapping quality regions were
identified. In general, the ‘I’ and ‘D’ tags in the CIGAR string,
and the primary reads and their supplementary were col-
lected and used to identify deletion (DEL), insertion (INS),
inversion (INV) and duplication (DUP) signatures. The total
number of reads containing SV signature was referred to
signature count. Moreover, we calculated the start position
standard deviation and size standard deviation of all signa-
ture reads.
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Accordingly, if assembly-specific loci (i) did not contain signa-
ture read or (ii) did not contain mapped reads or (iii) located at low
mapping quality region, these loci were classified as ‘No signature
reads’ and the others were labeled as ‘Has signature reads’. For
the ‘Has signature reads’ loci, we manually inspected their local
alignment via IGV and the sequence Dotplot created by Gepard
[36] to determine their characteristics.

Evaluating each strategy with well curated SVs
For 35X coverage datasets HiFi-18 kb and ONT-30 kb, we down-
sample them to 5X, 10X and 20X with SAMtools [37]. Afterwards,
each caller is applied to the 5X, 10X and 20X datasets with default
parameters except for the number of minimum SV supporting
reads, which is set to 1, 2 and 5 for 5X, 10X and 20X datasets,
respectively. These values are set to enable effective detection of
both homozygous and heterozygous germline SVs. The final VCF
files are sorted, compressed and indexed for further evaluation.
Furthermore, two benchmarks released by GIAB were used to
assess both strategies of detecting SVs at true INS/DEL regions
and CMRGs. The recall and precision were measured by Truvari
(https://github.com/ACEnglish/truvari) with parameters ‘-p 0.00 -
r 1000 –passonly –giabreport’, but the genotype accuracy was not
considered in our evaluation and all commands were available at
https://github.com/jiadong324/ComparStra-Parser.

Key Points

• A comparison and evaluation of SVs detected from read
and assembly was performed on six long-read datasets
of HG002 genome.

• Up to 80% of the SVs were concordant among different
long-read datasets, whereas the breakpoints and type of
SVs detected from read were greatly affected by aligners
when detecting on a dataset.

• A remarkable subset of SVs at non-tandem repeat
regions could be captured by both read and assembly,
whereas the discordance was largely caused by complex
SVs and inversions due to inconsistent alignment of read
and assembly at these loci.

• Benchmarking with SVs at medically relevant genes,
detecting from assembly required 20X coverage data to
achieve similar performance as read-based detection at
5X coverage data.
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