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Abstract 

Drought impact monitoring is of crucial importance in light of climate change. However, we 

lack an understanding of the concomitant responses of ecosystems to a variety of drought 

characteristics and the links between drought and ecosystem anomaly characteristics for a 

comprehensive set of vegetation types to provide needed information for water management. In 

response, this study presents a new framework that allows us to explore the relationship between 

drought and its impact on ecosystems in greater detail. Specifically, our framework focuses on 

estimating jointly the hydrological and ecosystem temporal evolution and anomalies around a 

drought event using four pairs of metrics: onset-onset, duration-duration, intensity-intensity, and 

severity-severity of drought and vegetation damage. Additionally, we incorporated a metric on 

vegetation vulnerability based on changes in damage severity along a gradient of increasing 

drought severity. Based on this framework, we evaluated drought vulnerability patterns of 

various vegetation types across the Netherlands and Belgium in 2018 at high spatiotemporal 

resolution. Our results reveal a differential vulnerability of vegetation between ecosystems with 

increasing drought severity, which could aid future drought impact predictions. In particular, 

mosaic grasslands and tree/shrub croplands are highly sensitive to increasing drought severity. 

Individual characteristics (onset, duration, intensity and severity) of drought and vegetation 

damage behave differently in various vegetation types. For instance, broadleaved forests 

respond faster than other forests, while mixed forests suffer less damage than other types. The 

early warning threshold to drought for most vegetation types is around a Standardized 

Precipitation Evapotranspiration Index (SPEI) value of -1. The characterization of a suite of 

drought response characteristics through our impact analysis framework can be used in a wide 

variety of regions to understand current and possible future responses to drought. 

2.1 Introduction 

The frequency of droughts in Europe has increased over the past decades (Briffa et al., 2009; 

Vicente-Serrano et al., 2014). With ongoing global climate change, droughts are predicted to 

become even more frequent and more intense in many regions of Europe (Grillakis, 2019; 

Ruosteenoja et al., 2018; Spinoni et al., 2018). These natural disasters may severely impact the 

stability of multiple ecosystems (Ciais et al., 2005; Saatchi et al., 2013; Semenov and Shewry, 

2011), and consequently their associated ecosystem services.  

To reduce the impact of such droughts, water needs to be allocated to both natural and 
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agricultural ecosystems during drought. To govern the allocation of water, policy makers do not 

only need knowledge of water stress itself but also a clear understanding of the vulnerability of 

different vegetation types, so as to protect ecosystems most at risk. Water management thus 

demands answering questions regarding i) which vegetation types are more sensitive to water 

stress, ii) when will vegetation be impacted, and iii) what will be the damage? Thus, a multi-

metric quantitative analysis of drought vulnerability of vegetation, which includes these three 

aspects, is of great significance for water management. 

Unfortunately, present-day drought impact monitoring frameworks lack this capability, and only 

answer the first aspect. Various indices exist to quantify the severity of meteorological drought, 

such as the Standardized Precipitation Index (SPI) (McKee, 1993), the Palmer drought severity 

index (PDSI) (Palmer, 1965) and the standardized precipitation evapotranspiration index (SPEI) 

(Vicente-Serrano et al., 2010). Likewise, to identify ecosystem health, multiple vegetation 

indices have been constructed to capture the vegetation growth and status, such as the 

Normalized Difference Vegetation Index (NDVI), the Vegetation Condition Index (VCI) (Kogan, 

1995), the Vegetation Health Index (VHI) (F. N. Kogan, 1995; Kogan, 1997), and the Enhanced 

Vegetation Index (EVI) (Huete et al., 2002). By correlating drought indices (e.g., SPEI, PDSI, 

and SPI) with vegetation indices (e.g., NDVI), previous studies evaluated vegetation responses 

to drought in the Mediterranean region (Gouveia et al., 2017), China (Ding et al., 2020) and the 

Northern great plains (Ji and Peters, 2003) across different vegetation types (Páscoa et al., 2018; 

Zhang et al., 2017; Zhao et al., 2018). These studies quantified which vegetation types are more 

sensitive to drought (i.e. the first question identified above), but are limited in advancing our 

understanding of how much the vegetation will be impacted and when will be the start of this 

vegetation damage. 

A multi-metric framework that quantifies all three aspects in the relationship between vegetation 

responses and drought can build on drought characterization studies that identified drought onset, 

duration, intensity and severity to better quantify drought evolution (Chiang et al., 2021; 

Gebremeskel Haile et al., 2020; Mishra and Singh, 2010; Yao et al., 2020). Previous studies 

have applied these metrics to evaluate agricultural drought (Brito et al., 2018), but applications 

comparing responses between vegetation types are missing.  

In addition, a comprehensive investigation of the linkage between drought characteristics and 

multiple vegetation damage characteristics is missing. This hampers a full evaluation of 

vegetation responses to drought which are likely to be multi-faceted, given that different plant 
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species or functional groups have different strategies to cope with drought (Forner et al., 2018; 

Larcher, 2003; Volaire, 2018). Current research might thus have missed particular drought 

responses of vegetation in general and certain vegetation types in particular. This research gap 

limits the accurate prediction of future vegetation damage and ecosystems’ responses to the 

forecasted drought intensification (Choat et al., 2012; Field et al., 2012). Specifically, it remains 

unknown how vegetation vulnerability changes along with increasing drought severity and how 

this change varies between vegetation types. Such insights will be instrumental to making 

predictions of future damage and provide an early warning signal to drought impacts. 

Thresholds in vegetation responses are also important in this respect (Brown, 2008; Sepulcre-

Canto et al., 2012). 

Such comprehensive vulnerability assessments of ecosystems can only be achieved when taking 

the high spatial heterogeneity of vegetation types into account (Vicente-Serrano et al., 2013), 

and by distinguishing the variety of plant strategies to deal with drought (Fang and Xiong, 2015). 

Traditional remote sensing drought monitoring products lack such high spatio-temporal 

resolutions. For instance, there is no daily SPEI product at high spatial resolution. Instead, for 

the calculation of SPEI, precipitation data used by most pan-European studies is limited to a 

coarse resolution (>25km) (Sun et al., 2018). Likewise, the temporal scale has been relatively 

coarse with the majority of studies calculating SPEI on monthly time scales (Bachmair et al., 

2018; Rita et al., 2020). Considering the high spatial heterogeneity in vegetation type 

occurrences and their differences in response to drought, such spatiotemporal resolutions are 

not sufficient to accurately quantify the vulnerability of vegetation.  

The aim of this research is to deal with the research gaps identified above by quantitatively 

analyzing drought vulnerability across different vegetation types using a series of internally 

consistent drought and vegetation damage characteristics simultaneously based on high-

resolution data. To achieve this aim, we built a framework identifying the onset, duration, 

intensity and severity of drought and its corresponding vegetation anomalies. In particular, the 

framework should allow us to answer the following research questions: What are the 

characteristics of vegetation anomaly events? Do individual vegetation characteristics respond 

differently to drought metrics? How does vulnerability vary between vegetation types with 

changing drought severity? What is the early warning threshold of drought for vegetation 

damage?  

To evaluate our framework, we utilize the 2018 summer drought in the Netherlands and Belgium 

(Buitink et al., 2020; Philip et al., 2020). This 2018 drought event was climatically more extreme 
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than previous events. It therefore provides a very suitable event for evaluating our framework 

on drought impacts. Leaf area index (LAI) was used as an indicator of vegetation responses in 

our analysis. LAI is more representative of vegetation structure and functioning compared to 

indices like NDVI, EVI, and VCI (Garrigues et al., 2006; Gower and Norman, 1991). Also, 

LAI is a key parameter within land surface models due to its impact on energy transfer between 

the canopy and the atmosphere (Chen et al., 1997; Tang et al., 2014). A better understanding of 

LAI responses to water stress can deepen the understanding of the impact of drought on entire 

ecosystem processes. 

In combination, our framework will allow making valuable predictions on the vegetation 

vulnerability for upcoming droughts. Our methodology distinguishes itself from previous 

studies through a) building quantitative relationships between drought characteristics and 

drought impacts by multiple internally consistent characteristics (onset, duration, intensity, and 

severity) of both drought and vegetation anomaly events, b) the analysis of drought vulnerability, 

defined as the changes in vegetation damage with drought severity, across a wide suite of 

vegetation types, c) providing an early warning threshold for drought damage of vegetation, and 

d) its much higher spatial and temporal resolution of the remote sensing products.   

2.2 Materials and Methods 

2.2.1 Data sources and preprocessing 

In this study, we used the SPEI drought index (calculated from long-term precipitation and 

evapotranspiration data) to quantify drought and calculated the anomalies of LAI (ALAI) to 

identify the impact of the event. Next, we estimated the onset, duration, peak intensity, severity 

of drought and ALAI, and compared them for different vegetation types. The technical roadmap 

of the new framework to analyze the vegetation vulnerability is shown in Fig. 2.1. 
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Fig. 2.1. Technical roadmap of the new framework. P represents precipitation, PET represents potential 

evapotranspiration, LAI represents leaf area index, SPEI represents standardized precipitation 

evapotranspiration index, ALAI represents anomaly LAI. 

2.2.1.1 Precipitation data 

Two datasets (from remote sensing and ground observations) were fused together for 2004 to 

2018 to combine the advantages of each product. Remote sensing products provide a wide 

coverage and high time resolution, while ground measurements are deemed to have a higher 

accuracy. By combining these two we extract the best of both worlds, allowing for a more 

detailed analysis of drought conditions and impacts. The processing details are in 

Supplementary Fig. S2.1. 

The remote sensing precipitation data was acquired using the Spinning Enhanced Visible and 

Infrared Imager (SEVIRI) on board of Meteosat Second Generation (MSG) operated by 

EUMETSAT. The SEVIRI instrument scans the complete Earth every 15 min. Over northern 

Europe (including the Netherlands) the satellite viewing zenith angle of SEVIRI is about 60°, 

and has a spatial resolution of about 4 × 7 km² (Roebeling and Holleman, 2009). We used the 

data product developed by the Royal Dutch Meteorology Institute (KNMI) 

(https://msgcpp.knmi.nl/), which retrieved precipitation data from cloud physical properties as 
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derived from the original SEVIRI measurements (Roebeling et al., 2006). The dataset covers 

the time period 1 January 2004 – present. 

In order to improve upon the accuracy of the remote sensing precipitation product, we integrated 

it with the daily Meteorological dataset from the Agri4Cast Data portal of the Joint Research 

Center (JRC) (Toreti, 2014). This dataset consists of 25km x 25km grid cells interpolated from 

weather station observations. The temporal coverage of the datasets is from 1979 to the last 

complete calendar year and the spatial coverage includes the European Union and neighboring 

countries. 

2.2.1.2 PET data  

The MOD16A2 Version 6 from the Moderate Resolution Imaging Spectroradiometer (MODIS) 

sensor aboard the Terra platform was used to get potential evapotranspiration (PET) estimates 

(Running et al., 2017). This product is an 8-day composite dataset produced at 0.5 km spatial 

resolution. To obtain daily estimates, we resampled this dataset to daily values. Its temporal 

extent is 2001 to present.  

2.2.1.3 LAI data 

To evaluate variations of vegetation patterns during drought, the Copernicus Global Land 

Service GEOV2 Leaf Area Index (LAI) was used at 1 km resolution (Copernicus Service 

Information, 2022). GEOV1 outperforms other existing global products in terms of accuracy 

and precision (Camacho et al., 2013). GEOV2 aims to improve GEOV1 in terms of continuity 

while being consistent with GEOV1 in terms of accuracy (Verger et al., 2014). GEOV LAI has 

been demonstrated to show a smoother seasonal trajectory than MODIS data. The LAI 1 km 

product is a global 10-days product that spans from 1999 to present. 

2.2.1.4 Vegetation type data 

The land cover product at 300 m spatial resolution on an annual basis generated by Copernicus 

Climate Change Service (C3S) was used to identify different vegetation types (C3S, 2019), 

consistent with the series of global land cover maps from 1992 to 2015 produced by the 

European Space Agency (ESA) Climate Change Initiative. The 2018 land cover map was used 

in this study (Fig. 2.2; Table 2.1).  
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Fig. 2.2. a) land cover map, in which the vegetation types represented are coded according to Table 2.1. b) 

The proportion of each vegetation type in the study area. 

Table 2.1. Vegetation types included in this study, as classified by the European Space Agency (ESA) 

Climate Change Initiative.  

Global Regional* Vegetation type # pixels 

10 
 

Cropland, rainfed 25457  
11 Cropland, rainfed, herbaceous cover 196096  
12 Cropland, rainfed, tree or shrub cover  1974 

30 
 

Mosaic cropland (>50%) /natural vegetation (tree, shrub, 

herbaceous cover) (<50%)   

39982 

40 
 

Mosaic natural vegetation (tree, shrub, herbaceous cover) 

(>50%) /cropland (<50%) 

5298 

60 
 

Tree cover, broadleaved, deciduous, closed to open (>15%) 45100 

70 
 

Tree cover, needleleaved, closed to open (>15%) 22720 

90 
 

Tree cover, mixed leaf type (broadleaved and needleleaved) 17532 

100 
 

Mosaic tree and shrub (>50%) /herbaceous cover (<50%) 24620 

110 
 

Mosaic herbaceous cover (>50%) /tree and shrub (<50%)  1896 

130 
 

Grassland 120482 

150 
 

Sparse vegetation (tree, shrub, herbaceous cover) (<15%) 437 

180 
 

Shrub or herbaceous cover, flooded, fresh/saline/brakish 

water 

4280 

* Cropland 10 is the definition of crops at the global level, and 11 and 12 are definitions at the regional 

level, subdividing croplands. 
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To match the rainfall data with the evapotranspiration data, and to retain the data accuracy of 

evapotranspiration to the greatest extent, thereby reducing data loss, we resampled all datasets 

into a grid of 0.005 degrees (around 0.5 km) under the World Geodetic System 84 (WGS84) 

coordinate system by using python package GDAL and executed all analyses based on this grid. 

2.2.2 Analysis 

2.2.2.1 Drought and drought characteristics index 

SPEI is based on the climatic water balance between precipitation and PET, and can be 

calculated at different time scales to facilitate multi-scalar drought assessment (Vicente-Serrano 

et al., 2010). Based on the fused high-resolution precipitation data and PET data, we calculated 

the daily SPEI for 2018. Our Python code to calculate SPEI was obtained from the U.S. drought 

portal (www.drought.gov) (Adams, 2017). On the basis of this code, we changed the original 

SPEI calculation time step from monthly to daily. The daily SPEI calculation process is similar 

to that of monthly SPEI (Vicente-Serrano et al., 2010; Wang et al., 2015).  

We chose 1, 2, 3, 4, 5 and 6 months as our SPEI time scales to have a full range of possible 

responses. 3-month time scale SPEI has been demonstrated to be the optimal time scale to 

investigate the response of European vegetation to drought (Ivits et al., 2016). To evaluate if 

this also applied to our study area, we determined the correlation between the daily standardized 

anomaly LAI (SALAI, discussed in section 2.2.2) and daily SPEI for each pixel. The maximum 

Pearson correlation coefficient between SALAI and SPEI and the corresponding time scale was 

extracted for each pixel. Since most of the pixels showed a significant relation, we removed 

those pixels that did not show a significant correlation. Based on this analysis, we confirmed 

that 3-month SPEI has a generally good correlation with vegetation responses in different 

vegetation types (Supplementary Fig. S2.2). Therefore, we selected SPEI on a 3-month time 

scale for our subsequent analyses (See Fig. S2.3 for the spatial patterns of the correlation 

between SPEI and SALAI).  

To comprehensively describe the distribution of drought in 2018, we calculated the start date, 

duration, peak intensity, and severity of SPEI as indicators. Following (Jamro et al., 2020; 

McKee, 1993), we defined SPEI= -0.5 as the threshold to indicate the onset of drought. We first 

selected all SPEI values lower than -0.5 in 2018, then selected the longest drought event, and 

calculated the start date of the longest drought event. For drought duration, the number of days 

http://www.drought.gov)/


Chapter 2 

30 

 

with a SPEI less than -0.5 in 2018 was used. The minimum value reached by SPEI in 2018 was 

set as drought peak intensity. The sum of all SPEI values less than -0.5 in 2018 represents the 

drought severity in 2018. 

2.2.2.2 LAI anomaly and LAI responses 

In order to evaluate responses of different vegetation types to the drought event of 2018, we 

calculated the anomalies of LAI between 2018 and the LAI of the prior fifteen years (2004–

2018). We calculated the Standardized Anomaly LAI (SALAI) by using Equation (1): 

𝑆𝐴𝐿𝐴𝐼(𝑡) =
𝐿𝐴𝐼(𝑡)−𝐿𝐴𝐼̅̅ ̅̅ ̅(𝑡)

𝜎(𝑡)
                             (1) 

where 𝑆𝐴𝐿𝐴𝐼(𝑡) is the SALAI at time t, 𝐿𝐴𝐼(𝑡) is the LAI value for time t, 𝐿𝐴𝐼̅̅ ̅̅ ̅ is the mean LAI 

at time t over 15 years, and σ is the standard deviation of the mean LAI over 15 years. Our 

calculation is based on the 10-days temporal resolution of the original LAI data, after which we 

interpolated this result to daily data. 

To understand LAI responses, we used the same indicators as for drought. Based on the analogy 

in calculations of SALAI and SPEI, we calculated the onset date, duration, peak intensity, and 

severity of the anomaly LAI (ALAI). The calculation method of these indices is the same as for 

drought, except that we set the LAI anomaly threshold to -1. The lower threshold for LAI was 

chosen to reduce the risk of non-drought related events to be included. Based on the longest LAI 

anomaly, the number of days between its onset date and when it reaches the minimum ALAI 

value was set as a decline period (Supplementary Fig. S2.4). For croplands, the only vegetation 

type with annual (instead of perennial) plants, only drought impacts during the growing season 

were included. For our study area, the growing seasons start around mid-May (Khabbazan et al., 

2019) till November. 

2.2.2.3 Drought-vegetation damage relationships 

We compared the onset, duration, peak intensity, severity of drought and ALAI in different 

vegetation types. For onset and duration, pixel-based differences between drought and ALAI 

were determined, evaluating delays and duration differences in drought impacts through a one-

sample t-test against zero. Given the difference in units, this was not possible for severity and 

intensity and unequal variance independent t-tests were used instead. To explore vulnerability 
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across different vegetation types with a changing drought severity, we made contour plots of 

drought severity vs. ALAI severity for each vegetation type, based on the density of points as 

calculated from Gaussian kernel density estimations. We took the ratio of ALAI severity and 

drought severity as an additional measure of vulnerability. Since ratios can show extreme 

maximum values, we removed outliers larger than the 99.9th percentile of the data. Finally, to 

evaluate the drought conditions that trigger ALAI, we extracted the SPEI value corresponding 

to the start date of the longest LAI anomaly.  

2.3 Results 

2.3.1 2018 drought response of different vegetation characteristics  

Fig. 2.3 shows the spatial distribution of drought response characteristics based on high-

resolution ALAI data. Anomalies in LAI appeared earlier in the northern and western coastal 

regions. The LAI of regions in southeastern Belgium and northern France responded later than 

northern regions, and some forests in this area were not affected at all. The duration of ALAI 

was long in the western parts of Belgium, the Netherlands, and Germany, while the LAI in some 

inland areas of the Netherlands, such as the Veluwe, was only affected for a short time (Fig. 

2.3b), despite experiencing a long period of drought (Fig. S2.5b). The southern forests in 

Belgium, northern France, and Germany were also affected for a short time only. The 

northeastern part of the Netherlands showed the strongest drought intensity, while the 

northwestern part of France only reached a mild drought intensity (Fig. 2.3c). LAI anomaly 

severity patterns (Fig. 2.3d) were very similar to the duration pattern. These LAI responses 

seemed closely related to vegetation type, which is further explored in the next section. 
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Fig. 2.3. Spatial-temporal drought impacts on vegetation. Panels a-d show onset (measured in the 

number of days since the start of the year), duration (measured in days), max-intensity, and severity of 

anomaly LAI (ALAI), respectively.  

2.3.2 Individual characteristics behave differently in drought response 

By quantifying the same characteristics (onset, duration, intensity and severity) of drought and 

anomaly LAI events, the relationships in individual characteristics between drought and drought 

impact were assessed to create a comprehensive understanding of drought impacts. The patterns 
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in onset, duration, intensity, and severity of drought vs. the corresponding vegetation responses 

are shown in Fig. 2.4.  

 

Fig. 2.4. Comparison of SPEI and anomaly LAI (ALAI) metrics. Panel a represents the difference 

between onsets by subtracting the onset of the longest drought event from the onset of the longest ALAI 

event. Panel b represents the difference between duration by subtracting ALAI duration from drought 

duration. Panels c-d represent drought and LAI intensity and severity for the different vegetation types, 

respectively.  
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Vegetation responses to drought are delayed to different extents in different vegetation types. 

As shown in Fig. 2.4a, in general, the onset of ALAI was later than that of the longest drought 

event. The exception to this pattern is sparse vegetation, showing an earlier start than the longest 

drought event. This may be due to generally low LAI of this landcover type, which makes 

detecting anomalies in LAI more uncertain. Moreover, short drought events occurred prior to 

the longest drought event and may have induced vegetation damage. Herbaceous croplands and 

tree/shrub croplands showed a very short delay time, which indicates that these vegetation types 

are more sensitive to drought. The onset of vegetation impacts in forests had a relatively long 

delay compared to other vegetation types. Especially, needleleaved forests and mixed forests 

showed a long delay, indicating that they have a certain degree of drought resistance. These two 

forests also showed lower correlation coefficients between SPEI and SALAI (Fig. S2.3). 

Tree/shrub croplands reacted quickly and had higher correlation coefficients. 

The length of the vegetation damage period also links differently to drought duration in various 

vegetation types. Fig. 2.4b shows that the duration of damage of all vegetation types was 

generally shorter than the actual drought. However, broadleaved deciduous forests, 

needleleaved forests and mixed forests were affected for a relatively shorter time (corresponding 

to stronger differences in duration) than other vegetation types, with up to 4-5 months shorter 

durations of impacts. Sparse vegetation and wetland vegetation also showed shorter durations 

of drought impacts (i.e. large differences in duration). Grasslands and croplands, on the other 

hand, suffered a long drought impact period (i.e. a small difference in duration). 

The drought peak intensity of all vegetation types reached the most intense conditions of SPEI=-

3.0 (Fig. 2.4c). The ALAI peak intensity in grasslands was most severe, while the peak intensity 

reached less intense values in broadleaved deciduous forests, needleleaved forests, mixed 

forests, and sparse vegetation. All crops showed similar damage intensity.  

The pattern of severity (Fig. 2.4d) is consistent with the result of drought duration and its 

variation between vegetation types. The severity of the 2018 drought in broadleaved deciduous 

forests and mixed forests was relatively low. The drought severity in tree/shrub croplands was 

similar to that of broadleaved deciduous forests, while tree/shrub croplands suffered much more 

damage. Needleleaved forests seem to grow in areas with high drought severities. 

2.3.3 Vulnerability of vegetation types to drought  

To help building predictions of how an increasing drought severity in the future could impact 
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ecosystems, we explored vegetation vulnerability. 

 

Fig. 2.5. Relationship between anomaly LAI (ALAI) severity and drought severity. The color 

represents the density of points as calculated based on Gaussian kernel density estimations (dark red: high 

density, light red: low density). 

The contour patterns between ALAI severity and drought severity provide a new view on 

evaluating the vulnerability of vegetation to drought. Fig. 2.5 shows that broadleaved deciduous 

forests, needleleaved forests and mixed forests showed low vegetation damage for a wide range 
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of drought severities. There was variation in vulnerability within these vegetation types, 

possibly due to differences in local conditions. Other vegetation types, such as agricultural types, 

were more sensitive to drought than forests. Especially for tree/shrub croplands, vegetation was 

already seriously damaged when drought was not that severe, indicating that these systems (in 

the Netherlands mainly consisting of orchards) are relatively fragile. Also grasslands were 

relatively fragile. Mosaic grasslands showed a very clear response pattern: as the severity of 

drought increased, the damage to the vegetation also increased. Intriguingly, such patterns were 

much weaker in most of other vegetation types, suggesting that –apart from clear differences in 

overall vulnerability – local conditions determine the actual vulnerability. This assessment based 

on drought severity – vegetation impact severity provides a description of vulnerabilities for 

different vegetation types facing increasing drought stress (Fig. S2.6), and gives an opportunity 

to build predictions of how much the vegetation will be damaged when suffering future drought 

events. 

 

Fig. 2.6. The ratio of anomaly LAI (ALAI) to drought severity across 2018.  

The ratio of ALAI severity to drought severity (Fig. 2.6) provides another measure of 

vulnerability, indicating the vegetation damage per unit drought. Trees tend to take up soil 

moisture from deeper layers than grasslands and crops, which may explain why forests showed 

relatively lower vulnerability than other vegetation types. Broadleaved deciduous forests, and 
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needleleaved forests showed similar vulnerability, while mixed forests seemed to be the least 

vulnerable (expressed as a low severity ratio). Mosaic forests were the most vulnerable of all 

forested vegetation types, likely due to the mixing with shrub and herbaceous cover. Among 

agricultural land, tree/shrub croplands showed the highest severity ratio (mean 0.77), indicating 

that tree/shrub crops seem to be more vulnerable than herbaceous crops. The vulnerability of 

grasslands was higher than for all forest vegetation types and higher than for all croplands other 

than tree/shrub croplands. The vulnerability of sparse vegetation and wetland vegetation was 

low. For sparse vegetation, the pattern may have been affected by its low LAI values which 

made detecting its variation inaccurate. The environment of wetland vegetation is relatively 

moist, and may therefore be less affected by drought. 

2.3.4 Early warning threshold of drought for the damage of vegetation  

The SPEI value at the onset of anomaly LAI event (Fig. 2.7) provides an early warning signal 

of drought impacts, indicating the drought conditions at which a vegetation anomaly would be 

triggered.  

 

Fig. 2.7. SPEI value at the start date of the longest LAI anomaly event in different vegetation types. 
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Onsets in LAI anomaly started at mild SPEI values in tree/shrub croplands and herbaceous 

croplands. Tree/shrub croplands anomalies started at SPEI values around -0.5, and herbaceous 

croplands anomalies started at SPEI values greater than -1. Compared with other terrestrial 

vegetation types, the LAI anomalies occurred under more intense drought conditions in forests, 

especially for needleleaved forests whose mean was even lower than that of wetland vegetation. 

For mixed forests, the LAI anomaly started at a relatively intense drought, and a large part of 

the broadleaved deciduous forests LAI began to exhibit anomalies during less intense drought. 

The response thresholds of all other vegetation types were around the SPEI of -1.  

2.4 Discussion 

Previous studies commonly evaluated vegetation response to drought based on correlations 

between drought indices and vegetation indices. Such an approach however cannot capture the 

variety in response characteristics of vegetation. To more quantitatively assess the effects of 

drought on vegetation, we constructed a new framework. This framework is composed of 

drought indicator SPEI and a vegetation growth response indicator based on the long-term 

anomaly in LAI. To account for the high spatiotemporal variation, particularly in vegetation 

responses, we established a high temporal and spatial resolution dataset to calculate both SPEI 

and ALAI. Based on these two indicators, we described the spatial and temporal characteristics 

from multiple perspectives, including onset, duration, intensity, and severity of both drought 

and its impacts.  

2.4.1 Applying multi-metric framework to future water regulation 

Application of our multi-metric framework provides all needed information on three aspects of 

vegetation responses to drought, including which vegetation types are sensitive, when will 

vegetation be damaged and how much will be the damage. Moreover, our framework provided 

an early warning threshold of vegetation damage by drought, which may aid in determining 

under which drought conditions it is necessary to take measures to mitigate the risk of negative 

drought impacts for a given vegetation type. These features will be helpful to future water 

regulation. 

The different facets of vegetation responses reflect different component of vegetation strategies 

to deal with drought. For instance, we found that broadleaved deciduous forests responded faster 

and at milder drought conditions than other forest types. However, the severity of damage was 

not much different from other forest types. Their faster response at mild drought conditions can 
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be explained by their leaf shedding to protect the hydraulic system and leaf growth restrictions 

to balance production and survival under water stress (Marchin et al., 2010; Munné-Bosch and 

Alegre, 2004; Schuldt, 2020). Needleleaved forests showed the slowest response and only 

started to react under the severest drought conditions, but the damage they suffered is similar to 

that of broadleaved forests. Conifers tend to have a wider hydraulic safety margin (defined as 

differences between minimum xylem pressures and pressures that would cause hydraulic 

dysfunction) than angiosperms to avoid cavitation (Choat et al., 2012; Johnson et al., 2012), 

with early stomatal closure and lower carbon gain (Carnicer et al., 2013; Martínez-Ferri et al., 

2000). This water saving strategy may explain their slow response to drought. Mixed forests 

also responded slowly to severe water stress, and the damage they suffered was low. Mixed 

forests may combine multiple strategies (tolerance, avoidance and recovery) to deal with 

drought which may increase their overall resistance (Mayoral et al., 2015; Pardos et al., 2021) 

thanks to functional complementarity among coexisting tree species (Gazol and Camarero, 2016; 

Loreau and de Mazancourt, 2013). In combination, our framework was able to pick up subtle 

differences in drought impacts of different forest types that were hard to distinguish previously 

(Carnicer et al., 2013). 

Forests in natural ecosystems were less affected by drought stress than grasslands and croplands, 

which is consistent with results of previous studies (Ding et al., 2020; Nicolai-Shaw et al., 2017; 

Xu et al., 2019). Our analysis showed that croplands and grasslands had a shorter delay at mild 

drought and experienced more severe damage despite irrigation practices in agricultural systems. 

Grasslands and croplands with shallow root systems can only absorb and utilize soil moisture 

from shallow layers, in which soil moisture responds to precipitation pulses quickly (Sala et al., 

1992). In contrast, the well-developed deep roots of trees enable them to absorb water from deep 

soil layers, thus providing them with a certain buffer capacity during drought stress (Germon et 

al., 2020; Nardini et al., 2016). However, we found that particular tree croplands (e.g. orchards) 

were highly sensitive to drought stress in agricultural ecosystems of this region, possibly related 

to the relatively shallow roots of the predominant crops in them (Cockroft and Wallbrink, 1966). 

A quantitative understanding of these multi-faceted responses of vegetation can provide reliable 

guidance for future water management to mitigate drought impacts. 

2.4.2 Vulnerability to drought for future drought impacts prediction  

Our framework provided vulnerability estimates (Fig. 2.5 and Fig. S2.6) based on the changes 

in the severity of vegetation impacts with increasing drought severity. These estimates express 
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how vulnerability varies with drought, insights that a traditional correlation analysis does not 

provide. Our analysis shows that, with increasing drought severity, different vegetation types 

showed different increases in damage (Fig. 2.5), probably related to their different coping 

strategies (see section 4.1). Particularly mosaic grasslands showed a large increase in damage 

with increasing drought severity, indicating that this vegetation type is highly susceptible to 

drought. The establishment and growth of woody seedlings is especially sensitive to drought 

(Jeltsch et al., 2000; Van Wijk and Rodriguez-Iturbe, 2002), and the combination of seedlings 

and herbaceous plants likely explains the higher sensitivity of mosaic grasslands than other 

ecosystems. In contrast, mosaic forests (with a high proportion of woody plants) did not show 

a high sensitivity to drought. For ecosystems where crops are mixed with e.g. grasslands, forests, 

or shrubs, changes in the proportion of natural vegetation did not lead to very different responses 

to drought condition changing (e.g., compare the two mosaic cropland types). 

The vulnerability analysis and the other analyses within our framework also show a large 

variation in responses within a vegetation type. This is likely due to variation in local 

environmental conditions, including differences in species composition, soil properties, 

groundwater availability and land management. Soil texture and groundwater levels vary in our 

study area with clayey and peat soils with shallow groundwater levels in the west and sandy 

soils with relatively deep groundwater levels in the east (Reijneveld et al., 2009). Both soil 

texture and groundwater levels are well-known to moderate drought impacts (e.g. Jiang et al., 

2020). Also between vegetation types, differences in local environmental conditions probably 

play a role as groundwater levels and soil type likely also affect the spatial distribution of 

vegetation types, as related to the different strategies of vegetation types to deal with drought 

and other local environmental conditions. This implies that differences in sensitivities among 

vegetation types may express both the sensitivity itself as well as the moderation of those 

sensitivities by differences in the environmental conditions at which these vegetation types 

occur. Given that these effects are intrinsically coupled, they cannot be separated. Evaluations 

of future drought impacts should account for these variations within and between vegetation 

types and their causes to improve the quality of predictions.  

2.4.3 Merits and limitations 

In contrast to previous studies that mostly focused on one aspect of drought impacts, by 

combining different metrics, our framework comprehensively captures the temporal and spatial 

characteristics of drought effects. The observed patterns of the metrics within and between 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/soil-properties
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vegetation types have important implications for drought management as they give us an early 

warning signal of when ecosystems start to suffer damage. This allows taking measures at the 

appropriate drought conditions to maintain the stability of the ecosystem functioning and 

structure before drastic declines of vegetation canopy occur.  

Similarly, our framework allows a more comprehensive evaluation of drought impacts across 

different ranges of drought severities. This has wide application potential for predicting future 

drought impacts in which droughts are likely to be more severe than in the current climate. Our 

framework indicates how vulnerabilities to drought will change and also which aspects of 

drought damage will be most affected in different vegetation types. Further research based on 

this framework would be helpful to evaluate the generality of the responses observed in this 

study.  

While the high temporal and spatial resolution used in our framework is essential to properly 

quantify these patterns, this may also pose calculation restrictions when applied to larger extents. 

This is a limitation that needs to be accounted for. Moreover, the current analysis focussed on 

drought impacts during one year of drought. Legacy effect of droughts on ecosystem functioning 

in subsequent years (Anderegg et al., 2015; Wu et al., 2018) was not taken into account. In 

principle though, our framework would allow for such explorations and quantifications of 

legacy effects. The application of this framework on a larger spatial scale and longer time 

sequences thus needs further explorations.  

2.5 Conclusions 

The 2018 drought had a major impact on vegetation growth in most regions of western Europe. 

We provide metrics to quantify spatial-temporal characteristics of SPEI and LAI based on the 

same criteria to calculate vegetation responses to drought across different vegetation types. This 

drought analysis framework facilitates a quantitative comparison and understanding of the 

intimate relationships between drought and its impacts on vegetation through multiple 

characteristics. The framework also allows revealing the variation in vulnerability to drought 

within and between vegetation types. Particularly the vulnerability assessment based on the 

relationship between drought severity and the severity of its corresponding vegetation damage 

allows differentiating different vegetation strategies in coping with increasing drought 

conditions. Our multiple metrics open a new internal perspective for drought impact evaluation, 

water management and future drought prediction studies.  
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2.8 Supplementary information 

2.8.1 Precipitation data preprocessing 

 

Fig. S2.1. Flow chart depicting how Joint Research Center (JRC) and Meteosat Second Generation 

(MSG) precipitation data were integrated to optimally derive high spatiotemporal estimates of 

precipitation. 

Meteosat Second Generation (MSG) (a remote sensing product) provides precipitation data at 

high spatial resolution. However, remote sensing products are not as accurate as ground 

measurement data. To improve the accuracy of MSG data, we used Joint Research Center (JRC) 

precipitation data (an interpolated ground measurements product) as reference data to calculate 

a scaling factor for MSG data. To correct the remote sensing data while maintaining its high 

spatial resolution, we calculated this scaling factor at a monthly time resolution. To derive this 

scaling factor, original MSG and JRC precipitation data were first resampled to a common 

spatial and temporal resolution (in this case 0.05° and monthly, respectively). At this common 

resolution, the ratio between JRC and MSG precipitation data was calculated as the scaling 

factor for MSG. Finally, scaled MSG data was obtained by multiplying by this scaling factor. 
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2.8.2 Response time 

In order to better understand the time scale at which ecosystems respond to drought and the 

integral period over which drought impacts ecosystems, we calculated SPEI for periods of 1 to 

6 months. For each pixel and each vegetation type, it was determined which time period best 

predicted the response of the vegetation (Fig. S2.2).  

 

Fig. S2.2. The proportion of 1 to 6 months corresponding to the maximum Pearson correlation 

between Standardized Anomaly LAI (SALAI) and SPEI across different vegetation types (not 

significant values were removed). 

The 3-month drought is generally best related to the drought impacts in different vegetation 

types. Specifically, all agricultural systems were most responsive to drought at the 3-month scale, 

and most strongly so for global croplands and mosaic croplands in particular. For forested 

vegetation types, its response time scale is mainly distributed in 2-4 months. Needleleaved 

forests responded most obviously to the 3-month drought time scale. Only wetland vegetation 

tended to respond to drought within 3 months and 80.95% of its pixels responded to drought 

within 3 months.  
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2.8.3 Correlation of SALAI and SPEI 

Fig. S2.3 shows the spatial distribution of the 3-months correlation between the response of the 

vegetation (measured as SALAI) and the drought intensity SPEI. In general, SALAI has a high 

correlation with SPEI, indicating that the vegetation was affected by the 2018 drought in most 

areas. Only 9.8% of the grid cells exhibited showed a correlation with SPEI of less than 0.3, 

specifically for herbaceous croplands, broadleaved deciduous forests, grasslands, mixed forests 

and needleleaved forests, accounting for 45.4%, 18.9%, 14.0%, 6.9% and 4.9% of the total area 

with correlations less than 0.3, respectively. The large contribution of herbaceous croplands and 

grasslands to the low correlation regions is likely due to its high abundance in our study area as 

herbaceous croplands and grasslands also accounted for the most of the total area with high 

correlation (>0.7).  

 

Fig. S2.3. Drought vegetation impact strength (measured by the correlation coefficient). a, the spatial 

distribution of the impact strength. b, the distribution of this strength across different vegetation types.  

Fig. S2.3 shows that the SALAI–SPEI relationship differed for each vegetation type. The 

correlation between the SALAI and SPEI is particularly strong for tree/shrub croplands (mean, 

0.75) and mosaic grasslands (mean, 0.70), which shows that these two vegetation types have a 

high sensitivity to drought. Both cropland-natural vegetation mosaics behaved similarly, and the 

differences in the proportion of natural vegetation and crops did not significantly affect their 

performance. In contrast, wetland vegetation showed the lowest correlation with drought with a 
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mean of 0.46, followed by broadleaved deciduous forests, mixed forests and sparse vegetation 

with mean of respectively 0.47, 0.49 and 0.49. Specifically, within forest vegetation types, 

coniferous forests showed a generally higher correlation than deciduous broad-leaved forests. 

The drought impact strength is higher for mosaic forests than other forest types. This is likely 

due to the contribution of herbaceous vegetation to these vegetation types as also mosaic 

grasslands showed a high correlation with drought. Altogether, the data suggest that the impact 

of drought on trees in natural ecosystems is moderate.  

2.8.4 LAI decline periods 

 

Fig. S2.4. Number of days between the onset date of drought damage and the date at which the 

minimum anomaly LAI (ALAI) value of the longest LAI anomaly event was attained. 

As an additional metric that can potentially be used for evaluating drought damage, we 

calculated the period over which LAI decline occurs (from the onset of LAI damage till the date 

at which the minimum ALAI value of the longest LAI anomaly event was attained). These 

decline periods show substantial differences among vegetation types (Fig. S2.4). Forest ALAI 

generally shows a relatively fast decline, especially broadleaved deciduous forests, needle-

leaved forests, and mixed forests. Their median value showed that they reached the ALAI 
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minimum value within 25 days. In contrast, the general decline in LAI of crops is relatively 

slow, suggesting that the impact of this drought on crops represents a long-term growth 

limitation. Especially in tree/shrub croplands, the decline is the slowest with a median value of 

69 days. Given that the patterns in the decline period of ALAI showed high correspondence with 

the duration and severity of drought, the decline period was not considered for further analysis 

as it did not seem to provide new information on differences in vegetation responses to drought. 

2.8.5 2018 drought characteristics  

In Fig. S2.5, the spatial distribution of drought characteristics (onset, duration, maximum 

intensity and severity) based on high-resolution 3-month SPEI is shown. The 2018 drought 

progressed differently across regions. The drought started earlier (around April) in the northeast 

(the eastern Netherlands, western Germany) and in the central part of Belgium, while the 

drought started relatively late in the southern region, mostly after May (Fig. S2.5a). Both the 

northern and eastern parts experienced longer periods of drought, while the southern regions 

experienced shorter periods of drought (Fig. S2.5b). 
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Fig. S2.5. spatial distribution of drought characteristics based on the 3-month SPEI. a, the onset-time 

(measured in the number of days since the start of the year) of drought. b, the duration of the drought 

(measured in days). c, the maximum intensity of the drought. d, the severity of the drought (estimated as 

the accumulated sum of the severity over the full duration of the drought). 

Fig. S2.5 shows that during the 2018 drought, except for a small area in northern France, most 

places reached an extremely severe drought intensity. The regional distribution of drought 

severity is consistent with the distribution of drought duration, with the drought being most 

severe in the east. 
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2.8.6 LAI damage under various drought condition 

 

Fig. S2.6. LAI damage under various drought conditions of different vegetation types.  

Fig. S2.6 shows that under the same drought conditions, the damage of the forest was 

significantly smaller with all damage severity mainly greater than value -200. The crops and 

grassland suffered more damage, among crops, especially tree/shrub cropland suffered the most 

(with damage around -250). Grassland suffered similar damages under various drought 

intensities. However, the damage suffered in mosaic grassland is only around -100 under mild 

drought conditions, while under severe drought conditions it can reach -300, indicating that 

mosaic grassland is more sensitive to drought changes. 
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