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Abstract

Large-scale survey tools enable the collection of citizen feedback in opinion corpora.
Extracting the key arguments from a large and noisy set of opinions helps in understanding
the opinions quickly and accurately. Fully automated methods can extract arguments but
(1) require large labeled datasets that induce large annotation costs and (2) work well for
known viewpoints, but not for novel points of view. We propose HyEnA, a hybrid (human
+ AI) method for extracting arguments from opinionated texts, combining the speed of
automated processing with the understanding and reasoning capabilities of humans. We
evaluate HyEnA on three citizen feedback corpora. We find that, on the one hand, HyEnA
achieves higher coverage and precision than a state-of-the-art automated method when
compared to a common set of diverse opinions, justifying the need for human insight.
On the other hand, HyEnA requires less human effort and does not compromise quality
compared to (fully manual) expert analysis, demonstrating the benefit of combining human
and artificial intelligence.

1. Introduction

To make decisions on large public issues, such as combating a pandemic and transitioning to
green energy, policymakers often turn to the citizens for feedback (Kythreotis et al., 2019;
Lee et al., 2020). This feedback provides insights into public opinion and contains viewpoints
from many individuals with different perspectives. Involving the public in the decision-
making process helps in gaining their support when the decisions are to be implemented,
fostering the legitimacy of the process (Ostrom, 1990).

In the face of crises, decisions must be made swiftly. Thus, collecting feedback, analyzing
it, and making recommendations ought to be performed under tight time constraints. For
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example, when deciding on relaxing COVID-19 measures in the Netherlands, researchers had
one month to design the experiment, collect public feedback, and make recommendations to
the government (Mouter et al., 2021). The time constraint limits the amount of information
researchers can analyze, potentially painting an incomplete picture of the opinions. In the
scenario above, researchers processed data manually and they could only analyze less than
8% of the qualitative feedback provided by more than 25,000 participants.

Argument Mining (AM) (Lawrence & Reed, 2020) methods can assist in increasing the
efficiency of feedback analysis by, e.g., locating and interpreting argumentative feedback
and classifying statements as supporting or opposing a decision. However, applying auto-
mated AM methods for feedback analysis poses three main challenges. First, AM methods
generalize poorly across domains (Stab et al., 2018; Thorn Jakobsen et al., 2021; van der
Meer et al., 2024). Thus, they require large amounts of domain-specific training data,
which is often not available. The use of pretrained language models, with the pre- or fine-
tuning paradigm, mitigates but does not solve the reliance on large domain-specific training
datasets (Reimers et al., 2019; Ein-Dor et al., 2020). Second, although AM methods can
identify argumentative content, they often do not compress the information (Chakrabarty
et al., 2019; Daxenberger et al., 2020, e.g.). That is, they struggle to recognize whether two
arguments describe the same point of view, leaving the policymakers with the significant
manual labor of aggregating arguments (Körner et al., 2021b, 2021a). Finally, naively rely-
ing on a small sample of labeled data might cause minority opinions to be ignored as they
are not well represented (Klein, 2012), creating a bias toward popular (repeated) arguments,
which can perpetuate echo chambers and filter bubbles (Price, 1989; Schulz-Hardt et al.,
2000).

The key point analysis (KPA) task (Bar-Haim et al., 2020) seeks to automatically com-
press argumentative discourse into unique key points, which can be matched to arguments.
However, synthesizing key points is a significant challenge. In the ArgKP dataset, domain
experts (skilled debaters) were asked to generate key points. Subsequently, a model was
trained to take over the task (Bar-Haim et al., 2020). However, the reliance on a few human
expert annotators introduces biases of the human experts and may not be representative
of the opinions of the larger population. This defeats the purpose of engaging the larger
public in a bottom-up deliberative decision-making process.

We argue for a crowd-sourced human-machine approach for argument extraction, com-
bining the scalability of automated methods and the human understanding of others’ per-
spectives. We propose HyEnA (Hybrid Extraction of Arguments), a hybrid (human +
AI) method for extracting a diverse set of key arguments from a textual opinion corpus.
HyEnA breaks down the argument extraction task into argument annotation, consolidation,
and selection phases. HyEnA employs human (crowd) annotators and supports them via
intelligent algorithms based on natural language processing (NLP) techniques for analyzing
opinions provided by a large audience, as shown in Figure 1.

HyEnA is evaluated on three corpora, each containing more than 10K public opinions
on relaxing COVID-19 restrictions (Mouter et al., 2021). We compare HyEnA with an
automated approach (Bar-Haim et al., 2020) performing the KPA task. In addition, we
compare the key arguments generated by HyEnA with manually obtained insights identi-
fied by experts (Mouter et al., 2021). We find that HyEnA outperforms the automated
baseline in terms of precision and diversity, specifically when confronted with a set of var-
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Figure 1: In a democratic cycle, citizens provide their opinions on options for governmen-
tal decision-making and their opinions need to be interpreted. Insights into the
arguments embedded in their comments can be provided by Key Point Analysis
(KPA). To perform KPA, most analysis is performed either manually or auto-
matically. In our work, we propose HyEnA, a hybrid method.

ied perspectives. HyEnA also yields better results than manual analysis, as fewer opinions
needed to be analyzed in order to obtain a wider set of key arguments.

Contributions

C1 We present a hybrid method for key argument extraction, which generates a diverse
set of key arguments from a collection of opinionated user comments.

C2 We evaluate our method on real-world corpora of public feedback on policy options.
Compared to an automated baseline, HyEnA increases the precision of the key ar-
guments produced and improves coverage over diverse opinions. Compared to the
manual baseline, HyEnA identifies a large portion of arguments identified by experts
as well as new arguments that experts did not identify.

C3 We extensively discuss the implications of incorporating recent advances in NLP, such
as Large Language Models (LLMs), into the workflow of our hybrid method.

Extension In this paper, we extend the HyEnA method (van der Meer et al., 2022) to
include argument selection. The original HyEnA method outputs argument clusters, and
leverages manual annotations from the first two phases to select arguments from argument
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clusters. In this extension, we introduce a method for selecting the most representative
argument from each cluster. The need to summarize argument clusters is not specific to
HyEnA, as previous AM applications also retrieve clusters instead of singular arguments
(Boltužić & Šnajder, 2015; Wachsmuth et al., 2018; Daxenberger et al., 2020). We compare
various techniques to accomplish this task, including generative large language models.
Furthermore, we run additional experiments to demonstrate how the new argument selection
step can be incorporated into the HyEnA pipeline, and rerun the original evaluation to
compare between HyEnA with and without the inclusion of argument selection. Finally,
we perform additional analyses to derive further insights from annotators in HyEnA. We
also provide our code, annotation guidelines, and experimental details in the supplementary
materials (van der Meer et al., 2024a).

Organization Section 2 provides background on Argument Mining for public opinions,
and Section 3 introduces the HyEnA method for extracting arguments. We outline the
experimental setup in Section 4 and provide extensive results in Section 5. A discussion of
our work is given in Section 6 and we conclude with Section 7.

2. Related work

We describe related work on Argument Mining, methods for summarizing arguments, and
their application to opinion analysis.

2.1 Computational Argument Analysis

Argument Mining (AM) methods (Cabrio & Villata, 2018; Lawrence & Reed, 2020) focus
on the recognition, extraction, and computational analysis of arguments presented in nat-
ural language. They seek to discover arguments brought forward by speakers and identify
connections between them. Typically, AM techniques concern themselves with finding the
structure of arguments (van Eemeren et al., 1987), with the goal of finding premises for
supporting or refuting conclusions.

AM is a challenging problem. The ability to recognize and extract arguments from text
(for humans and machines, alike) is dependent on the argumentativeness of the underlying
data. Often, significant effort is required by human annotators to reach moderate inter-rater
agreement when annotating arguments (Teruel et al., 2018). Given argumentative texts,
modern NLP models are reasonably good at recognizing argumentative discourse within
specific contexts (Niculae et al., 2017; Eger et al., 2017; Reimers et al., 2019).

Typically, the first step of AM is to identify the elemental components of arguments
(e.g., claims and premises) in text (Palau & Moens, 2009). The combination of such com-
ponents forms a structured argument. However, there is currently no consensus on the
exact linguistic notion of such elemental components, with multiple levels of granularity
being proposed (Daxenberger et al., 2017; Walton et al., 2008; Freeman, 2011; Bentahar
et al., 2010). Nonetheless, a few characteristics have been recognized as important for rec-
ognizing arguments, namely that arguments (1) contain (informal) logical reasoning (Stab
& Gurevych, 2014), (2) address a why question (Biran & Rambow, 2011), and (3) have a
non-neutral stance towards the issue being discussed (Stab & Gurevych, 2014).
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HyEnA is a novel AM method that combines human annotators and automated NLP
models. By splitting up the argument extraction task into distinct phases, we take advantage
of the diverse human perspectives, while addressing scalability through automation.

2.2 Summarization of Arguments

Automated methods have been proposed to derive high-level insights from large-scale argu-
mentative content. For instance, these approaches focus on indexing and searching through
arguments (Stab et al., 2018; Wyner et al., 2012), or creating visual overviews of argument
structures (Khartabil et al., 2021; Caillou et al., 2020). While these may provide access
to argumentative content, they are limited in providing a single high-level overview of the
arguments on a topic of discussion. Instead, we turn our focus to approaches that create a
comprehensible text-based summary from a large corpus of individual comments (Bar-Haim
et al., 2020, e.g.). In this paradigm, comments are filtered by a manually tuned selection
heuristic, resulting in a list of key point candidates. The candidates are matched against
all comments, based on a classifier trained for the argument–key point matching task (Bar-
Haim et al., 2020). Such approaches have been applied in multiple domains, showcasing
their applicability across context (Bar-Haim et al., 2021) at varying levels of granularity
(Cattan et al., 2023). While these approaches present high-level arguments, they struggle to
capture diversity in opinions, which is important for accommodating multiple perspectives
(van der Meer et al., 2024). In this work, we evaluate the performance of these approaches
on a novel domain of COVID-19 measures and compare it against HyEnA.

Additionally, there exists an extended body of work on Natural Language Inference
(NLI) and Semantic Textual Similarity (STS). In these works, models are trained to indi-
cate semantic similarity or logical entailment between two sentences (Conneau et al., 2017;
Reimers & Gurevych, 2019). They have made a significant impact across a range of tasks
(Xu et al., 2020; Zhong et al., 2020). However, downstream applications often need ad-
ditional fine-tuning (Howard & Ruder, 2018) in order to perform a task well. They also
capture generic aspects of semantic similarity and entailment, which may not be applicable
to arguments (Reimers & Gurevych, 2019), or overfit to spurious patterns in the data (Mc-
Coy et al., 2019). Thus, such methods require significant adaptation to effectively compress
information in particular domains. Recently, Large Language Models (LLMs) have been
shown to perform well on inference tasks with out-of-distribution data (Wang et al., 2023).
However, we argue that a plurality of (human) perspectives is necessary to perform sensi-
tive tasks such as the summarization of arguments, which may in turn be used to inform
policy-makers about the sentiment of a population (Talat et al., 2022). Yet, LLMs might
be adequate for specific subtasks, as we showcase in the third phase of the HyEnA method.

3. Method

HyEnA is a hybrid method since it combines automated techniques and human judgment
(Akata et al., 2020; Dell’Anna et al., 2024). HyEnA guides human annotators in synthesizing
key arguments (i.e., high-level semantically distinct arguments that describe relevant aspects
of the topic under discussion) from an opinion corpus composed of individual opinions
(textual comments) on a topic. Key arguments are high-level and summarize a group of
arguments, similar to key points as introduced by (Bar-Haim et al., 2020). We adopt the
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Figure 2: Overview of the HyEnA method.

term key argument, to emphasize their argumentative nature, as opposed to more generic
extractive summarization (See et al., 2017, e.g.).

HyEnA consists of three phases (Figure 2). In the first phase (Key Argument Annota-
tion), an intelligent sampling algorithm guides human annotators individually through an
opinion corpus to extract high-level information from the opinions. In the second and third
phases, HyEnA aims to reduce the subjectivity in the first phase annotations by combining
and rewriting arguments that were individually annotated. In the second phase (Key Ar-
gument Consolidation), an intelligent merging strategy supports a new group of annotators
in merging the results from the first phase into clusters of arguments, combining manual
and automatic labeling. In the third phase (Key Argument Selection), HyEnA employs an
automated method to synthesize a single argument that represents the arguments belonging
to the same merged argument cluster. The final output of HyEnA is a list of key arguments
grounded on the opinions in the corpus.

3.1 Opinion Corpora

Our opinion corpora are composed of citizens’ feedback on COVID-19 relaxation measures,
a contemporary topic. The feedback was gathered in April and May 2020 using the Partic-
ipatory Value Evaluation (PVE) method (Mouter et al., 2021). In a PVE, participants are
offered a set of policy options and asked to select their preferred portfolio of choices. Then,
the participants are asked to explain why they picked certain options (pro stance) and not
pick the other options (con stance) via textual comments. Pro- and con-opinions together
form the opinion corpus. The data used in our experiments concerns the COVID-19 regu-
lations in the Netherlands during the height of the pandemic, in May 2020. We chose this
scenario because (1) we had access to a unique dataset of citizen-provided comments on
COVID-19 regulations, (2) we were able to run the study while the topic was still relevant,
making it interesting for crowd workers, (3) a manual analysis had been performed over
the exact same data, allowing for comparison to a human-only baseline, and (4) the data is
reflective of real-world conditions, e.g. feedback was obtained in a matter of days but con-
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Policy option Example opinion Num.
Opinions

Pro/Con
Ratio

young people may come to-
gether in small groups

Then they can go back to
school (Pro)

13400 0.66/0.34

All restrictions are lifted for
persons who are immune

Encourages inequality (Con) 10567 0.17/0.83

reopen hospitality and en-
tertainment industry

The economic damage is too
high (Pro)

12814 0.55/0.45

Table 1: Example opinions in the COVID-19 corpora. The collection of opinions for a policy
option forms an opinion corpus.

tains input from a broad group of citizens encompassing broad demographics. We analyze
feedback from 26,293 Dutch citizens on three of these policy options, treating comments on
each option as an opinion corpus. Table 1 shows examples of opinions provided for each
different policy option. In our experiments, the HyEnA method is applied to one corpus at
a time. Since we use data from a publicly run citizen feedback experiment, we observe that
some options attracted more pro comments than others. We picked these three options with
different pro/con ratios to investigate their impact on the key argument extraction task.
The opinions in these corpora are similar to noisy user-generated web comments (Habernal
& Gurevych, 2017), may span multiple sentences, and contain more than one argument at
a time. For each policy option, we use the keyword in uppercase as the option identifier in
the remainder of the paper.

The original opinions were provided in Dutch. To accommodate a diverse set of an-
notators in our experiments, we translated all comments to English using the Microsoft
Azure Translation service. All experiments are performed with the translated opinions.
Mixing (pretrained) embeddings and machine-translated comments has a minimal impact
on downstream task performance (Sennrich et al., 2016; Eger et al., 2018; Daza & Frank,
2020). Although all experiments are conducted in English, the link to the original Dutch
text is preserved for future applications.

3.2 Key Argument Annotation

In the first phase of HyEnA, human annotators extract individual key argument lists by
analyzing the opinion corpus. Since a realistic corpus consists of thousands of opinions, it
is unfeasible for an annotator to read all opinions. Thus, HyEnA proposes a fixed number
of opinions to each annotator. HyEnA employs NLP and a sampling technique to select
diverse opinions to present to an annotator.

Intelligent Opinion Sampling Each annotator is presented, one at a time, with a fixed
number of opinions. To sample the next opinion, we embed all opinions and arguments
observed thus far using the S-BERT model (MS) (Reimers & Gurevych, 2019). S-BERT
converts sentences into fixed-length embeddings, which can be used to compute semantic
similarities between pairs of sentences.
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Then, we select a pool of candidate opinions using the Farthest-First Traversal (FFT)
algorithm (Basu et al., 2004). FFT selects the candidate pool as the f farthest opinions
in the embedding space from the previously read opinions and annotated arguments (in
our experiments, we empirically select f = 5). Next, we use an argument quality classifier
trained on the ArgQ dataset (Gretz et al., 2020) to select one single clearest opinion related
to the policy option. In this way, we aim to increase both the diversity and quality of the
opinions presented to each annotator.

Annotation Upon reading an opinion, the annotator is asked, first, to identify whether
the opinion contains an argument or not. If so, the annotator is asked to check whether the
argument is already included in their current list of key arguments. If it is not, the annotator
should extract the argument into a standalone expression (i.e., into a key argument), and
add it to the list of key arguments. When adding a new argument, the annotator is asked
to indicate the stance of the opinion (i.e., whether it is in support or against the related
policy option). To facilitate this task, HyEnA highlights the most probable stance for the
user as a label suggestion (Schulz et al., 2019; Beck et al., 2021).

Topic Assignment We use a BERTopic (Grootendorst, 2022) model T to extract clusters
of topics from the corpus. We train T on all opinions in the corpus and select the most
frequent topics found by T , with duplicates and unintelligible topics manually removed by
two experts. We ask human annotators to associate the topics from the generated shortlist
with each argument, resulting in an n-hot vector for each argument a per annotator. We
obtain the final topic assignment T by summing over all annotators. This topic assignment T
is used in the second phase to compute argument similarity. Thus, in the first phase, HyEnA
yields multiple key argument lists (one per annotator), each containing key arguments and
their stances, and an assignment of pre-selected topics to key arguments.

3.3 Key Argument Consolidation

In the first phase, (1) the annotators are exposed to a small subset of the opinions in the
corpus, and (2) the interpretation of arguments is subjective. In the second phase, HyEnA
seeks to consolidate the key argument lists generated in the first phase. Our goal is to
increase the diversity of the resulting arguments and compensate for individual biases.

First, we create the union of all lists of key arguments generated in the first phase of
HyEnA. Then, we ask the annotators to evaluate the similarity of the key argument pairs
in the union list. Based on the similarity labels, we employ a clustering algorithm to group
similar key arguments, producing a consolidated list of key arguments.

Pairwise Annotation To simplify the consolidation task, the annotators are presented
with one pair of key arguments at a time and asked whether the concepts described by
the key arguments in the pair are semantically similar. To reduce human effort, we select
only the most informative key argument pairs for manual annotation and automatically
annotate the remaining pairs. To select the most informative pairs, we adopt a Partial-
Ordering approach, Power (Chai et al., 2016), as described below.

Let pij be a pair of key arguments ⟨ai, aj⟩. The similarity between the two key arguments
in the pair is described by two similarity scores, s1ij and s2ij . By using multiple scores,
we seek to make the similarity computation robust. For each pij , we compute the two
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Measure Description

s1ij =
i·j

∥i∥∥j∥ Cosine similarity between embeddings i = MS(ai) and j = MS(aj)

s2ij =
1

d(T (ai),T (aj))
Inverse of the Euclidean distance d between manual topic assign-
ments T of ai and aj

Table 2: The similarity scores between key argument pairs used to create the pairwise
dependency graph.

similarity scores described in Table 2. We use cosine similarity for s1ij since the angular
distance describes the semantic textual similarity between two arguments. In contrast, we
use Euclidean distance for s2ij since the absolute values of the topic assignment are relevant.

Given the similarity scores, we construct a dependency graph G (as in the top-left part
of Figure 3), where each key argument pair is a vertex in G and the edges indicate a Pareto
dependency (≻) between two pairs—the direction of the edge points to the argument pair
with greater similarity. A Pareto dependency holds if one of the two scores is strictly greater,
with all others being at least equal between two arguments. We define the dependency as
follows:

pij ⪰ pi′j′ if ∀n snij ≥ sni′j′ (1)

pij ≻ pi′j′ if pij ⪰ pi′j′ and ∃n snij > sni′j′ (2)

Next, we follow Power to extract disjoint paths from G. The highlighted path in the
bottom-left part of Figure 3 is an example disjoint path. For every path, we perform a
pairwise annotation as in the right part of Figure 3. We select the vertex at the middle
of the unlabeled portion of the path and ask multiple (7) humans to indicate whether the
concepts described by the two arguments in the pair are similar on a binary scale, and
select the label with the majority vote. Given the annotation, we can automatically label
(1) all following pairs in the path as similar (yellow) in case the vertex is labeled as similar
or (2) all preceding pairs in the path as non-similar (red) in case the vertex is labeled as
non-similar. In essence, using the Pareto dependency, we search for threshold similarity
scores for each path, above which all pairs are considered similar, and below which all
pairs are non-similar. Because this is a local threshold, we prevent over-generalization.
To annotate the complete graph efficiently, we employ the parallel Multi-Path annotation
algorithm (Chai et al., 2016).

Clustering Given a similarity label for each key argument pair, our goal is to identify
groups of similar key arguments. However, the similarity among key arguments may not
be transitive—given ⟨a1, a2⟩ as similar and ⟨a2, a3⟩ as similar, ⟨a1, a3⟩ may be labeled as
dissimilar. This can happen because (1) the interpretation of similarity can be subjective
(for manually labeled pairs), and (2) the automatic approach is not always accurate (for
automatically labeled pairs). Thus, we employ a clustering algorithm for identifying a
consolidated list. First, we construct a similarity graph, where each key argument is a
vertex and there is an edge between two arguments if they are labeled as similar. Then,
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Figure 3: Pairwise annotation of the dependency graph, combining human and automatic
judgments. Vertices indicate argument pairs; the edge direction points to the
argument pair with greater similarity. The highlighted blue edges are a disjoint
path selected by the Power algorithm. Iteratively, vertices are annotated as
similar (yellow) or non-similar (red).

we employ out-of-the-box graph clustering algorithms for constructing argument clusters.
These clusters form the key argument lists.

3.4 Key Argument Selection

In the third step of HyEnA, we extract a single argument from each cluster, obtaining the
final list of key arguments for the opinion corpus. Formally, for every cluster k ∈ K, we
create an argument ak that is representative of that cluster. Argument selection methods
can be extractive (select an argument from the cluster) or abstractive (generate a new
argument that summarizes the cluster). Since there are many methods available for selecting
arguments, we can experiment with multiple, and pick the best-performing method. In
that case, we again pick an intermediate evaluation metric, which we use to select the
best selection method. While there is no human annotation involved in this step, we still
consider this higher-level algorithmic design a hybrid process, and thus a collaboration
between humans and AI. For the task of selecting relevant arguments, we compare the
following four types of approaches.

Centroids For every cluster k, we compute a sentence embedding of every argument ak
using MS . Then, we compute pairwise distances between all arguments inside the same
cluster. We select the argument with the lowest average distance, measured using cosine
similarity, to all other arguments.
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Argument Quality We use a model that measures argument quality to select the argu-
ment from each cluster with the highest quality. We use the same argument classifier as in
the Key Argument Annotation phase, trained on the ArgQ dataset (Gretz et al., 2020).

Prompting We prompt an LLM to synthesize a single argument out of the arguments
provided in the argument cluster (Brown et al., 2020). We experiment with an open-source
and a closed-source model.

Random As a baseline, we randomly select an argument from the cluster to represent the
entire argument cluster.

4. Experimental Setup

We involve 378 Prolific (www.prolific.co) crowd workers as annotators to evaluate HyEnA.
We required the workers to be fluent in English, have an approval rate above 95%, and have
completed at least 100 submissions. Our experiment was approved by an Ethics Committee
and we received informed consent from each subject. We provide supplemental material,
containing instructions provided to the annotators, experiment protocol, experiment data,
analysis code, and additional details on the experiment (van der Meer et al., 2024a).

Table 3 shows an overview of the tasks in the experiment. First, we ask annotators to
perform the HyEnA method to generate key argument lists for three corpora. Then, we
compare the quality of the obtained lists with lists generated for the same corpora via two
baselines. All tasks except topic generation were performed by the crowd workers, with
most of the task instances annotated by multiple annotators to investigate the agreement
between annotators.

4.1 Phase 1: Key Argument Annotation

In the first phase of HyEnA, each annotator extracts a key arguments list from an opinion
corpus. In each corpus, five annotators annotated 51 opinions each, for a total of 255 opin-
ions per corpus. Of the 51 opinions, the first is selected randomly, and the following 50 are
selected by FFT. This number of opinions was empirically selected to make the annotation
feasible within a maximum of one hour. We instantiate the S-BERT model MS using the
Huggingface Model Hub1. Since our opinion corpus stems from the PVE procedure, we
have explicit labels denoting whether a comment was left in favor (pro) or opposing (con) a
proposed policy, which we leverage for the argument stance label suggestion. For obtaining
argument quality scores, we use the IBM API (Bar-Haim et al., 2021) to avoid having to
retrain a new model.

Topics We train a BERTopic model on each opinion corpus, generating 59, 56, and 72
topics for the young, immune, and reopen corpora, respectively. Since the number of
resulting topics is too high for the manual assignment of arguments to topics, we curate
a short list of topics per corpus. We select the 15 most frequent topics in a corpus and
ask two experts, the first two authors, to remove duplicates (i.e., topics covering the same
semantic aspect) and rate the clarity (i.e., how well the topic describes a relevant aspect
of the discussion in the corpus) of each topic. Unique topics with an average clarity score

1. https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
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Task Option Num.
Items

Num.
Annotators

Num.
Annotators
per item

Key argument annotation
young 255 (O) 5

1immune 255 (O) 5
reopen 255 (O) 5

Topic generation all 45 (T) 2† 2

Topic assignment
young 91 (A) 10

5immune 66 (A) 5
reopen 69 (A) 5

Key argument consolidation
young 1538 (A+A) 99

3immune 824 (A+A) 57
reopen 940 (A+A) 87

Key argument evaluation
young 248 (O+A) 42

7immune 193 (O+A) 29
reopen 221 (O+A) 29

Table 3: Overview of the tasks in the experiment. Items to be annotated can be opinions
(O), arguments (A), topics (T), or combinations. † denotes expert annotators
(authors of this paper).

above 2.5 compose the shortlist of topics. Then, we ask crowd annotators to assign topics
to each key argument generated in the first phase of HyEnA.

4.2 Phase 2: Key Argument Consolidation

In the second phase of HyEnA, we obtain similarity labels y(ai, aj) (1 if similar, 0 if not)
for all key argument pairs ⟨ai, aj⟩—some pairs are labeled by the annotators and others
are automatically labeled. Given the similarity labels, we construct an argument similarity
graph and cluster the graph to identify a consolidated list of key arguments.

Clustering We experiment with two well-known graph clustering algorithms: (1) Louvain
clustering (Blondel et al., 2008) uses network modularity to identify groups of vertices based
on a resolution parameter r. (2) Self-tuning spectral clustering (Zelnik-Manor & Perona,
2004) uses dimensionality reduction in combination with k-means to obtain clusters, where k
is the desired number of clusters. We select the parameters of these algorithms to minimize
the error metric E shown in Eq. 3.The metric penalizes clusters having dissimilar argument
pairs. That is, for a cluster k ∈ K and ∀ai, aj ∈ k, if y(ai, aj) = 1, the error for that cluster
is 0. If a cluster contains only a single element, we manually set the error for that cluster
to 1, to discourage creating single-member clusters. We base E on the homogeneity metric
(Rosenberg & Hirschberg, 2007), although we do not have access to the ground truth cluster
assignments for each argument. Instead, we assume that if all manually labeled arguments
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Method Model Type Open Size

Random – extractive – –
Centroid S-BERT extractive yes 22M
Prompting ChatGPT abstractive no 175B

Llama abstractive yes 7B
Quality ArgQ extractive no 125M

Table 4: Argument selection algorithms.

are considered similar, they would have been assigned to a single cluster, resulting in a
homogenous cluster.

E =
1

|K|

∑
k∈K

∑
ai,aj∈k

1y(ai,aj)=0(|k|
2

) (3)

4.3 Phase 3: Key Argument Selection

In the third phase, we use a mechanism for selecting single arguments per argument cluster.
We experiment with multiple methods and different models for selecting arguments. An
overview of the methods used is given in Table 4. Below, we explain the setup for each
method, and how we select the best-performing method to be used in the final output for
HyEnA.

Prompts We construct different prompts for the two models to extract the desired ar-
gument selection output. ChatGPT is an instruction-tuned model and can be prompted
to answer questions or follow instructions (Ouyang et al., 2022). Llama lacks instruction-
tuning, and thus requires prompts designed for next-token generation (Touvron et al., 2023).

Prompt 1: ChatGPT

Consider the context of the COVID-19 pandemic and the following arguments:
- Argument 1
...
- Argument k

Write a key argument that summarizes the above arguments, and make it short and
concise.
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Prompt 2: Llama

Consider the context of the COVID-19 pandemic and the following arguments:
- Argument 1
...
- Argument k

A short and concise key argument that summarizes the above arguments is:

Testing Cluster Coherence First, we investigate the coherence of the clusters generated
in Phase 2 according to each argument selection method, with the intent of measuring how
each (automated) method aligns with the results of the first two phases of the (hybrid)
HyEnA process. In cases of low coherence, semantically different arguments may end up
together. Vice versa, in highly coherent clusters, only arguments that are the same are
actually put together. While the error metric E (Equation 3) gives an error rate, it is
mostly a comparative method, designed to select the best clustering method. Whether or
not the clusters make sense to a human interpreter remains unclear. As such, we devise a
so-called odd-one-out task, in which we use the Argument Selection methods for selecting
arguments from a triple of arguments. In this triple, two arguments stem from the same
cluster, and the third from a different cluster. The task for each argument selection method
is to select which is the deviating argument. Here, we expect an adequate method to succeed
well beyond random performance. Because Argument Quality is not intended for pairwise
comparisons of arguments, we omit it in the odd-one-out task. We evaluate the remaining
methods on a sample of 1K triples uniformly chosen from all possible triple combinations.

Evaluating Argument Selection We use different methods and different models for
experimenting with the argument selection phase. As before, we employ an error metric
to select the best-performing method, which we then inspect through a human evaluation.
We use BERT score (Zhang et al., 2020), a metric designed for model selection that uses
a trained BERT model to compare the semantic similarity between the selected argument
and the original opinions. Specifically, BERT score recall correlates well with human consis-
tency judgments, the factual alignment between selected argument and references (original
opinions) (Fabbri et al., 2021). We pick the best-performing method for argument selection
based on this metric. This way, we penalize any possible effect of hallucinations of LLMs on
the HyEnA method. We take the argument selected by each approach in the Key Argument
Selection phase of the HyEnA procedure. As references, we take all comments that were
involved in the creation of the cluster. We compute BERTScore and compare it across our
approaches.

4.4 Baselines

We compare the output of HyEnA to the results of an automated and a manual approach
to key argument extraction.
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4.4.1 Comparison to Automated Baseline

We use the ArgKP argument matching model (Bar-Haim et al., 2020) to automatically
extract key points from the corpus. ArgKP selects candidate key points from opinions using
a manually-tuned heuristic, which filters opinions on their length, form, and predicted
argument quality (Gretz et al., 2020). The original approach suggests relaxing heuristic
parameters such that 20% of the opinions are selected as candidates. However, this caused
overly specific arguments as candidates. Instead, we departed from the parameters used for
the ArgKP dataset (Bar-Haim et al., 2020), and only relax them slightly such that ∼10%
of opinions are selected as key point arguments.

Candidate key points and opinions are assigned a match score using a model trained for
matching arguments based on RoBERTa (Liu et al., 2019). Opinions only match the highest-
scoring candidate key points if their match score exceeds a threshold θ, corresponding to
the best match and threshold (BM+TH) approach. After deduplication, this results in a
single list of key arguments per option. We use three metrics, coverage (C), precision (P ),
and diversity (D) to compare HyEnA and ArgKP.

Coverage (C) is defined as the fraction of opinions mapped to an argument out of all
the processed opinions (Bar-Haim et al., 2020). To compute C, first, we extract the set of
key arguments AH from HyEnA based on opinions Oobs

H (⊂ O) observed by the annotators.
Further, if an argument is extracted from an observed opinion oi ∈ Oobs

H , we add oi to
the set of annotated opinions Oann

H . Similarly, we extract the set of key arguments AA

from ArgKP based on its observed set of opinions Oobs
A (≡ O), producing a set of annotated

opinions Oann
A . Then, the coverage with respect to all observed opinions is:

CH =
|Oann

H |
|Oobs

H |
(4)

CA =
|Oann

A |
|Oobs

A |
(5)

Comparing the coverage scores as defined above naively may not be fair since the set of
observed opinions (i.e., the denominators of Equations 4 and 5) are not the same for HyEnA
and ArgKP. Thus, we also compute coverage with respect to a set of common opinions,
Oobs

H ∩Oobs
A , observed by both methods, as:

Ccommon
H =

|Oann
H ∩Oobs

A |
|Oobs

H ∩Oobs
A |

(6)

Ccommon
A =

|Oann
A ∩Oobs

H |
|Oobs

H ∩Oobs
A |

(7)

We add the same term to both denominator and numerator in Equations 6 and 7 so that the
coverage stays in the range [0, 1]. Note that Ccommon

H = CH since Oobs
H , Oann

H ⊂ Oobs
A (≡ O).

Precision (P ) is the fraction of mapped opinions for which the mapping is correct (Bar-
Haim et al., 2020). Thus, we must map a set of opinions to arguments in order to compute
precision. For this mapping, we select the common opinions, Oann

H ∩Oann
A , that are annotated

in both HyEnA and ArgKP. Then for each oi ∈ Oann
H ∩Oann

A , we create two pairs ⟨oi,AH(oi)⟩
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and ⟨oi,AA(oi)⟩, where AH(oi) and AA(oi) are the arguments associated with oi by HyEnA
and ArgKP, respectively. Then, we ask annotators to label z(oi, ai) = 1 for all matching
pairs and z(oi, ai) = 0 for all non-matching pairs, and keep the majority consensus from
multiple annotators. Given the opinion-argument mapping, we compute precision as:

P common
H =

∑
oi∈Oann

H ∩Oann
A

z(oi,AH(oi))

|Oann
H ∩Oann

A |
(8)

P common
A =

∑
oi∈Oann

H ∩Oann
A

z(oi,AA(oi))

|Oann
H ∩Oann

A |
(9)

Diversity (D) is defined as the ratio of key arguments and the number of comments
seen by the method. We use diversity to signify how well our method is able to preserve
the perspectives present in the opinions seen by the method. In order to compare across
methods, we take (1) only correct mappings (z(oi, ai) = 1) using the labels from P and (2)
take the opinions seen by both A and H. We define diversity as follows:

DH =
AH

|Oobs
H ∩Oobs

A |
(10)

DA =
AA

|Oobs
H ∩Oobs

A |
(11)

4.4.2 Comparison to Manual Baseline

A manual analysis involving six experts examined a portion of the feedback stemming from
the PVE procedure. This analysis included a sample of participants (2,237 out of 26,293)
for identifying key arguments (Mouter et al., 2021), where each expert generated a list of
arguments for and against each of the relaxation measures based on the opinion text. A
single participant could leave multiple opinions, and the analysis does not report the exact
number of opinions analyzed. Since we have access to 36,781 opinions for the three options
(Table 1), we estimate the number of opinions the six experts would have analyzed to be
3,129 across the three options (following each participant entering ±1.4 opinions), and at
least 2,237 (at least one opinion per participant). In contrast, HyEnA annotators analyze
765 intelligently selected opinions across the three options.

It is evident that HyEnA reduces the number of opinions analyzed. Further, we in-
vestigate the extent to which the key argument lists generated by HyEnA and the manual
baseline have comparable insights. To do so, we report the number of HyEnA key arguments
that are overlapping, missing, and new compared to the expert-identified key arguments.
We cannot compute precision and coverage for the manual baseline because it does not
include a mapping between key arguments and opinions.

5. Results

First, we analyze the inter-rater reliability of annotations. Then, we analyze the interme-
diate results of the three phases of HyEnA. Finally, we compare our hybrid approach with
the automated and manual baselines.
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Task ICC3k PABAK

Topic Generation 0.66 (0.14) –
Topic Assignment – 0.81 (0.10)
Key Argument Consolidation – 0.34 (0.03)
Key Argument Evaluation – 0.36 (0.04)

Table 5: IRR scores per task in HyEnA. We show the average (and standard deviation)
over the three option corpora.

5.1 Annotator Agreement

Table 5 shows the inter-rater reliability (IRR) for four steps with overlapping human anno-
tations. We didn’t obtain IRR ratings for the argument extraction task in Phase 1 since the
annotation is designed to be disjoint, and raters had little to no overlap in their extractions.
In the Topic Generation phase (Section 4.1), we use the intraclass correlation coefficient
ICC(3, k) (Shrout & Fleiss, 1979) since it involves ordinal ratings. In the other three tasks,
multiple binary labels are obtained for the same subjects. In these tasks, we use prevalence-
and bias-adjusted κ (PABAK) (Sim & Wright, 2005), which adjusts Fleiss’ κ for prevalence
and bias resulting from small or skewed distribution of ratings.

In Topic Generation, the main source of the disagreement stems from a single option:
reopen. Here, the annotators rated two topics almost inverted (rating 4 versus rating 2)
out of a 1–5 Likert scale, resulting in an ICC score of 0.46. The two topics contained the
words “mental health income decrease,” and “measures rules these should”. For the other
two options, young and immune, a higher score of 0.71 and 0.80 were obtained respectively.

We obtained the lowest reliability scores for the last two annotation tasks, Key Argument
Consolidation and Key Argument Evaluation. The obtained scores may be due to the
difficulty of the task—for instance, lay annotators are asked to characterize the similarity
between two arguments, and they may not stick to the provided definition of argument
similarity. However, task difficulty may not be the only factor at play here. Argument
comparisons are made with limited context, and the personal perspective or background
of the annotator may influence their judgment. Thus, the low IRR scores may indicate
a combination of task difficulty and the relatively subjective nature of the task (Aroyo &
Welty, 2015). Similar reasoning holds for the task of evaluating the match between the
extracted argument and the original opinions.

Focusing on the evaluation phase, we compare argument–opinion pairs where large dis-
agreement was observed (disagree) to pairs with low disagreement (agree) in Figure 4.
Specifically, we compared the lengths of the arguments and opinions. We find that the
lengths of the arguments–opinion pairs with large inter-rater disagreement did not differ
from those with low disagreement. However, we found considerably longer opinions on aver-
age when annotators disagreed. Possibly, long opinions contain multiple arguments, which
in turn may cause the annotator to fail to identify the provided argument.

Prolific annotators were generally young (M=29.2, SD=7.8) and typically active users
with a median of over 300 tasks completed (M=404, SD=418). A little over half of our
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Figure 4: Disagreement analysis for the Key Argument Evaluation phase. On the left,
argument lengths are the same whether annotators agree or disagree. However,
on the right, annotators disagree on match labels in long opinions.

annotators were male (58.8%), another 38.6% reported as female, and the rest had no data
available. 76.7% reported a language other than English as their native language (we did
require all annotators to be fluent in English). Annotators mostly resided in European
countries, with the UK, Mexico, and the US being the only non-EU countries with more
than 10 annotators. 23.8% reported as being a full-time student, with the rest either
reporting as not being a student or having no data available. Further work is required in
order to investigate the impact of demographic factors on the subjective interpretation of
the opinions and arguments involved (Shortall et al., 2022).

5.2 Phase 1: Key Argument Annotation

In Phase 1, individual annotators were guided through 51 opinions each and asked to anno-
tate the observed arguments. Table 6 shows the number of different operations annotators
perform over the 51 opinions. On average, the annotators identified 15 unique key argu-
ments per option. About half of the opinions were skipped, mainly because the opinion
lacked a clear argument. Since the opinions had been automatically translated, we also
provided annotators with the option to skip an opinion due to an unclear translation. Out
of 51 actions, annotators reported mistranslations in 6, 7, and 2 opinions on average for
young, immune, and reopen, respectively.

This is a positive result since the noise (i.e., irrelevant or non-argumentative opinions) in
public feedback can be much higher. Thus, the argument quality classifier we incorporate
for opinion sampling is effective in filtering noise. Further, the annotators marked only
about 15% of the encountered opinions as already annotated key arguments, which shows
that the FFT approach is effective in sampling a diverse set of opinions for annotation.

Our instructions did not include an explicit mention of whether copying from the opin-
ion text was allowed, but we observed that annotators often paraphrased arguments from
opinions. To examine the behavior of the annotators, we measured the amount of text that
was literally copied from the opinions. To do so, we take the largest common substring
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Phase 1 Phase 2

Option # Args # Skip # Already ∆ τ

young 18.0 (5.5) 23.4 (5.4) 11.4 (9.0) -61.6% 0.34
immune 12.8 (2.6) 31.4 (4.5) 8.6 (4.4) -59.1% 0.42
reopen 13.8 (7.6) 29.2 (11.5) 10.2 (7.6) -59.8% 0.41

Table 6: The average annotation operations (and their standard deviation) in Phase 1, and
obtained statistics for Phase 2.

0 0.2 0.4 0.6 0.8 1

reopen (N=69)

immune (N=66)

young (N=90)

Overlap ratio

Figure 5: Distribution of argument overlap ratio for arguments generated by Key Argument
Annotation in Phase 1.

on the character level between opinion text and argument and divide it by the length of
the argument. In Figure 5, we show the distribution of overlap ratios across all extracted
arguments. While some arguments do get copied verbatim (overlap ratio of 1), across all
three corpora annotators generally rephrase the arguments. This shows that, in HyEnA,
human intervention acts in shaping the arguments extracted from the opinions, rather than
simply copying part of an opinion (as automated methods would do). Table 7 shows some
examples of arguments extracted with different overlap ratios.

The topic models for each option generated a large variety of topics. After the generation
of the topic models T , we retain only the top-15 most frequent topics to make the annotation
feasible. Our experts eliminated one, two, and zero topics as duplicates in the three options
(Table 8). On average, the coherence scores—ranging from 1 (low) to 5 (high)—are high.
This suggests that these topics were suitable for assignment to the arguments stemming
from the crowd-extracted arguments. Table 9 shows examples from the final list of topics,
with low-scoring topics removed.

5.3 Phase 2: Key Argument Consolidation

In Phase 2, HyEnA uses the Power algorithm to guide human annotations on arguments
similarity, with the intent of creating clusters of similar arguments across all arguments
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Option Opinion Text Extracted Argument
Overlap
Ratio

young Our daughter misses her friends so
much and I notice that she really
needs it

Positive for the psychological
health of children

0.060

immune Keep one system, keep it simple.
Not too many deviations.

Everyone should be sub-
ject to the same set of
rules/restrictions.

0.091

immune Too little research has been done to
limit the measures for people who
are immune and too few opportu-
nities to test it. In addition, it is
difficult to control.

It is difficult to control.
1.000

reopen These measures are quite easy to
take compared to the unselected
measures.

Measures are easy to take
compared to the unselected
measures

0.820

Table 7: Examples of extracted arguments in Phase 1 of HyEnA. Overlapping character
sequences are highlighted in green.

Option |T |
Number of
duplicates Kept

Average
rating

young 59 1 12 4.4
immune 56 2 12 4.4
reopen 72 0 14 4.0

Table 8: Expert topic generation statistics in Phase 1.

individually annotated in Phase 1. Table 6 (right side) shows the benefit of the Power
algorithm—the number of pairs requiring human annotation (∆) was on average reduced
by 60%. The transitivity scores τ (Newman et al., 2002) measure the extent to which
transitivity holds among the similarity labels of argument pairs. The low τ scores indicate
the need for subsequent clustering, given that there are no clear graph components in which
all arguments are similar.

Figure 6 compares Louvain and spectral clustering for extracting argument clusters.
Generally, both methods show a clear minimum for obtaining the final argument clusters.
Louvain clustering yields the smallest error for the young and immune corpora, and spec-
tral clustering for reopen corpus. These methods create 20, 14, and 18 clusters respectively.
We pick these clusters as input to the argument selection phase.

Not all arguments inside the same cluster are constrained to have the same stance (pro
or con) towards the policy option. We count what proportion of arguments in the cluster
do not adhere to the majority stance. The distribution of stances scores is visualized in
Figure 7. While we see that the upper limit is that half the arguments in each cluster are
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Option Clarity Rating Topic words

young 4.5 immune entertainment hospitality restrictions
4 infection immunity risk infected
4 virus susceptible spread transmit
4.5 schools reopen education students
5 risk limited low dangerous
5 group risk target least

immune 4.5 homes nursing care vulnerable
4 netherlands country provinces dutch
5 risk contamination danger dangerous
4.5 work companies home economy
5 entertainment hospitality catering industry

reopen 5 homes nursing care vulnerable
4 netherlands friesland groningen dutch
5 risk hospitality entertainment dangerous
3 mental health income decrease
3 measures rules these should

Table 9: Examples of topics generated in Phase 1, including the top 4 words and the average
clarity rating. Option-specific topics are emphasized.

not agreeing with the majority label, the average ratio denotes that only a small fraction of
argument stances do not agree with the majority stance label. This shows that the clusters
generally represent a coherent distribution of arguments with similar stances to each policy
option. The ratio on average is lowest for immune, which is the option with the highest
ratio of con opinions.

5.4 Phase 3: Key Argument Selection

In Phase 3, we compare five Argument Selection methods for extracting a representative
argument for each of the clusters obtained in Phase 2. We first perform an odd-one-out
task to evaluate the coherence of the clusters according to each tested Argument Selec-
tion method (see Section 4.3 for additional details). Then, we evaluate the quality of the
arguments that are selected to represent clusters.

Odd-one-out task Figure 8 shows the results of the odd-one-out evaluation. We per-
form pairwise statistical analysis by employing McNemar’s test (Dietterich, 1998) with
Holm-Bonferroni correction on multiple tests (Aickin & Gensler, 1996). The test results
indicate whether methods significantly differ in their misclassifications. We observe that
only Llama–random does not have a significant difference in error proportions and can
thus be assumed to perform similarly to each other. Conversely, two out of three methods
outperform the random baseline. This indicates that these methods identify cluster mem-
bership relatively consistently with the results of HyEnA, although with considerable error
rates. For Llama, we encountered a strong position bias with respect to the ordering of the
triple: independently of which was the odd-one-out argument, the model primarily picks
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Figure 6: Error rate E for different parameters per clustering method (resolution parameter
r for Louvain, k clusters for spectral) for each corpus in Phase 2.

arguments at a specific index. This causes its performance to be similar to random picking.
We attribute this to the lack of instruction tuning for the Llama model.

Evaluating Argument Selection To select the best-performing Argument Selection
method, we compare BERTScores in Figure 9. We use the Kruskal-Wallis test (a non-
parametric alternative to ANOVA since the scores are not normally distributed) to test
whether all medians are equal at a 5% significance level (Kruskal & Wallis, 1952). Since we
obtain a score well below our threshold, we conduct a post-hoc follow-up to identify pairs
of significantly different Key Argument Selection methods. We employ Dunn’s multiple
comparisons of mean rank sums (Dunn, 1964) with Holm-Bonferroni correction on multiple
tests (Aickin & Gensler, 1996).

All extractive methods have a higher standard deviation than the generative methods.
Some selected representative arguments likely caused the high maxima for extractive meth-
ods, since they are copied verbatim from opinions in the corpus. Conversely, the low minima
are due to the extractive methods’ inability to find representatives from the cluster (since
there may be noisy clusters, see Figure 8). For the abstractive methods, the lower bound
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Figure 7: Stance distribution for clusters extracted for each corpus in Phase 2. A ratio of
0.5 denotes an equal number of pro and con arguments inside a cluster.
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Figure 8: Accuracy on the odd-one-out task per method. Key Argument Selection methods
marked with = do not significantly differ (p < 0.05) in their error proportions.

is higher, showing how rephrasing the selected argument makes it more related to all argu-
ments inside a cluster. Between the abstractive methods, ChatGPT has a higher standard
deviation than Llama. Since we did not perform extensive prompt engineering, there is
room for improvement in both methods with better-crafted prompts.

The only significantly different method is Llama, with all others achieving similar
BERTScore performance. Surprisingly, none of the approaches on average performs consid-
erably better than random. This suggests that selecting a representative argument from the
cluster is relatively simple in practice because the argument clusters are sufficiently coher-
ent. However, in the final evaluation, humans will be judging the match between selected
arguments and individual opinions. Here, we strive for a better worst-case performance—
we care less about having perfect matches, but rather wish to have fewer misrepresentation
errors. Thus, given the comparable averages, we opt for the method with the highest lower
boundary (the abstractive methods) and higher median score (ChatGPT outperforms Llama
significantly), which we use for the remainder of the experiments.
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Figure 9: Aggregated BERTScore for the different Key Argument Selection methods across
all corpora and argument clusters (Phase 3). Method pairs indicated by ** differ
significantly from each other in median performance (p < 0.05).

Method young immune reopen Overall

HyEnA 0.816 0.833 0.641 0.765
HyEnA w/o Phase 3 0.787 0.848 0.739 0.789

Table 10: Comparing Precision (P ) scores with and without Phase 3 (Key Argument Se-
lection phase).

Finally, we compare the output of Phase 3 of HyEnA against a version where the selec-
tion was manual. In particular, we take the extractions from Phase 1 and re-evaluate them
using a new set of annotators. In Table 10, we show the difference in Precision (Equation 8).

We find that the addition of Argument Selection on average has a slight negative impact
on the ability of annotators to match opinions and arguments. Most interestingly, when
comparing argument matches for the same set of opinions before and after the addition of
Argument Selection, we find that there is only fair agreement between the re-matched labels
(Cohen κ = 0.255). This indicates that the argument selection phase makes annotating the
match for some opinions to selected key arguments easier while making others more difficult.
Selecting arguments using ChatGPT generates key arguments that are representative of the
entire cluster, which can be more general than the arguments extracted by annotators from
individual opinions. On the one hand, this can cause external annotators to not recognize
the specific argument from a given opinion. On the other hand, it may result in annotators
matching opinions and arguments on a more abstract level.
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Manual baseline

young immune reopen

yes no yes no yes no

HyEnA
yes 8 7 7 2 10 1
no 1 – 0 – 4 –

Table 11: A confusion matrix comparing the key argument lists generated by HyEnA and
manual baseline.

5.5 Comparison with Automated Baseline

Figure 10 compares the coverage, precision, and diversity scores of HyEnA and ArgKP. The
low coverage (for both methods) indicates that a large number of opinions do not map to a
key argument. This is not surprising since real-world opinions are noisy.

Considering all observed opinions (CH and CA), HyEnA yields slightly higher coverage
than ArgKP in the young and reopen corpora. In contrast, ArgKP yields higher coverage
than HyEnA in the immune corpus. We attribute this to the repeated arguments in the
immune corpus. As 83% of opinions are con-opinions, the immune policy option (Table 1)
was highly opposed and its corpus contains many repeated arguments. Since the set of
all observed opinions is the entire corpus for ArgKP, the repeated arguments inflate its
coverage. However, since HyEnA is designed to observe only a small subset of diverse
opinions from the corpus, the repeated arguments do not influence its coverage significantly.
This is corroborated in the diversity scores, where we observe HyEnA to consistently output
a set of arguments that is more diverse than the ones produced by ArgKP.

In addition to comparing coverage over observed opinions, we compare the coverage of
HyEnA and ArgKP with respect to a common set of diverse opinions. In this comparison
(Ccommon

H and Ccommon
A ), HyEnA yields consistently higher coverage (0.34 on average) than

ArgKP (0.16 on average) in all three corpora. ArgKP often fails to recognize the key
arguments in the diverse set of opinions included by HyEnA.

ArgKP yields a larger number of key arguments (around 30 for each option) than
HyEnA. However, these arguments lead to an average precision of 0.56. In contrast, HyEnA
extracts fewer argument clusters (on average 17 per option), but with higher precision (0.80).

5.6 Comparison with Manual Baseline

Table 11 shows counts of overlapping (yes, yes), missing (no, yes), and new (yes, no) key
arguments between HyEnA and the manual baseline. HyEnA required an analysis of 765
opinions, compared to the estimated 3,000 opinions seen in the manual baseline. Despite
the lower human effort, the HyEnA lists largely overlap with the expert lists.

HyEnA missed some key arguments that the experts identified, e.g., a key argument
about building herd immunity was not in the HyEnA list for the reopen option. We
conjecture that increasing the number of opinions annotated in HyEnA would subsequently
yield the missing insights. HyEnA also led to new insights that experts missed, e.g., an
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Figure 10: Comparing HyEnA and ArgKP.

argument about the physical well-being of young people was not on the expert list for the
young option. Likely, the larger (random) sample of opinions experts analyzed did not
include opinions supporting this argument, whereas the smaller (intelligently selected) set
sampled in HyEnA did.

6. Discussion

We find that HyEnA exploits the strengths of automated methods and the insights from
human annotation. HyEnA outperformed an automated KPA model in terms of precision
and diversity, and on a diverse set of opinions, can capture more nuanced arguments. Fur-
ther, HyEnA expanded beyond an expert analysis, showing how a fully manual procedure
may also be limited. In the remainder of this section, we expand on three specific aspects.

Limitations Our experimental setup and comparisons are limited in their scope in mul-
tiple ways, thus making our conclusions hard to generalize. Our choice of baseline is the
ArgKP model, which was optimized for the task of extracting Key Arguments from a cor-
pus of opinions. However, other automated baselines are conceivable, especially with the
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introduction of the current generation of flexible LLMs (e.g., ChatGPT, Llama). Those
models may be employed for KPA by using prompting techniques (Liu et al., 2023). The
capabilities of these models seem to imply that they have access to higher order argu-
mentation knowledge (Lauscher et al., 2022), and thus would fare better than the basic
ArgKP model. However, having such LLMs reliably process large amounts of citizen feed-
back without hallucinations is a nontrivial task, and the danger of models synthesizing
ungrounded arguments exists (Ji et al., 2023). In this process, due diligence to preserve
a variety of perspectives is required (e.g., by optimizing for a range of opinions instead of
single-annotator labels, Bakker et al., 2022; van der Meer et al., 2024b) in order to prevent
rampant misrepresentation of marginalized demographics.

Instead of relying solely on the judgment of an LLM for the task of KPA, we opted to
include one in the final step of HyEnA. While some of the criticism for using an LLM for end-
to-end KPA still holds for the Argument Selection step as well, our method investigated a
more controlled setup, supported by an objective task definition. Through our comparisons
with random and human-generated labels, we aim to show where, how, and to what extent
LLMs may aid in the KPA process. As ever, the choice of metrics remains important for
measuring the effect size.

Balancing Task Allocation The pairwise comparison in the consolidation phase is the
most human-intensive task in HyEnA, and the effort increases with the number of analyzed
opinions. Also, comparing arguments is cognitively demanding, partly evidenced by the
low IRR. While HyEnA reduced the number of comparisons required in the consolidation
phase by 60%, we may experiment with different setups or other techniques for comparing
arguments to remove this overhead. For example, first clustering the key arguments and
then consolidating the arguments within these clusters (reverse order as HyEnA) may dras-
tically reduce the number of judgments required in the second phase. Furthermore, future
versions of HyEnA could benefit from investigating why annotators disagreed on labels in
each phase, as it can lead to possible improvements in the annotation task.

We place human efforts in places where there are multiple bidirectional benefits possible
stemming from performing the task. For instance, the Argument Annotation task both
serves the purpose of analyzing the opinions to progress our method, as well as actively
making annotators perform perspective-taking. On multiple occasions, annotators noted
their increase in sympathy and recognition of the issues raised in the comments, showcasing
how the task could further help bring understanding to a group of citizens.

Ablations studies All parts of the HyEnA pipeline are open to adjustment and can be
performed by humans, machines, or a combination. In this work, we presented a specific
version of this pipeline, but other ways of combining humans and AI are possible. However,
the impact of choosing specific components remains unclear for parts of the pipeline, since
we experimented with a single algorithm in some cases (e.g., the use of Power in Key
Argument Consolidation, or the LLMs in Key Argument Selection).

HyEnA presents a general framework that allows individual phases to be supported by
different types of technologies and different groups of crowd/expert annotators. Within this
hybrid framework, we considered the following criteria when deciding to allocate tasks to
humans or AI methods: (1) let humans read other’s opinions to promote perspective-taking,
(2) use humans to solve tasks where AI methods may incur considerable error, (3) leverage
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AI methods for routine tasks, and (4) use task-specific intrinsic evaluation metrics for
selecting the right method.

In each phase, we perform both intrinsic evaluation (e.g., observe error rates for partic-
ular tasks or annotator behavior) and extrinsic evaluation against two baselines. This fits a
standardized machine learning pipeline, except that we are now able to (1) evaluate anno-
tator behavior and model performance jointly, and (2) make decisions on which techniques
to use based on some intermediate statistic. We believe this setup to be generalizable for
Hybrid Intelligence systems, as it makes the role of the designer and their decisions explicit
(Akata et al., 2020). Furthermore, the results remain interpretable, as any decision made
by either annotators or models can be traced from opinion to selected key argument.

Different configurations of the HyEnA framework are possible, and the one we have
presented is an instance that tackles the problem of policy feedback analysis. HyEnA is
a complex combination of AI methods and human annotation. Our main objective was
to present the HyEnA framework, as well as a real-world use case to show the benefit of
using a Hybrid Intelligent methodology. However, other choices for individual components
of HyEnA can be used, or parts of the method can be performed solely by humans or
AI methods. We leave this open for future work, as swapping out components is not
straightforward and requires considerable amounts of work. We envision research to come
up with similar use cases where HI can make a significant impact.

7. Conclusion and Future Directions

We develop and evaluate HyEnA, a hybrid method that combines human judgments with
automated methods to generate a diverse set of key arguments. HyEnA extracts key ar-
guments from noisy opinions and achieves consistent coverage, whereas the coverage of a
state-of-the-art automated method drops by 50% when switching from all (containing re-
peated) opinions to diverse opinions. Moreover, the key arguments extracted by HyEnA
are more precise than those extracted by the automated baseline. Additionally, HyEnA
provides important insights that were not included in an expert-driven analysis of the same
corpus, despite requiring fewer opinions to be analyzed.

Finding arguments in a discourse is only one aspect that constitutes the perspectives
in a discussion. Future work can incorporate analysis of other perspective factors, such as
values (Liscio et al., 2022; van der Meer et al., 2023), sentiment, emotion, and attribution
(van Son et al., 2016). By combining these rich aspects with arguments, we can merge the
logical basis of the discussion with other semantic and syntactic information, allowing close
scrutiny of the perspectives in opinions.
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