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Chapter 2

Quantum phase slips in a
resonant Josephson junction

2.1 Introduction

The phase difference across a Josephson junction can be driven by quan-
tum fluctuations to change, or "slip", by integer multiples of 2π [83].
Such quantum phase slips often determine the low-frequency behavior
of microwave superconducting circuits [84–89]. In a long chain or loop of
Josephson junctions, or in thin superconducting wires or rings, quantum
phase slips compromise the spatial stiffness of the phase and can suppress
superconductivity [90–97]. In general, quantum phase slips affect the en-
ergy levels of a coherent superconducting circuit [98] and can therefore be
measured with spectroscopic methods.

For instance, in a Cooper-pair-box circuit [24, 99, 100] in the transmon
limit [26], quantum phase slips determine the charge dispersion of the en-
ergy levels [26], i.e. the magnitude of their oscillation as a function of the
charge induced on the superconducting island [see figure 2.1(a-b)]. The
charge dispersion of the fundamental frequency of the circuit is particu-
larly important since it controls the dephasing time of superconducting
qubits [26]. This fact motivated the development of the transmon [26],
where the quantum phase slip amplitude is suppressed by a large ratio
of the Josephson energy EJ and the charging energy EC , resulting in an
exponential suppression of the charge dispersion [101].

Setting aside qubit applications, devices with an appreciable charge
dispersion remain of fundamental interest: thanks to their sensitivity
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to charge parity, they can be used to study quasiparticle poisoning and
dynamics [102–107], and, in a possible future, to measure fermion par-
ity in topological Majorana qubits [108, 109]. These ongoing develop-
ments welcome further theoretical study of quantum phase slips, par-
ticularly given the emergence of hybrid semiconducting-superconducting
qubit devices [110] and novel designs of noise-protected superconducting
qubits [111].

In this chapter, we compute in detail the amplitude of quantum phase
slips in a Josephson junction with a resonant energy level. We describe
and pay particular attention to the competition between coherent 2π and
4π quantum phase slips that occurs in such a junction. The competition
is controlled by two independent parameters: the energy of the resonant
level and the asymmetry between the tunneling rates to the superconduct-
ing leads. The 4π phase slips become dominant close to resonance, and
we argue that even though they were too small to be detected in recent
experiments [16, 17], they can be observed in devices with a larger charg-
ing energy. Towards the end, possible implications for qubit designs are
also discussed. The next section motivates our calculations, placing them
in the context of previous theoretical and experimental research.

2.2 2π and 4π quantum phase slips

The amplitude of coherent quantum phase slips in a weak link is given by
the tunneling amplitude between neighboring minima of the Josephson
potential energy. This amplitude can be qualitatively affected by the type
of weak link where the phase slip occurs. Figure 2.1(c-e) compares three
simple but paradigmatic scenarios: a low-transparency tunnel junction (S-
I-S); a highly transparent single-channel quantum point contact (S-QPC-
S); and finally a junction with a resonant level (S-R-S). As we argue below,
so far the S-R-S scenario has not been fully understood and described,
despite its experimental relevance.

Figure 2.1(c) illustrates the familiar setting of a tunnel junction, such
as a quantum point contact close to pinch-off or an Al oxide junction,
for which the potential energy is ≈ EJ(1− cosφ)1. Quantum phase slips

1A low-transparency QPC differs from an oxide junction because in the former the
entire phase dispersion of the ground state originates from a single transport chan-
nel, and thus a single Andreev bound state, while in the latter from hundreds or even
thousands of transport channels. The two junctions have equivalent ground state prop-
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connect the neighboring minima of the cosine potential, distant by 2π and,
when EJ � EC , they are suppressed exponentially with

√
EJ/EC [26].

This classic result can be obtained using the WKB method or an instanton
approach to the cosine potential [112, 113]. The charge dispersion of the
energy levels is 2e-periodic and, while exponentially small, remains finite
at any value of EJ due to the presence of back-scattering at the tunnel
junction.

Figure 2.1. (a): A Cooper pair box consists of a superconducting island con-
nected to ground by a capacitor and a Josephson junction. A gate voltage Vg
controls the charge induced on the island, qg = CgVg. In the transmon limit of
the Cooper pair box, the charging energy EC is much smaller than the Joseph-
son tunneling strength. (b) The energy levels En of the Cooper pair box oscillate
with ng. The resulting charge dispersion can be determined by measuring the
fundamental frequency ω01 = E1 − E0 as a function of ng, for instance via mi-
crowave spectroscopy. (c-e) Schematic energy spectrum of three different types
of Josephson weak links (top row) and corresponding charge dispersion oscilla-
tions in the Cooper-pair box (bottom row). (c): 2e-periodic dispersion due to 2π
quantum phase slips in a tunnel junction. (d): Absence of charge dispersion in a
quantum point contact at perfect transparency. (e): 1e-periodic dispersion due
to 4π quantum phase slips in a junction with a resonant energy level (e). Dashed
lines in (d) and (e) show the Josephson potential away from perfect transparency,
in which case 2π phase slips are weakly restored.

By contrast, figure 2.1(d) shows the case of a quantum point contact
at perfect transparency. Its distinctive feature is the presence of a level
crossing that disconnects the neighboring minima of the Josephson poten-
tial. In fact, since each potential branch touches the continuum states at
E = 2∆, the Josephson potential is a-periodic [114]. As a consequence,
quantum phase slips are forbidden altogether and the charge dispersion

erties, but different densities of states close to the gap edge; the sketch in figure 2.1c
schematically depicts the first case.
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vanishes [114–116]. Away from perfect transparency, the level crossing be-
comes a narrowly avoided crossing. Quantum phase slips may then occur
again, but only if the phase slips adiabatically though the crossing. Hence,
they are suppressed by the associated Landau-Zener transition amplitude
and, near perfect transparency, it remains much smaller than in a S-I-S
junction with comparable Josephson energy.

This enhanced suppression of the charge dispersion has been recently
observed in spectroscopic measurements of transmon qubits realized with
hybrid InAs/Al nanowire Josephson junctions [16, 17]. However, in these
experiments the condition of almost perfect transparency was achieved
by fine-tuning the nanowire junction to a resonance. As shown in fig-
ure 2.1(e), this scenario differs qualitatively from that of a quantum point
contact.

The normal-state transmission probability of a quantum point contact
does not depend on energy on scales compared to the gap ∆, while in the
presence of a resonance it is a peaked function of energy, with a charac-
teristic width Γ that can be much smaller than ∆. As a consequence, the
Andreev levels in the resonant case are detached from the continuum of
energy levels even at zero phase difference [117, 118], while they always
touch the gap edge for a quantum point contact [15].

This difference has important consequences for quantum phase slips: if
perfect transmission is achieved resonantly, the Josephson potential con-
sists of two 4π-periodic branches [18]. Thus, one expects 4π phase slips to
occur even when 2π phase slips are forbidden. As a result, one predicts a
finite charge dispersion at resonance, but with a modified periodicity of 1e
rather than 2e. In this respect, the situation is similar to that of a topo-
logical Josephson junction with coupled Majorana zero modes [119, 120],
with the crucial difference that in the resonant junction the two branches
of the potential have the same fermion parity.

Given this scenario, it is appropriate to revisit quantum phase slips in
the presence of a resonance, using as a starting point the existing knowl-
edge on resonant Josephson tunneling [117, 118, 121, 122], which has seen
a revival [18] in view of experimental progress on microwave measurements
of Andreev bound states [123–126].
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2.3 Model
We consider a minimal model for a resonant Josephson junction in which
the current between two superconducting electrodes is mediated via a
single spin-degenerate energy level (see figure 2.2). The parameters of
the model are the two tunneling rates Γ1 and Γ2 between the leads and
the resonant level, and the energy εr of the resonant level, measured with
respect to the Fermi level in the leads. In what follows, we will refer to εr
as the detuning.

We consider the case in which Γ1,2 � ∆, the superconducting gap in
the leads. In this limit, it is possible to integrate out the fermionic degrees
of freedom of the superconductors and obtain a simple effective Hamilto-
nian for the coupled dynamics of the superconducting phase difference φ
and of the resonant level. The effective Hamiltonian is

H = 4EC(i∂φ + ng)2 + V (φ) (2.1)

Here, EC is the charging energy between the two electrodes, and ng =
qg/(2e) the charge induced by the electrostatic gates coupled to them,
measured in units of 2e. The operator −i∂φ counts the number of Cooper
pairs transferred between the two superconductors. The matrix-valued
potential energy V (φ) is [18–21]

V = −εr τz − Γ cos(φ/2) τx − δΓ sin(φ/2) τy , (2.2)

where we have introduced the total tunneling rate

Γ = Γ1 + Γ2 , (2.3)

and the asymmetry parameter

δΓ = Γ1 − Γ2 . (2.4)

The Pauli matrices τx,y,z encode the dynamics of the two-level system
in which the resonant level is either empty (τz = +1) or occupied by a
Cooper pair (τz = −1).

The adiabatic eigenvalues ±EA of the potential in Eq. (2.2) reproduce
the well-known formula for the Andreev levels in a single-channel junction:

EA(φ) =
√
ε2r + Γ2 cos2(φ/2) + δΓ2 sin2(φ/2) (2.5)

≡ ΓA
√

1− T sin2 φ/2 , (2.6)
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with Γ2
A = Γ2 + ε2r and T = 1 − |r|2 the transparency of the junction,

controlled by the reflection coefficient

r = εr + iδΓ
ΓA

. (2.7)

Figure 2.2. Illustration of the model of Eqs. (2.1) and (2.2). (a): A Josephson
junction consisting of quantum dot (orange) with a single energy level. The
detuning εr of the energy level from the Fermi level of the leads and the tunneling
rates Γ1, Γ2 can be controlled via gate electrodes. (b): Transport of Cooper pairs
across the two insulating barriers is mediated by the spin-degenerate resonant
level.

The salient features of the Andreev spectrum are the following. First,
at perfect transparency, which is achieved when εr = δΓ = 0 so that r = 0,
the spectrum evolves into two decoupled, 4π-periodic branches with energy
±Γ cos(φ/2), with a zero-energy level crossing at φ = π. Second, , as long
as ΓA � ∆, the Andreev bound state energy is well detached from the
continuum spectrum for all values of φ, including φ = 0 [see figure 2.1(e)].
This fact, in particular, justifies neglecting excited states in the continuum
when considering the adiabatic dynamics of the phase difference.

The derivation of the effective Hamiltonian of Eq. (2.1), which is car-
ried out in Appendix 2.7, also yields the appropriate boundary condition
for the spinor wave functions

Ψ(φ+ 2π) = τzΨ(φ). (2.8)

This twisted boundary condition incorporates a constraint on the dynam-
ics that comes from charge conservation: if a Cooper pair occupies the
resonant level, it must be subtracted from one of the two superconduc-
tors. In other words, the tunneling of a Cooper pair between one of the
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two superconductors and the dot counts as half of a Cooper pair trans-
fer between the two superconductors. This is the humble origin of the
4π-periodicity of the tunneling terms in the effective Hamiltonian.

We also point out that, despite the complete similarity at the level
of the Andreev spectrum, Eq. (2.5), the effective two-level Hamiltonian
of Eq. (2.1) is not the same as the corresponding two-level Hamiltonian
for a quantum point contact [127, 128]. Besides the aforementioned fact
that the Andreev levels are fully detached from the continuum, the main
physical difference is that in the limit T → 0 a sub-gap state is present
in the resonant level model (provided that εr is small enough), while no
sub-gap state remains for the quantum point contact.

These circumstances can be elucidated by inspecting the energy spec-
trum in the absence of tunneling, at Γ1 = Γ2 = 0, see figure 2.3(a). It
consists of familiar parabolas with energy E = 4Ec (n− ng)2, each corre-
sponding to a charge q = 2en transferred between the superconductors.
If the resonant level is empty, n is integer, leading to a set of parabolas
centered around integer values of ng. On the other hand, if the resonant
level is occupied, n is half-integer, leading to a second set of parabolas cen-
tered around half-integer values of ng. The resulting energy spectrum is
always at least 2e-periodic as a function of ng, and it becomes 1e-periodic
if εr = 0. If |εr| < EC , as in figure 2.3(a), there are two degeneracy points
per period at which parabolas cross, otherwise only a single degeneracy
point per period remains.

The effect of small but finite tunneling rates on the energy spectrum
is shown in figure 2.3(b). A small Γ1 hybridizes the resonant level with
the left superconductor, and thus opens avoided crossings at the degen-
eracy points between energy levels corresponding to n and n + 1

2 (with
n integer). Conversely, a small Γ2 hybridizes the resonant level with the
right superconductor, and thus opens avoided crossings at the degeneracy
points between energy levels corresponding to n and n− 1

2 (again, with n
integer). If the tunneling rates are different, namely if δΓ 6= 0, the avoided
crossing have different magnitudes.

These simple arguments indicate that the energy spectrum will be
2e-periodic away from the resonant condition in which both εr = 0 and
δΓ = 0. At resonance, the energy spectrum is 1e-periodic in ng, as illus-
trated in figure 2.3(c), since all the charge parabolas are aligned and the
hybridization of the resonant level is balanced across the two leads.

Our discussion so far has been perturbative in nature, and it applies
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directly to the weak tunneling regime TΓA . EC of figure 2.3. However,
the conclusions regarding the periodicity of the energy spectrum remain
valid in the strong tunneling regime, where they can be understood in
terms of the relative strength of 2π and 4π phase slip amplitudes. This
will be the focus of the next section.

2.4 WKB analysis
In this section we are going to derive approximate solutions for the energy
levels of the Hamiltonian of Eq. (2.1) under the boundary condition (2.8)
using the WKB approximation. The latter applies to the strong tunnel-
ing regime, defined as the parameter regime where the bandwidth of the
Josephson potential is much larger than the charging energy: T ΓA � EC .
In this limit, the low-lying energy levels near the bottom of the potential
are almost harmonic, with exponentially small corrections dictated by the
tunneling under the potential barrier. The calculation of the latter re-
quires particular care near perfect transparency, |r| � 1.

After moving the induced charge ng from the Hamiltonian to the
boundary condition via a gauge transformation Ψ → eiφngΨ, the prob-
lem to be solved is the stationary Schrödinger equation

− 4ECΨ′′ + VΨ = (−ΓA + E) Ψ . (2.9)

We have shifted the zero of the energy E to the bottom of the Josephson
potential, which is at energy −ΓA, so that the eigenvalues are all positive.
We are interested in solutions near the bottom of the potential, E � TΓA.
In the WKB approximation, the solution Ψ is taken to be a wave with a
locally-varying wave vector

k±(φ) =
√
E − ΓA ∓ EA(φ)

4EC
. (2.10)

where the ± index labels the two branches of the potential with energy
±EA. The wave vector is real (imaginary) when E is above (below) the
potential energy.

The periodic boundary conditions (2.8) ensure that we need to solve
Eq. (2.9) in a 2π interval, say [−π, π]. In this interval, the − branch has a
classically available region between the two turning points at ±φc, which
are defined by the condition

E − ΓA + EA(φc) = 0. (2.11)
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On the other hand, the + branch is classically forbidden in the entire
interval, and thus for this branch the WKB ansatz consists of evanescent
waves everywhere.

The WKB ansatz fails at the classical turning points, where the WKB
momentum vanishes, and also, for small r, at φ = π, because the adi-
abatic eigenstates (i.e. the spinors χs such that V χs = sEAχs) rotate
rapidly with the phase. In both cases, it is possible to linearize the po-
tential V (φ) at the problematic boundary and, from the solutions of the
resulting differential equations, use the method of matching asymptotes to
derive connection formulas for the WKB solutions on the two sides of the
boundary. At φ = ±φc, the linearization involves only the σ = −1 energy
branch and, as is well known, it leads to the Airy differential equation
for the solutions close to the turning point [129]. In the case of the level
crossing at φ = π, the linearization involves both branches. It leads to the
2 × 2 system of equations of the Landau-Zener problem with imaginary
time [114], mathematically equivalent to a Weber differential equation
whose solutions are parabolic cylinder functions [130].

The result of these calculations, which are reproduced in detail in
appendix 2.8, is a bound state equation for the energy which takes the
form:

cosσ = w e−τ cos(2πng + δ) + e−ρe−τ cos(4πng) (2.12)

On the left hand side, σ is the integral of k− over the classically available
region,

σ(E) =
∫ φc

−φc

√
E − ΓA + EA(φ)

4EC
dφ . (2.13)

On the right hand side, τ and ρ are WKB tunneling integrals, respectively
under the smaller barrier of the − branch and the larger barrier of the +
branch:

τ(E) =
∫ 2π−φc

φc

√
ΓA − E − EA(φ)

4EC
dφ , (2.14)

ρ(E) =
∫ π

−π

√
ΓA − E + EA(φ)

4EC
dφ . (2.15)

Furhermore, on the right hand side of Eq. (2.12), w represents the ampli-
tude for the wave function to remain on the lower branch when evolving
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through the avoided crossing. It is given by

w =
√

2π
λ

e−λ λλ

Γ(λ) , (2.16)

with

λ = |r|
2

4
ΓA
Γ

√
ΓA
EC

(2.17)

the parameter controlling adiabaticity: w tends to one for λ � 1 (adi-
abatic limit), while w ∼

√
2πλ for λ � 1. Note, in particular, that w

vanishes when r = 0 (diabatic limit). Finally, in Eq. (2.12), −δ is the
phase of the complex reflection coefficient r.

Before proceeding to solve the bound state equation, it is useful to
discuss its structure. The first and second term on the right hand side of
Eq. (2.12) originate from 2π and 4π phase slips respectively, as revealed
by their different periodicity with respect to the induced charge ng. The
latter can be understood in terms of the Aharonov-Casher effect: in a 4π
phase slip, the phase variable wraps around the circle twice, and so the
wave function picks up a phase factor of 4πng. The comparison of the
two terms also tells us that 2π phase slips dominate 4π phase slips when
weρ � 1, while in the opposite limit weρ � 1 the 4π-periodic component
dominates. Finally, we note that the appearance of the phase shift δ is a
consequence of the twisted boundary conditions (2.8).

Neglecting the occurrence of quantum phase slips means setting to
zero the exponentially small tunneling amplitudes e−τ and e−ρ on the
right hand side of Eq. (2.12). In this case the left hand side yields a
Bohr-Sommerfeld quantization condition for the energy levels En in the
Josephson potential,

σ(En) = π
(
n+ 1

2

)
, (2.18)

with n = 0, 1, 2 . . . The effect of quantum phase slips can then be in-
troduced as a small correction δn to the eigenvalues En obtained via the
Bohr-Sommerfeld condition. This correction is the charge dispersion of the
n-th energy level due to quantum phase slips. Expanding the left hand
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side of Eq. (2.12) as described in appendix 2.8 leads to the expression

δn = (−1)n+1

σ′n
we−τn cos(2πng + δ)

+ (−1)n+1

σ′n
e−ρne−τn cos(4πng)

− τ ′n
2(σ′n)2w

2e−2τn cos(4πng + 2δ) . (2.19)

We adopted a shortened notation for the tunneling integrals evaluated at
the eigenergies, e.g. τn ≡ τ(En).

Equation (2.19) is the central result of this chapter: it describes the
oscillations of the energy levels of the S-R-S transmon circuit as a function
of the induced charge, including the effects of 2π and 4π quantum phase
slips on equal footing. The first term of Eq. (2.19) gives the contribution
to the charge dispersion coming from 2π phase slips, which coincides with
the one computed in Ref. [114, 116]. This term yields a charge dispersion
with a period of 2e and it vanishes as r → 0, since in this limit w → 0.
The second term gives the contribution coming from 4π phase slips, which
is finite in the limit r → 0. The last term is a 4π-periodic correction to
the first term, of higher order in the tunneling integral τn. We retain it
here since, as w increases, it becomes as large as the second term in the
crossover between 2π- and 4π-dominated regimes, and eventually larger
when w ≈ 1.

Our next goal is to compare these analytical results with numerical
results. To do so, we provide approximate expressions for the quantities
appearing in Eq. (2.19) in terms of the model parameters. To begin with,
in the limit TΓA � EC in which it is appropriate to approximate the po-
tential as a parabola, the Bohr-Sommerfeld condition gives the harmonic
spectrum

En =
√

2T ΓAEC
(
n+ 1

2

)
≡ ωp

(
n+ 1

2

)
. (2.20)

We introduced the Josephson plasma frequency ωp for later convenience.
The anharmonic corrections to En are of order

√
EC/TΓA and will be

neglected.
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Evaluating the tunneling integrals at these energies we obtain

e−τn =
√

2π
n!

(
b2ωp
4EC

)n+ 1
2
e−aωp/EC (2.21)

e−ρn = e−(c/
√
T )ωp/EC+d

√
T (n+1/2) (2.22)

where a, b, c, d are positive numerical coefficients that depend weakly on
T , and whose explicit expressions are given in appendix 2.9. Finally, we
also find

σ′n = π

ωp
, (2.23)

τ ′n = 1
ωp

log
4EC(n+ 1

2)
b2ωp

. (2.24)

By simple replacement of Eqs. (2.21)-(2.24) into Eq. (2.19), it is possible
to obtain explicit asymptotic expressions for the different contributions to
the charge dispersion as a function of the model parameters.

2.5 Results
Armed with these expressions, we can compare the energy levels obtained
from the WKB ansatz with those obtained from a numerical diagonaliza-
tion of the Hamiltonian (2.1) in the charge basis. The comparison serves
both as a verification of the results obtained analytically and as a way
to illustrate the behavior of the quantum phase slips amplitude versus
the model parameters. To do so, it is convenient to extract the 2e- and
1e-periodic components of the charge dispersion δn(ng):

δn(ng) = δ2e
n cos(2πng + β2e

n ) + δ1e
n cos(4πng + β1e

n ) (2.25)

This equation is just a re-writing of the right hand side of Eq. (2.19) as a
Fourier series. In particular, δ2e

n tracks the amplitude of the first term in
Eq. (2.19), originating from 2π phase slips, while δ1e

n tracks the amplitude
of the second and third term in Eq. (2.19), originating from 4π phase slips;
β2e
n and β1e

n are the corresponding total phase shifts.
In figure 2.4, we show the evolution of δ2e

n and δ1e
n for both the ground

(n = 0) and first excited (n = 1) states, as the three model parameters
Γ, δΓ and εr are swept at fixed EC . The parameter sweep is such that
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the left end of the figure corresponds to the weak tunneling regime (Γ =
EC), finite asymmetry (δΓ/EC = 0.5), and finite detuning from resonance
(εr/EC = 0.5). On the other hand, the right end of the figure corresponds
to the strong tunneling regime (Γ/EC = 15) and the resonant condition
δΓ = εr = 0.

The first panel shows the exponential suppression of the charge disper-
sion as the tunneling rate Γ is increased at fixed δΓ and εr. This behavior
is familiar from conventional transmon model [26] and it originates from
the increase in the Josephson potential barrier height due to the increase of
Γ. The second panel shows that the trend continues as the asymmetry δΓ
is tuned to zero at fixed Γ and εr. This is because the effect of decreasing
δΓ at fixed detuning is to increase TΓA and, thus, the Josephson poten-
tial barrier height. Up to now, both δ2e

n and δ1e
n exhibit a similar trend,

because in these parameter ranges their magnitudes are both controlled
by the exponent τn.

The third panel of figure 2.4 shows the effect of tuning the level to
resonance. The 2π phase slip amplitude δ2e

n drops to zero linearly to-
wards resonance, because as the reflection coefficient r approaches zero,
non-adiabatic effects related to the narrowly avoided crossing at φ = π
start to kick-in, and the Landau-Zener parameter w vanishes. On the
other hand, the 4π phase slip amplitude δ1e

n saturates to a finite value
determined by the exponent ρn, which is not sensitive to the closing of
the avoided crossing. Eventually, the 4π-periodic component overcomes
the 2π-periodic component of the charge dispersion at a value of εr de-
termined by the condition w ≈ e−ρn , which depends slightly on n, as the
figure shows. This crossover is well captured by the WKB solutions. In
fact, figure 2.4 shows that the agreement between the asymptotic WKB
results and the numerically determined eigenvalues is reasonable even at
values of Γ/EC not much larger than one, especially for the ground state
n = 0.

The right panel of figure 2.4 also shows that if Γ� EC , the crossover
to the 4π-dominated regime only happens very close to resonance and
at charge dispersion levels so small to be practically unobservable. For
instance, in figure 2.4, δ1e

n saturates at a value of order 10−6EC for n = 1,
reached when εr ≈ 10−5EC . However, the effect becomes more striking,
and experimentally detectable, when the ratio Γ/EC is reduced.

To highlight this, in figure 2.5 we show the scaling of the charge
dispersion when the tunneling strength Γ is varied while maintaining



36 Chapter 2. Quantum phase slips in a resonant Josephson junction

the resonant condition. Here we focus on the average energy difference
ω̄01 =

∫ 1
0 dng (E1−E0), where E1 and E0 are the numerically determined

eigenvalues of the Hamiltonian, and on the peak-to-peak amplitude δω01
of its charge dispersion δ1− δ0. These are the quantities that can be more
easily measured in a typical microwave spectroscopy experiment such as
those in Refs. [16, 17], which we have in mind as a feasible way to test our
predictions. We note that, in principle, the charge dispersion of energy
levels is also accessible in the I-V characteristic of the junction [131–133].

Furthermore, we compare the behavior predicted by the resonant level
model with that of a conventional transmon device described by the Hamil-
tonian

H = 4EC(i∂φ + ng)2 − EJ cosφ (2.26)

with periodic boundary conditions on a 2π interval. In the resonant level
model, ω̄01 and δω01 were both computed numerically for increasing Γ/EC
at fixed δΓ = 0 and εr = 0. For the transmon model, the same quanti-
ties were instead computed increasing EJ/EC , and they reproduce the
well-known curve for the charge dispersion of a transmon [26]. Via the
parametric plot of the observable quantities ω̄01 and δω01, computable for
both models despite the different set of parameters, a direct comparison
can be made.

The comparison shows that, while the charge dispersion decays expo-
nentially in both models, the effect is much stronger in the presence of a
resonant level. This is because we are essentially comparing the tunnel-
ing amplitude under a −Γ cos(φ/2) barrier and that under a −EJ cosφ
barrier: the former corresponds to a higher potential and a longer tunnel-
ing path, and is therefore exponentially smaller than the latter. Thus, as
Refs. [16, 17] pointed out, resonant tunneling provides a way to reach a
target charge dispersion while keeping the superconducting island closer
to the Cooper-pair box limit of weak tunneling (Γ & EC rather than
Γ� EC). For instance, in order to achieve δ01/EC ≈ 10−3 it is necessary
to reach a ratio ω01/EC ≈ 15 (that is, EJ/EC ≈ 32) in the model of
Eq. (2.26), but it may be enough to reach the ratio ω01/EC ≈ 3 (that is,
Γ/EC ≈ 5) using the resonant level model of Eq. (2.1).

This fact is convenient for qubit design, since it mitigates a practical
trade-off at play in the transmon: reducing the charge dispersion increases
the dephasing time, but at the cost of an increase of device footprint and
capacitive losses, due to the need for a large capacitor. However, the
suppression of 2π phase slips, which is at the basis of the advantageous
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scaling of figure 2.5, requires fine-tuning the junction to a resonance. Thus,
the effect will be very sensitive with respect to noise, especially to noise
in the detuning parameter εr, which would originate from charge noise in
the gates required to tune the resonant level.

To illustrate this important point, in figure 2.6 we show the evolution
of ω01(ng) as εr is varied from positive to negative through zero, in the
case of a rather weak tunneling Γ/EC = 5. In the top panel, we see how
the charge dispersion evolves from a conventional 2e-periodic oscillation
with a maximum at ng = 0 (εr > 0), to a 1e-periodic curve at resonance
(εr = 0, black dashed line), to a shifted 2e-periodic curve with a maximum
at ng = 1/2 (εr < 0). The plot illustrates how the suppression of the
charge dispersion occurs because the charge dispersion changes sign as εr
passes through zero, signaling the ground state occupation of the resonant
level by a Cooper pair when εr < 0. Neglecting 4π phase slips, the dashed
line at εr = 0 would be flat.

In the bottom panel of figure 2.6 we show the 2e- and 1e-periodic am-
plitudes δ1e

01 ≡ δ1e
1 − δ1e

0 and δ2e
01 ≡ δ2e

1 − δ2e
0 , extracted from the curves

in the top panel (computed in a wider εr range). The 4π phase slip am-
plitude stays approximately constant, while the 2π phase slip amplitude
goes through a dip at resonance, with its minimum value at εr = 0 deter-
mined by the presence of a small, residual asymmetry (δΓ ≈ 10−4EC in
figure 2.6) While the region dominated by 4π phase slips has widened with
respect to the right panel of figure 2.4 due to the smaller ratio Γ/EC , it
still occurs in a relatively narrow interval, |εr| /EC . 0.01. The dephasing
time of the plasma oscillation would be dictated by 4π phase slips only if
time-dependent noise in the detuning parameter εr were to be contained
in this interval. Nevertheless, the plot also shows that in this parameter
regime it would be feasible, with reasonable experimental resolution, to
detect the occurrence of 4π phase slips at resonance via a spectroscopic
measurement of the ω01(ng) curve. Indeed, the residual charge dispersion
at resonance is ≈ 2 × 10−3EC in figure 2.6, and thus it would fall in the
MHz frequency range for realistic values of EC/h ∼ 1 GHz.

2.6 Conclusions

We have studied in detail the quantum phase slips occurring in a Joseph-
son junction in the presence of a resonant level mediating the tunneling
of Cooper pairs. It was known since Ref. [114] that 2π phase slips are
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fully suppressed in the presence of a level crossing in the Andreev spec-
trum. Here, we have extended this result by computing the amplitude
of 4π phase slips, which remain finite in the presence of a level crossing
and provide the mechanism by which the charge dispersion of the super-
conducting island remains finite, albeit possibly very small. Our central
result is Eq. (2.19): obtained within the WKB approximation, it provides
asymptotic expressions for the energy levels of a Cooper-pair box in the
transmon limit, including the effect of both 2π and 4π quantum phase
slips, and yielding results in good agreement with numerical simulations
2. To conclude this chapter we discuss several implications of our results.

2.6.1 Experimental observability of 4π phase slips in trans-
mon circuits

The suppression of 2π phase slips occurs in a fairly narrow parameter
range near resonance (εr = 0) and symmetric barriers (δΓ = 0). Within
this parameter range, a crossover to a regime dominated by 4π phase
slips occurs (see figure 2.6). The width of the crossover region around
resonance, as well as the residual level of charge dispersion at resonance
given by 4π phase slips, both increase with decreasing Γ/EC .

Although the suppression of 2π phase slips at resonance has been ob-
served in Refs. [16, 17], coherent 4π quantum phase slips were not ob-
served. We attribute this fact to the large ratio Γ/EC of those measure-
ments. Our calculations predict that coherent 4π quantum phase slips
should be observable with the same technology of existing experiments,
only in devices with larger charging energy. For instance, let us consider a
situation in which EC/h = 1 GHz, εr = δΓ = 0 and Γ/h = 3 GHz. Then,
our model predicts that ω01 ≈ 2.16 GHz while δω01 ≈ 33 MHz, easily in
the range of detectable frequency shifts.

The direct comparison with a transmon qubit based on a conventional
tunnel junction with Josephson energy −EJ cosφ shows that the resonant
level provides a much lower charge dispersion at a fixed ratio of the qubit
frequency to the charging energy (see figure 2.5). We have discussed crit-
ically the possible implications of this fact for qubit design, emphasizing
that the circuit is likely to remain sensitive to charge noise modulating
the energy of the resonant level.

2The code and notebooks used to generate the numerical results in this work are
available on Zenodo [134]
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2.6.2 Connection to novel qubit designs

Our results are relevant for the recently introduced bi-fluxon qubit [7],
which uses a superconducting island tuned to the charge degeneracy point
as a way to implement resonant Cooper pair tunneling with a 4π-periodic
effective Josephson energy. Indeed, the model of Eqs. (2.1) and (2.2) also
applies to such a case: the two degenerate charge states of the island, with
charge differing by 2e, map to the resonant level in our model being empty
or occupied. In this mapping, the parameters εr and δΓ indicate the de-
tuning from the charge degeneracy point of the island and the asymmetry
between two tunnel junctions. For noise protection, the bi-fluxon qubit
relies on the suppression of 2π quantum phase slips and ideally operates
in a regime where only 4π quantum phase slips are present. Our detailed
results on the competition of 2π and 4π quantum phase slips, especially
at finite detuning or junction asymmetry, are therefore relevant for its
design.

A difference between the S-R-S transmon model studied in this chap-
ter and the bi-fluxon is that the circuit of the latter features an inductive
shunt, similar to the fluxonium circuit [28]. In the presence of an induc-
tive loop, quantum phase slips couple coherently persistent current states
characterized by a differing number of fluxons trapped in the loop [27]. By
tuning the applied flux, it is therefore possible to measure separately the
amplitude for 2π and 4π phase slips, making such a device ideal to observe
the crossover between 2π and 4π-dominated regimes. In fact, a fluxonium
circuit with a weak link of the S-R-S type could be a competitive version
of the bi-fluxon qubit. We leave the analysis of this topic to future work.

2.6.3 Connection to Majorana zero modes

Our calculations also have a close connection with models of supercon-
ducting islands with Majorana zero modes (MZMs) [135, 136]. It is known
that the 4π Josephson effect occurring in a junction between topological
superconductors (due to the presence of a pair of coupled MZMs) [119,
120] suppresses the occurrence of 2π phase slips, leaving only the occur-
rence of 4π phase slips [137–139]. Even the boundary condition of Eq. (2.8)
has a precise counterpart in models with topological superconducting is-
lands, where it arises due to a fermion parity constraint on the BCS wave
function [135, 140]. In fact, the model of Eq. (2.1), together with the
boundary conditions, can be mapped exactly to a model of four MZMs,
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two per superconducting side, coupled across a weak link. Such a model of
four coupled MZMs could arise, for instance, because of finite-size effects
in a topological nanowire [141].

2.6.4 Generality of our results

Finally, let us discuss the generality of our results. The regime with dom-
inating 4π phase slips should persist even outside of the strict domain
of validity of the model in Eq. (2.2), because it is a consequence of the
presence of a level crossing in the Andreev spectrum rather than of the
precise form taken by the Josephson potential energy. For instance, the
assumption Γ � ∆ could be relaxed; doing so would modify the phase
dependence of the Andreev spectrum and the precise values of the WKB
integrals, but not the essential feature that 2π phase slips are suppressed
at resonance.

Similar conclusions can be drawn about multi-channel extensions of
the single-channel model of Eq. (2.2). If the additional channels are not
resonant, they simply provide a 2π-periodic contribution to the Josephson
energy (a similar contribution is also provided by the above-gap, continu-
ous part of the spectrum). This contribution will increase the height of the
Josephson potential barrier, and thus lower all the quantum phase slips
amplitudes, but it will not affect the resonant suppression of 2π phase
slips illustrated in figure 2.6. The resonant suppression is controlled by
the parameter w of Eq. (2.16), and thus by the most transparent channel
only. Qualitative deviations from our central result, Eq. (2.19) are there-
fore only expected in the fine-tuned case where more than one transport
channel achieves near-perfect transparency (|r|2 �

√
EC/ΓA).

Our results also remain valid in the presence of a finite interaction
energy U for the double-occupancy of the resonant level, a term neglected
in this chapter. This is true at least as long as U � Γ, since such a
weak interaction would only renormalize the couplings in the effective
Hamiltonian of Eq. (2.1) [18]. For larger U , a transition to an odd-parity
doublet ground state occurs close to resonance, diminishing the relevance
of Eq. (2.1), which applies to an even-parity singlet ground state. The
study of quantum phase slips when the junction is in the doublet ground
state is an interesting problem left to future research.
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2.7 Appendix: Derivation of the low-energy Hamil-
tonian

In this appendix, we derive Eq. (2.1) starting from the model of a level
tunnel-coupled to two superconductors. Similar derivations have appeared
in the literature before, e.g. in Refs. [18, 19]. Here we propose a simple
derivation that motivates and clarifies the use of the boundary conditions
of Eq. (2.8). The starting point is the following Hamiltonian:

H = Hsc +Hdot +Htunn +Hc . (2.27)

The first term Hsc is the Hamiltonian of the two superconductors,

Hsc =
∑
αnσ

ξn c
†
αnσcαnσ −∆

∑
αn

(
e−iφαc†α↑c

†
α↓ + h.c.

)
(2.28)

where α = 1, 2 denotes the two leads, n enumerates their spin-degenerate
single-particle states with energy ξn, σ =↑, ↓ is the spin quantum number,
∆ is the pairing gap, and φα is the superconducting phase in the two leads.

The second term is the Hamiltonian of the resonant level:

Hdot = εr
∑
σ

(
d†σdσ − 1

2

)
, (2.29)

where the operator d†σ, dσ create and annihilate an electron with spin σ on
the resonant level. For simplicity, we omit an Anderson U . The limitations
of this choice are discussed in the main text and are not crucial for what
follows. The third term is the tunneling Hamiltonian between the leads
and the energy level in the dot:

Htunn =
∑
αnσ

tα
(
d†σcαnσ + h.c.

)
. (2.30)

Again for simplicity, we only consider spin-conserving tunneling. In the
presence of both time-reversal symmetry and spin-rotation symmetry, the
couplings tα can be chosen to be real.

Finally, the last term is the charging energy between the two leads:

Hc = 4EC(N − ng)2 (2.31)

where EC = e2/2C is the charging energy and ng the dimensionless charge
induced by gates, and N is the charge transferred between the two leads.
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Both N and ng are expressed in units of the Cooper pair charge 2e. Ex-
plicit expressions for EC and ng in terms of the capacitances and gate
voltages of a capacitive network of two islands are given in Ref. [13]. In
writing the charging energy, we have neglected the capacitance between
the superconductors and the quantum dot hosting the energy levels, as
well as the capacitance between the superconductors and any gates which
may control the quantum dot.

At the mean-field level description of superconductivity, N is an op-
erator which includes separate contributions from both the paired and
unpaired electrons:

N = 1
2(N1 −N2) + 1

4
∑
nσ

(
c†1nσc1nσ − c†2nσc2nσ

)
. (2.32)

Here, we denoted with N1, N2 the number of Cooper pairs in each super-
conductor. They are operators with integer spectrum obeying the follow-
ing commutation rules:

[Nα, e
±iφβ ] = ±δαβ e±iφβ . (2.33)

We stress the fact that the operator N keeps count of the charge trans-
ferred between the superconductors in units of 2e. Thus, a transfer of
a Cooper pair between superconductors (N1 → N1 ± 1, N2 → N2 ∓ 1)
changes N by one unit (e.g. N → N ± 1). On the other hand, a trans-
fer of a single electron changes N by ±(1/2). Simply, yet amusingly, the
transfer of a Cooper pair from either superconductor to the quantum dot
also changes N by ±(1/2).

It is convenient to use a gauge transformation that removes the op-
erators eiφα from Hsc and which also simplifies the form of the charging
energy [142]. The gauge transformation is H → UHU †, with:

U = U1U2 , Uα = exp
(
iφα
2
∑
nσ

c†αnσcαnσ

)
(2.34)

In this new gauge, we have the following changes:

Hsc →
∑
αnσ

ξn c
†
αnσcαnσ −∆

∑
αn

(
c†α↑c

†
α↓ + h.c.

)
,

Hc → 4EC(N − ng)2 ,

Htunn →
∑
αnσ

tα
(
e−iφα/2 d†σcαnσ + h.c.

)
, (2.35)
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and Hdot → Hdot. Note how the tunneling terms now contain operators
e±iφα/2, which shift Nα by one half.

The next step is to diagonalize Hsc and rewrite the tunneling Hamil-
tonian in terms of Bogoliubov quasiparticle operators:

cαn↑ = uαnΓαn↑ + vαnΓ†αn↓ (2.36)

cαn↓ = uαnΓαn↓ − vαnΓ†αn↑ (2.37)

with u2
n = 1

2(1 + ξn/εn), v2
n = 1

2(1− ξn/εn), and ε2n = ξ2
n + ∆2. After the

Bogoliubov rotation, the Hamiltonian changes as follows:

Hsc →
∑
αnσ

εn Γ†αnσΓαnσ

Htunn →
∑
αnσ

tα
[
e−iφα/2 d†σ

(
unΓαnσ + σvnΓ†αnσ̄

)
+eiφα/2

(
unΓ†αnσ + σvnΓαnσ̄

)
dσ
]
,

with the other terms left untouched.
At this point, assuming that ∆ is the largest energy scale in the prob-

lem, we would like to integrate out the quasi-particles in the leads and
derive an effective Hamiltonian describing the low-energy coupled dynam-
ics of the condensate and of the quantum dot. Assuming that the total
number of electrons in the system is even, a generic wave function in the
even-parity low-energy space can be written as

|Ψ〉 =
∑
n∈Z

Ψ0(n) |n〉 |0〉+
∑

n∈Z+ 1
2

Ψ2(n) |n〉 |2〉 , (2.38)

where |n〉 are states with a given number of Cooper pairs transferred:
N |n〉 = n |n〉, |0〉 denotes the empty dot state, and |2〉 = d†↑d

†
↓ |0〉 denotes

the state in which the dot is occupied by a pair.
Using old-fashioned perturbation theory to the second order in the

tunneling term, and integrating out states with unpaired quasiparticles,
we obtain the following eigenvalue problem, written in terms of the wave
function amplitudes Ψ0(n) and Ψ2(n):
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[
E − 4EC(n− ng)2 + εr

]
Ψ0(n) = −Γ1 Ψ2(n− 1

2)− Γ2 Ψ2(n+ 1
2) ,
(2.39)[

E − 4EC(n− ng)2 − εr
]

Ψ2(n) = −Γ2 Ψ0(n− 1
2)− Γ1 Ψ0(n+ 1

2) ,
(2.40)

where Γα = ∑
n(2t2αvnun)/εn = πt2α/δα, with δα the level spacing in

the superconductor. A Fourier series,

Ψ0(φ) =
∑
n∈Z

eiφn Ψ0(n) , (2.41)

Ψ2(φ) =
∑

n∈Z+ 1
2

eiφn Ψ2(n) , (2.42)

yields the effective Hamiltonian of the main text, acting on the spinor
wave function

Ψ(φ) =
[
Ψ0(φ)
Ψ2(φ)

]
(2.43)

The boundary condition of Eq. (2.8) follows from the fact that Ψ0(φ +
2π) = Ψ0(φ) while Ψ2(φ+ 2π) = −Ψ2(φ).

2.8 Appendix: WKB solution

In this appendix we derive the bound state equation (2.12) of the main
text, applying the WKB approach to the Schrödinger equation HΨ =
(−ΓA + E)Ψ for the Hamiltonian in Eq. (2.1).

We find it convenient to rotate the Hamiltonian such that the cos(φ/2)
term in the potential appears on the diagonal: the basis of the eigenstates
of V (φ) at εr = 0. The transformation consists of a rotation of Ψ by −π/2
around the y-axis. Simultaneously, as already mentioned in the main text,
we also multiply the wave function by a phase that gets rid of ng in the
Hamiltonian, so that the transformation is

Ψ→ eiφng ei(π/4)τyΨ (2.44)
H → eiφngei(π/4)τyH e−iφnge−i(π/4)τy . (2.45)



2.8 Appendix: WKB solution 45

Since
ei(π/4)τy = 1√

2

[
1 1
−1 1

]
, (2.46)

the transformation amounts to sending

H → −4EC∂2
φ + εrτx − Γ cos(φ/2)τz − δΓ sin(φ/2) τy . (2.47)

In this new basis, the boundary condition is also different:

Ψ(φ+ 2π) = −τxei2πngΨ(φ) (2.48)

In the calculation that follows we will make use of the adiabatic eigenstates
of the potential V (φ) after the transformation, which in matrix form is
given by

V (φ) =
[
−Γ cos(φ/2) εr + iδΓ sin(φ/2)

εr − iδΓ sin(φ/2) Γ cos(φ/2)

]
(2.49)

The two eigenvectors V (φ)χ± = ±EA(φ)χ± are:

χ+ = N−1/2(φ)
[
EA − Γ cos(φ/2)
εr − iδΓ sin(φ/2)

]
(2.50a)

χ− = N−1/2(φ)
[
−εr − iδΓ sin(φ/2)
EA − Γ cos(φ/2)

]
(2.50b)

with a normalization factor given by

N (φ) = 2EA(EA − Γ cos(φ/2)) . (2.51)

For later use we note the following property of these spinors:

χ+(2π + φ) = eiδ(φ) τx χ+(φ) , (2.52)
χ−(2π + φ) = −e−iδ(φ) τx χ−(φ) . (2.53)

where δ(φ) is the phase of εr + iδΓ sin(φ/2).
To solve the Schödinger equation, we split the interval [−π, π] into four

regions as follows:

• Region I: φ ∈ (−π,−φc), where φc is the classical turning point such
that ΓA − EA(φc) = E.

• Region II: φ ∈ (−φc, φc).
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• Region III: φ ∈ (φc, π).

• Region IV: φ ∈ (π, 2π − φc).

Within each region we can write the solution using the WKB ansatz, with
either oscillatory or decaying/growing solutions. In detail:

ΨI = A1 χ−√
κ1

e
−
∫ φ
−π κ1dφ′ + A2 χ−√

κ1
e

+
∫ φ
−π κ1dφ′+ (2.54)

+ A3 χ+√
κ2

e
−
∫ φ
−π κ2dφ′ + A4 χ+√

κ2
e

+
∫ φ
−π κ2dφ′ , (2.55)

ΨII = B1 χ−√
k1

cos (π4 +
φ

∫
−φc

k1 dφ
′) + 2B2 χ−√

k1
sin (π4 +

φ

∫
−φc

k1 dφ
′)+ (2.56)

+ B3 χ+√
κ2

e
−
∫ φ
−φc

κ2dφ′ + B4 χ+√
κ2

e
+
∫ φ
−φc

κ2dφ′ , (2.57)

ΨIII = C1 χ−√
κ1

e
−
∫ φ
φc
κ1dφ′ + C2 χ−√

κ1
e

+
∫ φ
φc
κ1dφ′+ (2.58)

+ C3 χ+√
κ2

e
−
∫ φ
φc
κ2dφ′ + C4 χ+√

κ2
e

+
∫ φ
φc
κ2dφ′ , (2.59)

ΨIV = D1 χ−√
κ1

e−
∫ φ
π
κ1dφ′ + D2 χ−√

κ1
e+
∫ φ
π
κ1dφ′+ (2.60)

+ D3 χ+√
κ2

e−
∫ φ
π
κ2dφ′ + D4 χ+√

κ2
e+
∫ φ
π
κ2dφ′ . (2.61)

For brevity, we have introduced the following wave vectors (note that the
notation differs slightly with that of Eq. (2.10) in the main text):

k1 =
√
E − (ΓA − EA)

4EC
, (2.62)

κ1 =
√

(ΓA − EA)− E
4EC

, (2.63)

κ2 =
√

(ΓA + EA)− E
4EC

. (2.64)

The sixteen complex coefficients A1, . . . D4 must be determined via appro-
riate matching conditions at the boundaries between the different regions.
The matching condition between regions IV and I will be determined via
the boundary condition (2.48). The boundaries between regions I-II, II-III
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and III-IV are meant to be fuzzy, and one must make use of appropriate
connection formulas for the WKB solutions by obtaining approximate so-
lutions that are valid across the boundaries. This is what we do next.

To connect solutions at the boundary between region I and II, we can
use the standard WKB connection formulas that originate from linearizing
the potential around the classical turning point, and then solving the Airy
equations. One obtains:

A1
A2
A3
A4

 =


e+τ1 0 0 0

0 e−τ1 0 0
0 0 e+τ2 0
0 0 0 e−τ2



B1
B2
B3
B4

 (2.65)

with τ1 =
∫ π
φc
κ1 dφ

′ and τ2 =
∫ π
φc
κ2 dφ

′.
For the boundary between region II and III we can also use the stan-

dard WKB connection formulas based on the Airy equation, except that
we must first take some care to rewrite the wave function in region II so
that it is expressed in terms of integrals that have the boundary point φc
as the upper end of the integration domain.

After some trigonometric manipulations one obtains the following con-
nection matrix:

B1
B2
B3
B4

 =


2 cosσ − sin σ 0 0
sin σ 1

2 cosσ 0 0
0 0 e+ρ1 0
0 0 0 e−ρ1



C1
C2
C3
C4

 (2.66)

where ρ1 =
∫ φc
−φc κ2dφ

′ .
Notice that so far the connections matrices (2.65) and (2.66) leave the

two branches of the Andreev spectrum decoupled. This situation breaks
down at the boundary between regions III and IV at φ = π. This is the
position where Andreev levels cross at perfect transparency, and where
they couple in the presence of a small but finite back-scattering. When
the level crossing is narrowly avoided, the adiabatic spinors (2.50) vary
rapidly with phase and the WKB ansatz, which relies on a slow variation
of the spinors with φ, breaks down. To proceed we must linearize the
potential around φ = π, giving the equation:

− 4ECΨ′′ + Vπ Ψ + ΓAΨ = 0 . (2.67)

where
Vπ = εrτx + 1

2Γ(φ− π)τz − δΓτy (2.68)
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In Eq. (2.67) we set E = 0 since the level crossing is at energies much
higher than the bottom of the Josephson potential: thus, the form of
the solutions around φ ≈ π will not be sensitive to the precise position
of low-lying energy levels. Inspired by the fact that we need to connect
asymptotically to the wave functions in region II, we try an ansatz of the
form:

Ψ = Ψπe
σκ(φ−π) (2.69)

with σ = ±1 and κ =
√

ΓA/4EC . Inserting the ansatz in Eq. (2.67) and
neglecting the term ∝ Ψ′′π results in the following equation for Ψπ:

− σω0Ψ′π + VπΨπ = 0 (2.70)

with ω0 = 8ECκ. Adopting the spinor notation Ψπ = (u, d)T , we obtain
the following coupled linear differential equation for u and d:

−σ(ω0/Γ)u′ + r̃ d+ 1
2 (φ− π)u = 0 (2.71)

−σ(ω0/Γ) d′ + r̃∗ u− 1
2 (φ− π) d = 0 (2.72)

where we introduced a complex reflection coefficient r̃:

r̃ ≡ εr + iδΓ
Γ . (2.73)

Note that this reflection coefficients differs from the one introduced in the
main text in Eq. (2.7) because of the presence of Γ instead of ΓA in the
denominator. The difference arises because the linearized problem is not
sensitive to the bandwidth ΓA of the potential, but only to its slope Γ at
φ = π. The phase of r̃ is the same as that for r, and can be gauged away
from the linearized equations, by setting d → de−iδ/2 and u → ueiδ/2.
Furthermore, it is also convenient to shift and rescale the coordinate,

x =
√

Γ
ω0

(φ− π) . (2.74)

After these two steps we obtain

−σu′ +
√
λ d+ 1

2 xu = 0 (2.75)
−σd′ +

√
λu− 1

2 x d = 0 (2.76)

where the prime now refer to differentiation with respect to x and we have
introduced

λ ≡ |r̃|2 (Γ/ω0) , (2.77)
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the same parameter introduced in Eq. (2.17) of the main text. Proceeding
by substitution we obtain the two equations (one for each value of σ):

u′′ +
(
−λ− σ

2 −
x2

4

)
u = 0 (2.78)

which must be considered separately and, combined, give the four indepen-
dent solutions we are looking for. They are instances of the Weber differen-
tial equation and are solved in terms of parabolic cylinder functionsDp(x),
which satisfy the differential equation D′′p(z) + (p + 1

2 − z
2/4)Dp(z) = 0.

In our case we are dealing with p = −λ when σ = −1 and p = −λ − 1
when σ = +1.

Let us solve the two cases separately, beginning with σ = −1. The
general solution for u is the linear combination u(x) = c1D−λ(x) +
c2
√
λDλ−1(ix). The corresponding solution for d(x) can be obtained using

known recursion formulas for parabolic cylinder functions, which read:

D′p(z)− pDp−1(z) + 1
2zDp(z) = 0 , (2.79)

D′p(z) +Dp+1(z)− 1
2zDp(z) = 0 . (2.80)

Using these formulas we obtain d(x) = c1
√
λD−λ−1(x) + ic2Dλ(ix). Due

to a symmetry of the problem, the solutions for σ = +1 can be obtained
from these by sending x → −x and exchanging u and d, so that, overall,
the general solution is

Φ(x) = c1e
−κ̃x

[
D−λ(x)√
λD−λ−1(x)

]
+ c2e

−κ̃x
[√

λDλ−1(ix)
iDλ(ix)

]

+ c3e
+κ̃x

[√
λD−λ−1(−x)
D−λ(−x)

]
+ c4e

+κ̃x
[

iDλ(−ix)√
λDλ−1(−ix)

]
. (2.81)

Here, κ̃ = κ
√
ω0/Γ. This solution captures the interval around φ = π

where diabatic effects not captured by the WKB ansatz may occur. This
region has a width ∼

√
λ. Thus, the solution has to be matched with ΨIII

from Eq. (2.58) for x� −
√
λ and with ΨIV from Eq. (2.60) for x�

√
λ.

For the matching purposes, it’s useful to derive the asymptotic behaviour
of these WKB solutions. In the case of ΨIII, to do so we must first rewrite
the WKB solution such that the integrals run up to the level crossing.
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Thus, we rewrite Eq. (2.58) as

ΨIII = C1 χ−√
κ1

e−τ1 e
+
∫ π
φ
κ1dφ′ + C2 χ−√

κ1
e+τ1 e

−
∫ π
φ
κ1dφ′

+ C3 χ+√
κ2

e−τ2 e
+
∫ π
φ
κ2dφ′ + C4 χ+√

κ2
e+τ2 e

−
∫ π
φ
κ2dφ′ . (2.82)

Let’s introduce the distance R from the level crossing, R = |x|. When
R�

√
λ, the asymptotes for the adiabatic spinors are:

χ−(−R) ∼
[
−1√
λ/R

]
, (2.83)

χ+(−R) ∼
[√

λ/R
1

]
, (2.84)

χ−(R) ∼
[
−
√
λ/R
1

]
, (2.85)

χ+(R) ∼
[

1√
λ/R

]
. (2.86)

Note that χ±(−R) = ±τxχ±(R). Taking into account the fact that, ap-
proaching the level crossing,

κ1,2 ≈ κ∓ 1
2

√
4λ+R2

√
Γ
ω0
, (2.87)

we obtain the following expressions for the WKB integrals:∫ π

φ
κ1 dφ

′ = κ̃R− 1
4R

2 − 1
2λ− λ log R+ λ log

√
λ ,∫ π

φ
κ2 dφ

′ = κ̃R+ 1
4R

2 + 1
2λ+ λ log R− λ log

√
λ . (2.88)

Finally, when κ� R�
√
λ, one has that

1
√
κ1,2

≈ 1√
κ

(2.89)

The condition κ � R �
√
λ is the necessary condition for the existence

of a range of coordinates where asymptotes can be matched. In practice,
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it requires the transition region around the level crossing at φ = π to be
narrow enough to be far away from the classical turning point at φ = φc.
Note that this condition is automatically satisfied since κ ∝ (ΓA/EC)1/2

while
√
λ ∼ (ΓA/EC)1/4.

With all that said, the expression approaching the level crossing from
region III is:

ΨIII ∼
(
C1√
κ
e−τ1 e−λ/2 λλ/2

)
eκ̃R e−R

2/4R−λ χ−(−R)

+
(
C2√
κ
e+τ1 e+λ/2 λ−λ/2

)
e−κ̃R eR

2/4Rλ χ−(−R)

+
(
C3√
κ
e−τ2 e+λ/2 λ−λ/2

)
eκ̃R eR

2/4Rλ χ+(−R)

+
(
C4√
κ
e+τ2 e−λ/2 λλ/2

)
e−κ̃R e−R

2/4R−λ χ+(−R) (2.90)

while the one for ΨIV, obtained from Eq. (2.54), is:

ΨIV ∼
(
D1√
κ
eλ/2 λ−λ/2

)
e−κ̃R eR

2/4Rλ χ−(R)

+
(
D2√
κ
e−λ/2 λλ/2

)
eκ̃R e−R

2/4R−λ χ−(R)

+
(
D3√
κ
e−λ/2 λλ/2

)
e−κ̃R e−R

2/4R−λ χ+(R)

+
(
D4√
κ
eλ/2 λ−λ/2

)
eκ̃R eR

2/4Rλ χ+(R) (2.91)

These two expressions must now be compared to and matched with the
expansion of Eq. (2.81). The matching procedure will yield us a connection
matrix between the wave function coefficients in regions III and IV. This
connection matrix will take the form:

C1
C2
C3
C4

 =


eτ1 0 0 0
0 e−τ1 0 0
0 0 eτ2 0
0 0 0 e−τ2

M

D1
D2
D3
D4

 (2.92)

where M is a 4 × 4 matrix whose elements must be determined via the
matching procedure. We expect half of the matrix elements of M to
be zero, because the exponentially decaying sector is decoupled from the
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exponentially growing sector, as assumed by the ansatz (2.69). More in
detail, the matrix M will have the following structure,

M =


m11 0 m12 0

0 m′11 0 m′12
m21 0 m22 0

0 m′21 0 m′22

 (2.93)

with two interleaved 2× 2 sub-blocks M+ and M− which separately con-
nect exponentially decaying and growing solutions on either side of the
level crossing:

M− =
(
m11 m12
m21 m22

)
, (2.94)

M+ =
(
m′11 m′12
m′21 m′22

)
. (2.95)

To simplify the derivation of M , we will make use of two useful identities
that connect M+ and M− and thus allow to shorten the calculation.

The first identity is

detM+ = detM− . (2.96)

It follows from the fact that, given two spinors Φ1 = (u1, d1)T and Φ2 =
(u2, d2)T which are solutions of Eq. (2.75), one has

d

dx
det [Φ1|Φ2] = 0 , (2.97)

where [Φ1|Φ2] is the matrix obtained joining the two spinors:

[Φ1|Φ2] ≡
(
u1 u2
d1 d2

)
. (2.98)

To verify this property one observes that:
d

dx
det [Φ1|Φ2] = det[Φ′1|Φ2] + det[Φ1|Φ′2] (2.99)

= σ det[OΦ1|Φ2] + σ det [Φ1|OΦ2] ,

where σ = ±1 and O = 1
2xτz +

√
λτx . The last passage in the equation

above follows directly from Eq. (2.75). To conclude the argument, one
notices that

det[OΦ1|Φ2] = det(O) det [Φ1|O−1Φ2] (2.100)
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Furthermore, in our case, O−1 = −det−1(O)O. Thus,

det[OΦ1|Φ2] = −det[Φ1|OΦ2] (2.101)

The conclusion is that

det [Φ1|Φ2] = constant . (2.102)

Let us apply it to the case in which Φ1 and Φ2 are the two exponentially
decaying solutions (σ = −1) of Eq. (2.75) that enter Eq. (2.81) with coef-
ficients c1 and c3. We observe that the det[Φ1,Φ2] must remain constant
also for the matched asymptotic expansions of Φ1 and Φ2 on either side
of the crossing. A direct calculation gives

det[Φ1|Φ2] = −D1D3
κ̃

(2.103)

for x�
√
λ, and, using (2.92)

det[Φ1|Φ2] = −D1D3
κ̃

detM− (2.104)

for x� −
√
λ. It follows that detM− = 1. The reasoning is analogous for

σ = 1, so detM+ = 1 too.
The second identity we will make use of is a pseudo-inverse identity

which relates M+ and M−:

M+ = τz(M−)−1τz (2.105)

The idea behind this identity is that, as noticed earlier, there is a reflection
symmetry around the level crossing: namely, if [u(x), d(x)]T is a solution
of Eq. (2.75), then [d(−x), u(−x)]T is also a solution. This symmetry maps
decaying solutions to growing ones and thus it suggests that there must
be a relation betweenM+ andM−. Applying this symmetry argument to
the asymptotic solutions and observing that their spinors obey χ±(−x) =
±τxχ±(x), one arrives at the identity (2.105).

At this point we have to find the elements of M− by looking at the
asymptotic expansion of the parabolic cylinder functions [130], which can
be applied term by term to (2.81) and then compared to the WKB asymp-
totes in Eq. (2.90) and (2.91). For instance, the last term in (2.81) has
the following asymptotic behaviour (recall that R = |x|):[√

λDλ−1(ix)
iDλ(ix)

]
∼ ie−iπλ/2 eR2/4Rλ χ+(−R) (2.106)
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for x� −
√
λ and[√

λDλ−1(ix)
iDλ(ix)

]
∼ ieiπλ/2 eR2/4Rλ χ−(R) (2.107)

for x�
√
λ. Matching these asymptotes with Eq. (2.90) and (2.91) yields

the matrix elements

m11 = 0 , (2.108)
m21 = e−iπλ . (2.109)

The third term in (2.81) has the asymptotic expansion[
D−λ(x)√
λD−λ−1(x)

]
∼ −eiπλe−R2/4R−λ χ−(−R)

+
√

2π√
λΓ(λ)

eR
2/4Rλ χ+(−R) (2.110)

for x�
√
λ and [

D−λ(x)√
λD−λ−1(x)

]
∼ e−R2/4R−λ χ+(R) (2.111)

for x�
√
λ. Again by comparison with (2.90) and (2.91), we derive

m22 = w (2.112)

where w is the same as defined in the main text Eq. (2.16). The determi-
nant identity for M− then yields

m12 = −eiπλ (2.113)

This completes the matrix M−. The matrix M+ can the be derived using
the pseudo-inverse identity, and both can be combined into the final form
for the connection matrix M entering Eq. (2.92):

M =


0 0 −eiπλ 0
0 w 0 −eiπλ

e−iπλ 0 w 0
0 e−iπλ 0 0

 (2.114)
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The final step is to find the connection matrix at the boundary be-
tween region IV and I. In order to do so, we impose the twisted boundary
conditions (2.48) evaluated at the point at φ = π + ε:

ΨIV(π + ε) = −τx e2πingΨI(−π + ε) (2.115)
Using Eq. (2.52), this leads to two equations:

e−iδ (D1 +D2) = e2πing (A3 +A4) (2.116)
e+iδ (D1 +D2) = −e2πing (D3 +D4) (2.117)

where δ is the phase of εr − iδΓ. We need two more equations, which we
can get from taking the derivative of Eq. (2.48) at φ = π + ε:

Ψ′IV(π + ε) = −τx e2πingΨ′I(−π + ε) , (2.118)
to be computed neglecting the change in the slow components of the WKB
wave functions. This leads to the following connection matrix:

D1
D2
D3
D4

 = e2πing


eiδ 0 0 0
0 eiδ 0 0
0 0 −e−iδ 0
0 0 0 −e−iδ



A1
A2
A3
A4

 (2.119)

Putting together Eqs. (2.65), (2.66), (2.114) and (2.119), we obtain
a linear system of equation that must be satisfied by the coefficients in
region I. After some matrix multiplication this linear system takes the
form:

~A = e2πing M1M2M3 ~A (2.120)
with ~A = (A1, A2, A3, A4)T and

M1 =


2eτ cosσ − sin σ 0 0

sin σ 1
2e
−τ cosσ 0 0

0 0 eρ 0
0 0 0 e−ρ

 (2.121)

M2 =


0 0 −eiπλ 0
0 w 0 −eiπλ

e−iπλ 0 w 0
0 e−iπλ 0 0

 (2.122)

M3 =


eiδ 0 0 0
0 eiδ 0 0
0 0 −e−iδ 0
0 0 0 −e−iδ

 . (2.123)
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The WKB integrals that appear in these matrices are those defined in the
main text Eq. (2.13), (2.14), and (2.15). A non-trivial solution occurs only
if

det
(
1− e2πingM1M2M3

)
= 0 (2.124)

This condition yields a transcendental equation for the energy E, taking
the form:

cosσ = 4eρeτ [cos(4πng) + eρw cos(2πng + δ)]
1 + e2ρ (4e2τ + w2) + 2eρw cos(2πng − δ)

(2.125)

Using the fact that e−ρ � 1 and we−τ � 1, we can simplify the denomi-
nator on the right hand side as follows:

1 + e2ρ
(
4e2τ + w2

)
+ 2eρw cos(2πng − δ) ≈ 4e2ρe2τ .

Thus, the transcendental equation takes the simpler form reported as
Eq. (2.12) in the main text:

cosσ = e−ρe−τ cos(4πng) + w e−τ cos(2πng + δ) (2.126)

Note that the energy enters the bound state equation via the WKB inte-
grals σ, ρ and τ , where it appears in both the integrand and the limits of
integration.

As observed in the main text, to solve this equation a good starting
point is to set the right hand side to zero, since it contains only exponen-
tially small terms. The zeros of the left hand side occur if

σ(En) = π(n+ 1
2) . (2.127)

When taking into account the right hand side, some corrections will
come from the 4π−phase slip term e−ρe−τ cos(4πng) and others will come
from the 2π phase slip term w e−τ cos(2πng + δ). We are not interested
in the corrections smaller than the corrections from 4π phase slips, so the
cross-terms are neglected. For the rest, we can distinguish the following
three situations:

1. we−τ � e−ρ−τ : it only makes sense to keep the leading order cor-
rections in we−τ to each of the harmonics in the dispersion relation

2. we−τ ≈ e−ρ−τ : we keep the leading order we−τ corrections and the
first order e−ρ−τ – corrections
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3. we−τ � e−ρ−τ : enough to keep only the first order in e−ρ−τ .

We can conclude that in any situation it is enough to keep the leading
order in we−τ and the first order in e−ρ−τ for the second harmonic, al-
though having something of the order of e−ρ−τ and ignoring higher order
corrections in we−τ may look inconsistent when we−τ � e−ρ−τ .

Let’s introduce the following notation:

E = En + δE(1) + δE(2) + ∆En + ... (2.128)

Where δE(m) stand for m-th order corrections in we−τ (0-th in e−ρ−τ )
and ∆En for the first order corrections in e−ρ−τ . By solving Eq. (2.126)
with iterative expansions, we find:

∆En = (−1)n+1

σ′n
e−ρne−τn cos(4πng) , (2.129)

δE(1)
n = (−1)n+1

σ′n
we−τn cos(2πng + δ) . (2.130)

δE(2)
n = −w

2e−2τn cos2(2πng + δ)
(σ′n)2

(
τ ′n + σ′′n

2σ′n

)
(2.131)

The corrections have quite intuitive meaning. The term with τ
′ comes

from the fact that after we consider the first order in we−τ contribution,
different energies see different heights of the tunneling barrier. The term
proportional to σ′′n/σ′n is due to second order corrections to σn when the
splitting δE(1)

n is included, and it vanishes in the harmonic limit. On the
other hand, as will be shown in the next appendix, τ ′n is logarithmically
large when TΓA � EC and thus cannot be neglected. This leads to the
solution presented in the main text, Eq. (2.19). Note that in the main
text we have omitted the ng-independent part of δE(2)

n , which does not
affect the charge dispersion.

2.9 Appendix: Evaluation of the WKB integrals
In this appendix we derive expressions (2.21), (2.22), (2.23), and (2.24)
from the main text. In doing so we assume that ΓAT � EC and thus only
look at leading contributions in the ratio TΓA/EC to the WKB integrals.
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In this limit, the Bohr-Sommerfeld condition σ(En) = π(n + 1
2) can be

evaluated by expanding the integrand of σ(E) around φ = 0, and adjusting
the position of the classical turning point accordingly. The result is:

σ(E) = πE

ωp
, (2.132)

where ωp is the plasma frequency introduced in the main text. The result
above immediately yields Eq. (2.20) of the main text as well as Eq. (2.23),
σ′(E) = π/ωp.

With respect to the integral ρ(E), one can see that the coefficients c
and d in Eq. (2.22) are given by the integrals

c(T ) = 1√
8

∫ π

−π

√
1 + u(φ) dφ , (2.133)

d(T ) = 1√
8

∫ π

−π

dφ√
1 + u(φ)

(2.134)

where u(φ) = EA(φ)/ΓA. The only WKB integral which is relatively
non-trivial to calculate is τn:

τn =
√

ΓA
EC

∫ π

φn

√
1− yn − u(φ) dφ, (2.135)

where yn = En/ΓA and ±φn are the classical turning points for En. It is
convenient to split τn into three parts:

τn

√
EC
ΓA
≈
∫ π

ε

√
1− u(φ) dφ− yn

2

∫ π

ε

1√
1− u(φ)

dφ+
∫ ε

φn

√
1− yn − u(φ)dφ

(2.136)

Here, ε is small enough so that sin2 ε/2 � 1 but big enough such that√
1− yn − u can be expanded in yn. By splitting these terms further, we

may arrive at a representation in terms of elliptic functions:

I ≈
∫ π

0

√
1− u(φ) dφ− lim

ψ→0

yn
2

∫ π

ψ

1√
1− u(φ)

dφ−
∫ ε

0

√
1− u(φ) dφ

(2.137)

+ lim
ψ→0

yn
2

∫ ε

ψ

1√
1− u(φ)

dφ+
∫ ε

φn

√
1− yn − u(φ) dφ = i1 − i2 + i3 + i4 + i5

(2.138)
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Since φn, ε � 1, i3 + i4 + i5 is quite straightforward to calculate and is
equal to :

i3 + i4 + i5 = −
√
T

2
sin2 φn

2
2 +

sin2 φn
2

2

√
T

2 ln
sin2 φn

2
ψ2 , ψ → 0 (2.139)

For i1 we obtain the representation

i1 = −4 |r|√
1 + |r|

F (µ(0), k) + 8 |r|√
1 + |r|

Π(µ(0), 1, k) (2.140)

where F,Π are elliptic integrals of the first and second kind, and

µ(φ) = arcsin
√
u(ϕ)− |r|
u(ϕ) + |r| , (2.141)

k =
√

1− |r|
1 + |r| (2.142)

Similarly, for i2 we obtain:√
ΓA
EC

i2 = (2n+ 1)
√

2 |r|√
1− |r|(1 + |r|)

× (2.143)

× lim
ψ→0

(
2Π(µ(ψ), 1

k2 , k)− (1− |r|)F (µ(0), k)
)

(2.144)

Putting all the pieces together, we obtain Eq. (2.21) of the main text with
the coefficients

b = lim
ψ→0

ψ e

√
2|r|√

1−|r|(1+|r|)

(
2Π(µ(ψ), 1

k2 ,k)−(1−|r|)F (µ(0),k)
)
, (2.145)

a =
√

8 |r|
(1 + |r|)

√
1− |r|

(−F (µ(0), k) + 2Π(µ(0), 1, k)) . (2.146)

These coefficients were already reported in Ref. [116]. In a similar way,
for τ ′(En) we find:

τ
′
n = 1

ωp
ln 2En

ΓATb2
(2.147)
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Figure 2.3. Energy spectrum of the model in the weak tunneling limit. We recall
that ng is the charge induced on the island in units of 2e. (a): Energy levels of the
model of Eq. (2.1) with εr/EC = 0.2, Γ1 = Γ2 = 0. Note that charge parabolas
with the dot empty (occupied) are centered around integer (half-integer) values
of ng. (b): Energy levels with Γ/EC = 0.12 and δΓ/EC = 0.06. Blue and red
circles identify avoided crossings opened by a finite Γ1 and Γ2, respectively. (c):
Energy levels for εr = 0, δΓ = 0 and Γ/EC = 0.8. In panels (b) and (c) the
dashed lines represent the charge parabolas for Γ1 = Γ2 = 0.
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Figure 2.4. Dispersion of the energy levels of the resonant model of Eq. (2.1)
versus the model parameters, as the system is tuned from the de-tuned weak-
tunneling regime (left end of the plot) to the resonant strong-tunneling regime
(right end of the plot). The quantities shown are the 2e- and 1e-periodic com-
ponents of the charge dispersion δn(ng) of the n-th energy level, for n = 0 and
n = 1. For each quantity we show both the WKB prediction (solid or dashed
line) as well as numerical prediction via the diagonalization of the Hamiltonian
(dots). In the left panel, Γ/EC is varied at fixed εr/EC = 0.5 and δΓ/EC = 0.5.
In the middle panel δΓ/EC is varied at fixed Γ/EC = 15 and εr/EC = 0.5. In
the third panel εr/EC is varied at fixed Γ/EC = 15 and δΓ = 0. Note that in
the right panel the horizontal axis is also on a log scale.
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Figure 2.5. Comparison of the charge dispersion scaling in the resonant model
(solid line) versus the traditional Cooper-pair box (transmon) model. We plot the
peak-to-peak amplitude of the charge dispersion of the fundamental frequency
ω01 = E1 − E0 versus the averaged (over ng) value of ω01. For the resonant
model, the curve shown is obtained varying the ratio Γ/EC with δΓ = εr = 0,
while for the transmon model of Eq. (2.26) it is obtained varying EJ/EC . In the
first case, δ01 is dictated by 4π phase slips under a −Γ cos(φ/2) barrier, while in
the second case by 2π phase slips under a −EJ cosφ barrier.
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Figure 2.6. (a): Evolution of the energy difference ω01 = E1−E0, where E1 and
E0 are the two lowest eigenvalues of Eq. (2.1), determined numerically, as a func-
tion of ng, for different values of the detuning εr varying between εr/EC = 0.04
(dark green) to εr/EC = −0.04 (dark brown). The black dashed line emphasizes
the doubling of the periodicity at εr = 0. Other parameters are Γ/EC = 5,
δΓ/EC = 10−4. (b): Amplitudes of the 2e- and 1e-periodic components of the
charge dispersion as the resonant level is swept through resonance.
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