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Chapter 5

Bloch oscillations in the
magnetoconductance of
twisted bilayer graphene

5.1 Introduction

It is one of the early counterintuitive predictions of solid state physics that
an electric field in a crystal induces an oscillatory electron motion [52,
53] 1: While the momentum ~k increases linearly with time, according to
~k(t) = eEt in an electric field E , the corresponding velocity v(t) ∝ sin k(t)
in a Bloch band (unit lattice constant) has a periodic time dependence,
with frequency ωB = eE/~. The amplitude A ≈ ∆/eE of the Bloch
oscillations is set by the energy band width ∆.

Electronic Bloch oscillations have been studied in the time domain at
THz frequencies in semiconductor superlattices [54–57, 164, 165] and in
graphene bilayers [58]. With few exceptions [166], and unlike the familiar
Aharonov-Bohm oscillations [167], Bloch oscillations do not typically play
a role in quantum transport, which is probed in the energy domain at low
frequencies. Here we show that Bloch oscillations may appear in the mag-
netoconductance of a two-dimensional (2D) system, a twisted graphene
bilayer, by virtue of a mapping to a quantum walk in one space and one
time dimension.

1Historical note: The oscillatory motion follows from equation 48 in Bloch’s 1929
paper [52], but this was not noticed until Zener pointed it out in 1934 [53]. See https:
//hsm.stackexchange.com/q/14442/1697

https://hsm.stackexchange.com/q/14442/1697
https://hsm.stackexchange.com/q/14442/1697
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Figure 5.1. Moiré lattice in a twisted graphene bilayer. Triangular domains
of AB and BA stacking are indicated by different colors. Domain walls conduct
a current I = V G between narrow source and drain contacts (width W , a dis-
tance L apart). This is a four-terminal geometry, including two additional wide
grounded contacts at the left and right.

The magnetic field B perpendicular to the bilayer maps onto a parallel
electric field E ↔ Bv/2, with v the Fermi velocity. As a consequence,
the conductance measured between two point contacts at a distance L
oscillates periodically in B. These Bloch magnetoconductance oscillations
appear at much weaker fields, smaller by a factor L over lattice constant,
than the known Aharonov-Bohm oscillations in twisted bilayer graphene
[50, 51, 168, 169].

5.2 Network model

We start from the established network model of minimally twisted bilayer
graphene [41–43, 48, 49, 81, 82]: Two layers of graphene are misaligned by
a rotation angle θ ≈ 0.1◦, forming a moiré pattern of triangular domains
with different stacking (AB versus BA) of the carbon atoms on the A and
B sublattices of the two layers. (See Fig. 5.1.) An interlayer bias voltage
gaps out the interior of the AB and BA domains, leaving a conducting
network formed by AB/BA domain walls that meet at angles of 60◦ on
a metallic node. The lattice constant a = a0[2 sin(θ/2)]−1 of the moiré
pattern is of the order of 100 nm, two orders of magnitude larger than the
atomic lattice constant a0 of graphene.

The direction of motion along a domain wall is tied to the valley de-
gree of freedom. (The spin degree of freedom is decoupled from the motion
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and plays no role in what follows.) In a single valley each domain wall
supports two modes, both of the same chirality (propagating in the same
direction with velocity v). Neglecting intervalley scattering (justified for
a � a0 with smooth disorder, and experimentally verified [48]) the scat-
tering process at a node thus involves 6 incoming and 6 outgoing mode
amplitudes, related by a scattering matrix S of the form [41, 168]:

S · {a1, a2, a3, a
′
1, a
′
2, a
′
3}> = {b1, b2, b3, b′1, b′2, b′3}>,

a1, a
′
1

a3, a
′
3

a2, a
′
2

b1, b
′
1

b3, b
′
3

b2, b
′
2

, S =
(
S1 S2
S†2 −S†1

)
, (5.1a)

S1 = eiα
√
Pd1

(0 1 1
1 0 1
1 1 0

)
+ eiβ11

√
Pf1, (5.1b)

S2 =
√
Pd2

( 0 1 −1
−1 0 1
1 −1 0

)
− 11

√
Pf2. (5.1c)

The 3 × 3 submatrices S1 and S2 describe intramode and intermode
scattering, respectively. Forward scattering happens with probability Pf =
Pf1 + Pf2, scattering with a ±120◦ deflection happens with probability
Pd = Pd1 + Pd2. Unitarity of S requires that

Pf1 + Pf2 + 2Pd1 + 2Pd2 = 1,
cos(β − α) = 1

2(Pd2 − Pd1)(Pf1Pd1)−1/2 ∈ [−1, 1].
(5.2)

To reduce the number of free parameters, we take equal intra-channel
and inter-channel probabilities: Pf1 = Pf2 = 1

2Pf and Pd1 = Pd2 =
1
4(1 − Pf ). Then β = α + π/2 and we are left with the two parameters
Pf ∈ [0, 1] and α ∈ [0, π/2]. The parameter α governs the appearance of
closed loops of scattering sequences [168]. At α = 0, the network does not
support closed loops (quasi-1D transport), while for α = π/2 closed loops
dominate (2D transport).

The propagation between two nodes along a domain wall introduces a
phase factor eiEa/~v, at energy E. The scattering matrix (5.1) of the nodes
is assumed to be energy independent, so the scattering sequences consist
of instantaneous nodal scattering events, spaced by the constant time a/v.
A stroboscopic (Floquet) description of the scattering is then appropriate
[170, 171]. In the quasi-1D regime this corresponds to a quantum walk.
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Figure 5.2. Network of domain walls with two realizations of the quantum
walk in a single valley (blue and red arrows). Even and odd parity chiral modes
are indicated by solid and dashed lines. Forward scattering at a node preserves
the parity, while a deflection switches the parity. The quantum walk propagates
along the y-axis with step size ay = 1

2
√

3 a, the x-axis playing the role of time
(t ↔ 2x/v). The unit cell of the lattice, of area aay and enclosing a flux Φ, is
indicated in blue.

5.3 Quantum walk

Two scattering sequences in the quasi-1D regime (α = 0) are shown in
Fig. 5.2. The solid and dashed lines distinguish even and odd parity
modes in a given valley, both propagating in the same direction. (The
counterpropagating modes are in the other valley.) We can interpret a
scattering sequence as a quantum walk [172], with time step t0 = a/v.
There are six independent quantum walks, rotated relative to each other
by 60◦, three in one valley and three in the other valley. We focus on one
of these.

At each step the x-coordinate is increased by a/2. The y-coordinate
changes by ±1

2a
√

3 ≡ ±ay, the even parity mode moves up and the odd
parity mode moves down. The wave amplitudes ψ = (ψ+, ψ−) of the
even and odd parity states form a pseudospin degree of freedom, which is
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Figure 5.3. Two Bloch bands ε±(ky) of the quantum walk, computed from Eq.
(5.5) for Pf = 1/2. The band width ∆ is indicated.

rotated at each node by the 2× 2 matrix [168]2

R =
(
eiπ/4

√
Pf

√
1− Pf√

1− Pf −e−iπ/4
√
Pf

)
. (5.3)

The corresponding time evolution of a state (at stroboscopic intervals
t = 0, 1, 2, . . .× t0) is given by

ψt+t0 = T Rψt, (5.4)

T ψ(y) =
(
ψ+(y − ay), ψ−(y + ay)

)
= e−iay k̂yσzψ(y).

The operator T displaces the particle up or down depending on its pseu-
dospin σz. Eq. (5.4) represents a 1D quantum walk along y in the fictitious
time t = 2x/v, with momentum operator k̂y = −i∂/∂y.

The eigenvalues e−iεt0 of the evolution operator T R in momentum
representation are given by

ε±t0 = ± arccos[
√
Pf sin(ayky − π/4)] + π/2, (5.5)

plotted in Fig. 5.3. The single-valley bandstructure of the quasi-1D regime
[41] is given by three copies rotated by 120◦ of the dispersion relation

E
(n)
± (kx, ky) = ~ε±(ky) + 2πn~/t0 + ~vkx/2, n ∈ Z. (5.6)

2The unitary transformation S 7→ USU† that decouples the 6× 6 scattering matrix
(5.1) into 2 × 2 submatrices is U = e−i(π/4)σyei(α/2)σz . The Pauli matrices act on
the two modes in each domain wall. The decoupling needs α = 0 and Pd1 = Pd2; if
Pf1 6= Pf2 the phase π/4 in Eq. (5.3) is replaced by arctan

√
Pf1/Pf2.
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5.4 Bloch oscillations
A perpendicular magnetic field B = ∇×A (in the z-direction) introduces
a phase shift −e

∫
A · dl at each time step (taking the electron charge as

+e). For A = (−By,Ba/4, 0) the time evolution (5.4) is modified into 3

ψt+t0 = eiφŷ/ayT Rψt, φ = πΦ/Φ0. (5.7)

The operator ŷ is defined by ŷψt(y) = yψt(y). The flux Φ = Baay is the
flux through a unit cell (two domain wall triangles) and Φ0 = h/e is the
flux quantum. The same phase shift φ would be produced by a fictitious
electric field E ≡ Bv/2. The corresponding Bloch frequency is

ωB = ayeE/~ = φ/t0. (5.8)

Since the width of the Bloch band (5.5) is ∆ = (2~/t0) arcsin
√
Pf , the

amplitude of the Bloch oscillations is

A ≈ ∆/eE = (2ay/φ) arcsin
√
Pf . (5.9)

The 1D quantum walk in an electric field has been analyzed theoret-
ically [59, 173–175] and realized experimentally in the context of optics
[176, 177] and atomic physics [178]. A spatially localized wave packet
evolves in a characteristic “breathing mode” with envelope [59]±A sin(ωBt/2).
In our case, where time t 7→ 2x/v maps onto space, this implies the enve-
lope

yenvelope(x) = ±(2ay/φ) arcsin
√
Pf × sin(φx/a). (5.10)

A numerical simulation of the network model shown in Fig. 5.4 agrees
nicely with this breathing mode envelope. For nonzero α side branches
appear at a 120◦ orientation with the breathing mode, which we explain
in terms of magnetic breakdown.

5.5 Magnetic breakdown
In semiclassical approximation the motion of an electron in a magnetic
field B can be obtained from the equi-energy contours in zero field: Be-
cause ~k̇ = eṙ × B, the real-space orbit of a wave packet at energy E

3The constant y-component of the vector potential A = (−By,Ba/4, 0) is chosen
such the resulting phase shift does not depend on the parity of the chiral mode. We need
this for the mapping to an electric field induced phase shift. All results are obviously
gauge independent, but this gauge simplifies the analysis.
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Figure 5.4. Numerical simulations of electron scattering in a twisted graphene
bilayer, in a magnetic field (φ = πΦ/Φ0 = 0.03). Electrons at energy E = 0
are injected in a single mode and in a single node at (x, y) = (0, 0). They then
propagate through the network following the scattering matrix (5.1). We take
Pf1 = Pf2 = 1/4, Pd1 = Pd2 = 1/8 and compare two values of α. The blue color
scale gives the intensity |ψ|2 of the scattering state. The red curve in panel a) is
the envelope of the breathing mode predicted by Eq. (5.10).

follows the contour E(k) = E upon rotation by 90◦ and rescaling by a
factor l2m = ~/eB (magnetic length squared).

We calculate the equi-energy contours 4 from the scattering matrix
(5.1), see Fig. 5.5. At α = 0 three oscillating contours rotated by 120◦
cross near k = 0. A wave packet moves along these open orbits with
velocity dk/dt = v/l2m. A nonzero α opens up a gap ∆k ' α/a at
each crossing, thereby allowing the wave packet to be deflected by ±120◦.
Magnetic breakdown refers to the tunneling of the wave packet through
the gap [179, 180]. This happens with the Landau-Zener probability
T = exp[−c(lm∆k)2], where c is a coefficient of order unity 5. We conclude

4The bandstructure E(k) of the infinite network, as a function of the Bloch mo-
mentum k = (kx, ky), is given by the eigenvalues eiEa/~v of the matrix product Ω =
S · diag (eik·l+ , eik·l− , eik·l0 , eik·l+ , eik·l− , eik·l0 ), with lattice vectors l± = 1

2a(1,±
√

3),
l0 = (−a, 0).

5The coefficient c = 1
4π tan(ϑ/2) in the magnetic breakdown probability T =

e−c(lm∆k)2
is determined by the angle ϑ ∈ (0, π) at which the equi-energy con-
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-

Figure 5.5. Equi-energy contours E(kx, ky) = 0 at zero magnetic field, com-
puted for Pf1 = Pf2 = 1/4, Pd1 = Pd2 = 1/8, α = 0.1. A magnetic field drives
a wave packet in the direction of the arrows. Points of magnetic breakdown
(tunneling between two contours) are encircled. The resulting open orbits are
distinguished by different colors.

that the breathing mode remains predominantly uncoupled from the side
branches provided that (αlm/a)2 � 1⇒ α2 � Φ/Φ0.

All of this is for the case of equal intra-channel and inter-channel prob-
abilities. We have investigated numerically what happens if we relax
this assumption. A difference between Pd1 and Pd2 increases the gap,
(a∆k)2 ≈ α2 + (Pd1 − Pd2)2. A difference between Pf1 and Pf2 has no
effect on the gap, it weakly affects the coefficient c.

5.6 Conductance

The breathing mode visualized in Fig. 5.4 can be detected via the conduc-
tance, in the geometry of Fig. 5.1, with source and drain contacts aligned
along a domain wall. We have tested this by computer simulation.

tours approach the avoided crossing, dependent on the relative direction of motion:

)ϑ or ϑ For typical parameters we have ϑ ≈ 60◦ ⇒ c ≈ 0.45.
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Figure 5.6. Outgoing modes at the left (source contact) and incoming modes at
the right (drain contact). Red and blue arrows distinguish pairs of modes in the
two valleys. For contacts of width W = N × a

√
3 the transmission matrix t from

source to drain has dimension 8N × 8N . The diagram shows the case N = 1.
The full network in the simulation has length L along the x-axis and width much
larger than the contact width W along the y-axis.

The transmission matrix tnm from mode m in the source contact to
mode n in the drain contact is calculated in the network model [41]. There
are 8N outgoing (incoming) modes in the source (drain) contact, dis-
tributed over N = W/a

√
3 unit cells (see Fig. 5.6). Four of the eight

modes per unit cell are in one valley and four are in the other valley.
The two-terminal conductance follows from

G = G0
∑8N
n,m=1|tnm|2, (5.11)

with G0 = 2e2/h the conductance quantum (the factor of two accounts
for the spin). In the quasi-1D regime only two of the eight modes per unit
cell contribute to the conductance, corresponding to the breathing mode.
Note that the current is highly valley polarized: the red modes in Fig.
5.6 give a negligible contribution to G, because they are backscattered
into the source at the nodes. A rotation of the contact alignment by 60◦
switches the transmission from one valley to the other.

The conductance is a maximum whenever a node of the breathing
mode coincides with the drain contact, so if the separation L of source
and drain is an integer multiple of πa/φ = aΦ0/Φ. As a function of
magnetic field the conductance then oscillates with period 6

∆Φ = Φ0 × a/L⇒ ∆B = (h/e)(ayL)−1. (5.12)
6The periodicity (5.12) refers to the magnetoconductance oscillations from the

breathing mode near Φ = 0. Because of gauge invariance, copies exist near higher
fields Φp = Φ0/p (p = 1, 2, . . .), with smaller periodicity ∆Φp = (Φ0/p)× a/L.
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Figure 5.7. Calculation of the magnetic field dependence of the conductance
in the geometry of Fig. 5.1. Source and drain contacts are separated by L and
have a width of N unit cells (W = N × a

√
3). The parameters of the network

model are the same as in Fig. 5.4. Different values of α are compared, for wide
contacts (panels a,b) and narrow contacts (panels c,d). The Bloch oscillation
period ∆Φ from Eq. (5.12) is indicated. Full transmission of the breathing mode
corresponds to G/G0 = 2N .

This is what we observe in the computer simulation [181], see Fig.
5.7. To resolve the Bloch oscillations the width W of source and drain
contacts should be smaller than the amplitude A ∝ 1/B of the breathing
mode, which explains why the oscillations die out with increasing magnetic
field. The oscillations become more robust to nonzero α if both the width
and the separation of the contacts are reduced, because then the larger
magnetic field scale promotes the magnetic breakdown that enables the
breathing mode.

5.7 Conclusion

In closing, we have shown that the breathing mode that is the hallmark of
Bloch oscillations in a periodic potential can be observed in the magneto-
conductance of minimally twisted bilayer graphene. The spatial resolution
that is needed to resolve the oscillatory electron motion requires narrow
source and drain contacts, which is presumably why these low-field oscil-
lations have not yet been observed. Panels c,d in Fig. 5.7 correspond to a
contact width W = a

√
3 ≈ 0.25µm at a twist angle θ ≈ 0.1◦.

For a contact separation of L = 50 a ≈ 7µm the periodicity of the mag-
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netoconductance oscillations is ∆B ≈ 2.4mT. This is two orders of mag-
nitude below the fields at which quantum Hall interferometry (Aharonov-
Bohm and Shubnikov-De Haas oscillations) becomes operative [50, 51,
168, 169]. There is room to reduce the contact separation, which will help
to mitigate disorder effects — L should be shorter than the mean free
path.

The key requirement for the appearance of the breathing mode is the
quasi-1D regime, in which open orbits govern the magnetoconductance,
enabled by magnetic breakdown. Support for this regime can be found in
microscopic calculations of the band structure [81], that show equi-energy
contours qualitatively similar to those in Fig. 5.5. The observation of the
low-field magnetoconductance oscillations predicted here would then be a
striking demonstration of Bloch oscillations in the solid state.
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