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Chapter 1

Introduction

1.1 Preface

At the heart of this thesis is the Josephson effect – a condensed matter
physics phenomenon of both fundamental and practical importance, one
of the most exciting aspects of superconductivity. This effect occurs when
a nanostructure, a weak link or an insulating barrier is placed between
two superconductors. Such a device (Josephson junction) can sustain a
dissipationless supercurrent that can flow without voltage bias. The ef-
fect is named after Brian Josephson, who provided its first mathematical
description for the case of the tunneling barrier [1, 2]. The theoretical un-
derstanding and nanofabrication technique developments enabled numer-
ous applications of such tunneling Josephson junctions; among the most
famous ones are SQUID (superconducting quantum interference device)
magnetometers, NIST standard of volt and superconducting qubits [3, 4].
The thesis focuses on the latter application, where further understanding
of the Josephson effect in more complex devices may lead to improved
properties of the qubits.

From the microscopic point of view, the ground states of the super-
conducting leads are condensates of Cooper pairs in a collective symmetry
broken state, described by a complex order parameter. This complex or-
der parameter has a phase, and, in a tunneling Josephson junction, the
supercurrent will depend on the phase difference between the two super-
conductors φ in a non-linear way: I ∼ sinφ. Due to the second Josephson
relation φ̇ ∼ V , where V is the voltage drop across the junction, this
non-linearity makes the junction a non-dissipative non-linear inductor. In
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parallel with a capacitor and in the regime where φ is a quantum variable,
such a system becomes a non-linear quantum oscillator, which happens
to be one of the best pieces of hardware for a qubit. More sophisticated
Josephson junctions may have more internal degrees of freedom and dif-
ferent current-phase characteristics [5]. These can be employed to design
qubits even more robust to dephasing and decay.

The subject of Chapter 2 and Chapter 3 is a superconductor-quantum
dot- superconductor (S-R-S) junction embedded in two different quantum
circuits. In Chapter 2, we explore the circuit where the S-R-S junction is
shunted (connected in parallel) with a capacitance. An essential charac-
teristic of this system is the sensitivity of the spectrum to the fluctuations
of the gate voltage used for the control of the qubit. We make detailed
calculations of the dependence on the gate voltage while reproducing some
previous theoretical predictions that, in some fine-tuned regime, the sen-
sitivity should become extremely small.

In the second circuit, the capacitively shunted junction is addition-
ally shunted with a linear inductor. In Chapter 3, we calculate energy
splittings between states typically used for quantum computation. Such
a system is one of the realisations of the so-called bi-fluxon qubit, where
the coupling between |0〉 and |1〉 states is suppressed due to an additional
conservation law forbidding the transition [6, 7].

Finally, Chapter 4 explores how the Josephson effect is modified in
a junction containing a recently discovered class of magnetic materials:
altermagnet. A distinct feature of such Josephson junctions is that the
energy minimum may be achieved at the non-zero phase difference [8, 9],
unlike in the tunneling junctions.

1.2 Josephson effects
We will start with the simplest type of a Josephson junction: superconductor-
insulator-superconductor (S-I-S) junction. The second and third types are
S-N-S (superconductor-semiconductor-superconductor) and S-R-S (superconductor-
quantum dot-superconductor).

1.2.1 Tunneling Josephson junction

Tunneling (S-I-S) Josephson junction is the most widely used one for su-
perconducting qubits. Usually, it’s made of aluminium leads in the super-
conducting state with aluminium oxide in between; such a device can be
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fabricated with the shadow evaporation technique. Each piece of the su-
perconductors is described by a superconducting wave function ψ = |ψ|eiϕ:
its amplitude corresponds to the superfluid density, and the phase is re-
ferred to as the superconducting phase. Because there is a small but
non-zero overlap between the two wavefunctions, a Cooper pair can tun-
nel, and a non-zero supercurrent will flow. The low energy Hamiltonian
of such a junction is :

H(φ) = −EJ cosφ, (1.1)

EJ is the positive Josephson energy, and φ is the superconducting phase
difference between the two leads. Because the charge (in the units of
the Cooper pair charge) operator is canonically conjugated to phase, the
charge operator is:

n̂ = −i∂φ. (1.2)

Then, the current-phase relation is given by:

I(φ) = 2eEJ sinφ. (1.3)

This is the well-known first Josephson relation. A version of the cel-
ebrated Ambegaokar-Baratoff formula connects EJ to the normal state
conductance GN of the junction [10–12]:

EJ = GN
GQ

∆
8 , GQ = e2

h
, (1.4)

where ∆ is the superconducting gap. If there is a non-zero voltage drop
V across the junction, the Josephson relation says φ̇ = 2eV . This relation
can be derived from gauge invariance reasonings and relates the super-
conducting phase to the flux. It allows to compute the inductance of the
junction L−1

J = ∂2E(φ)
∂φ2 . The non-linear inductance is one of the properties

that make Josephson junctions an important element of superconducting
qubits, as will be discussed further.

1.2.2 Andreev reflection

In the tunneling junction, the Josephson energy and the supercurrent
can be derived using second-order perturbation theory [13]. In an S-N-S
junction, the coupling between the leads generally cannot be treated as
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a perturbation. Therefore, a more microscopic approach to the origin of
the supercurrent is needed. Let us consider a perfect NS (normal metal-
superconductor) interface first. Suppose, from the normal side, there is an
incident electron with energy E < ∆ (measured from the Fermi energy),
meaning it cannot enter the superconductor. Naively, no charge trans-
fer can happen in this situation. Nevertheless, superconductivity allows
charge transfer via Andreev reflection when the electron gets reflected as
a hole [14]. Because the total charge has to be conserved, an additional
Cooper pair was created in the superconductor, so the transferred charge
is 2e. Since the excitation energy inside the normal part has to stay the
same: E = vF (ke − kF ) = −vF (kh − kF ) and ke − kh = 2E/vF . Usu-
ally, the coherence length ξ ≡ vF /∆� 1/kF , so the momenta are almost
the same (Andreev approximation). However, the hole’s velocity will be
the opposite of the electron’s, hence the name reflection. A reverse pro-
cess, when a hole is reflected as an electron, can also happen. One can
match the electron/hole wavefunction to the solution of the Bogoliubov-de
Gennes equation in the superconducting part and obtain that the reflected
hole/electron also acquires a relative phase [13]:

χ = − arccos
(
E

∆

)
∓ ϕ, (1.5)

where −/+ is for the incident electron/hole case.

1.2.3 S-N-S junction

A closed trajectory becomes possible if one has an SNS junction instead
of one NS interface. First, an electron is Andreev reflected as a hole, and
then the hole propagates to the other SN interface and is reflected again
as an electron. Such a bound motion implies the possibility of a state
localized in the junction called the Andreev bound state. Note that a
Cooper pair is transferred between the leads after these two processes so
that such states may carry a supercurrent. Often, one assumes a short
junction limit L� ξ, in which the accumulation of phase due to ballistic
propagation of an electron/hole (ke− kh)L can be neglected. In this case,
the Andreev bound states’ energies obtained from the scattering formalism
are [15]:

EABS(φ) = ∆
√

1− T sin2(φ/2), (1.6)



1.2 Josephson effects 5

where T is the transmission eigenvalue of the junction. These states are
spin-degenerate and are the only ones that contribute to the supercur-
rent in the short-junction limit, as the continuum contribution is negligi-
ble. Usually, there are multiple Andreev bound states that originate from
multiple channels at the Fermi energy. The tunneling Josephson poten-
tial 1.1 can be obtained from 1.6 by the Tailor expansion around Tn = 0,
where n stands for each channel contributing to the in-gap spectrum. The
correspondence reads EJ = ∆∑

n Tn/4. Note that formally, because the
tunneling junctions are usually only 1 atom thick, the scattering matrix
approach for the Andreev bound states’ spectrum does not apply, as one
cannot insert leads inside the normal part of the junction. Nevertheless,
the formula works.

1.2.4 S-R-S junction

The previous model, however, doesn’t describe all the typical experimental
situations. Some of the InAs-Al-shell Josephson junctions rather look like
a small confined region (quantum dot) weakly coupled to the leads (with
the tunneling rates Γ1,Γ2) [16, 17]. We assume that this region hosts a
single spin-degenerate level. If the dwell time τdw = Γ−1 ≡ 1/(Γ1 + Γ2)�
∆−1, then this junction is in the opposite to the short junction τdw =
L/vF � 1/∆ limit, and it will have different properties. In what follows,
we will focus exactly on the tunneling τdw � ∆−1 limit. In a more general
case, the Andreev bound states’ energies cannot be written in a closed
form [5]. We will also assume that the total number of the electrons in
the leads and on the dot is even, such that at 0 temperature, it’s sufficient
to consider only two possible occupation numbers of the quantum dot (0
and 2). Given these assumptions, the low-energy Hamiltonian is [18–21]:

HQD = 4EC(−i∂φ − ng)2 + V (φ) (1.7)
V (φ) = −εrτz − Γ cos(φ/2)τx − δΓ sin(φ/2)τy, (1.8)

where the Pauli matrices act in the occupation number of the dot space,
δΓ = Γ1 − Γ2 and εr is the detuning of the resonant level from the Fermi
energy in the leads. There’s also a capacitive energy with EC = e2/2C
(where C is the capacitance of the junction) due to the dipole moment
generated by Cooper pair tunneling and equilibrium charge ng controlled
by a gate (in the Cooper pair charge units), shown on the circuit. Note
that the Hamiltonian is not 2π-periodic. This is because it is written in a
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2π-anti-periodic basis, with twisted boundary conditions [22]:

Ψ(φ+ 2π) = τzΨ(φ). (1.9)

The Fourier decomposition of these basis states in terms of the states with
well-defined charge is:

Ψ0(φ) =
∑
n∈Z

eiφnΨ0(n),

Ψ2(φ) =
∑

n∈Z+ 1
2

eiφnΨ2(n).
(1.10)

Here, n is the charge transferred across the junction, as this is the variable
related to the dipole moment. In the second sum, the summation goes over
half-integer n because when the quantum dot is occupied twice, it amounts
to 1/2 of the Cooper pair transfer. Hence, the Hamiltonian is 2π−periodic
if one accounts for the aperiodicity of the basis. The eigenvalues of V (φ)
are ±EA(φ), where EA happens to be the same as the Andreev bound
state’s energy (due to spin degeneracy):

EA = ΓA
√

1− T sin2 φ/2, ΓA =
√

Γ2 + ε2r . (1.11)

T = 1− |r|2 is the effective transparency of the junction with r = εr+iδΓ
ΓA .

The spectrum is similar to that of SNS, but the Andreev bound states
are detached from the continuum, and the wavefunctions are different.
The effects of this difference on the qubit are discussed in Chapters 3 and
2. Usually, a quantum dot has a non-negligible (Anderson U) Coulomb
energy. This can make an odd-occupied Andreev bound state the ground
state of the junction [23], especially if the transparency is almost perfect.
However, this energy can be neglected if Γ� U [18] and the quantum dot
cannot be occupied only once at zero temperature if the total number of
electrons in the circuit is even.

1.3 Superconducting qubits
Superconductors offer a promising platform for quantum computation be-
cause: a) A single piece of a superconductor has a non-degenerate ground
state and b) the excitations of this ground state are separated by a su-
perconducting gap. If the qubit’s energies are deep within the gap, the
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coupling to the continuum degrees of freedom is suppressed. Usually, the
superconducting gaps are of the order of ∼ 100 GHz, and the qubits are
operated at the 1− 10 GHz energies, so the system has to be cooled down
to ∼ 10 mK. The most naive qubit would be a quantum version of a
harmonic oscillator: an inductor in parallel with a capacitor. However,
this system has an obvious problem: one cannot address a specific tran-
sition because the levels are equidistant. In the previous section 1.2.1, we
learned that a Josephson junction is a non-linear inductor, which makes
it a useful part of a qubit. The following two subsections briefly discuss
two common types of qubits based on tunneling Josephson junctions.

1.3.1 Transmon qubit

Figure 1.1. Transmon circuit

If a Josephson junction is shunted by a capacitor, similarly as in 1.2.4,
the Hamiltonian of such a circuit is [24, 25]:

Ĥ = 4EC (n̂− ng)2 − EJ cos φ̂. (1.12)

The number of Cooper pairs on the island is an integer, so the boundary
conditions are periodic ψ(φ+2π) = ψ(φ) as ein(φ+2π) = einφ if n ∈ Z. The
eigenvalue problem is mathematically equivalent to that of an electron in
the periodic crystal. ψ satisfies the same differential equation as a Bloch
wave with quasi-momentum ng. One can always make a gauge transfor-
mation ψ → ψe−iφ, which preserves the periodic boundary conditions but
changes ng by 1. Hence, the spectrum will be periodic in ng. We consider
two illustrative limits.
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Figure 1.2. Eigenenergies of the transmon Hamiltonian 1.12 as a function of ng
for different ratios EJ/EC . Energies are given in units of the transition energy
E01 between the ground and first excited state, evaluated at ng = 1/2. Reprinted
figure with permission from J. Koch, Terri M. Yu, J. Gambetta, A. A. Houck,
D. I. Schuster, J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J.
Schoelkopf, Phys. Rev. A 76, 042319, 2007. Copyright (2007) by the American
Physical Society

Cooper pair box EC � EJ regime

One will typically end up in this situation if the junction is not shunted
by a big capacitor on purpose. The spectrum of the junction is then very
similar to that of a nearly free electron, where the Cooper pair tunneling
introduces the avoided crossings between the charge parabolas. Such a
qubit has a high degree of anharmonicity [26], but its energy depends
strongly on ng. A gate that controls this equilibrium charge typically
fluctuates, leading to the dephasing of the qubit. That is why this regime
is suboptimal, and the next regime we will consider is much better.

Transmon EC � EJ regime

A large capacitor ∼ 100 µm size allows to achieve it. Low-lying levels
are localized in the minima of the potential, and the tunneling between
these minima, also called phase slips, is exponentially suppressed. The

https://journals.aps.org/pra/abstract/10.1103/PhysRevA.76.042319
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tight-binding spectrum for the m-th band is:

Em(ng) = ωp(m+ 1/2)− εm
2 cos(2πng). (1.13)

εm is given by a WKB formula, which is true also for the lowest levels,
where the usual WKB does not work [26]:

εm ' (−1)m 24m+5

m!

√
2
π

(
EJ

2EC

)m
2 + 3

4
e−
√

8EJ/EC . (1.14)

ωp =
√

8EJEC is called plasma frequency, which corresponds to the har-
monic oscillations in the quadratic part of the Josephson potential. The
sensitivity of the spectrum to ng (also called charge dispersion) is expo-
nentially small, but the energy levels are almost harmonic again. Never-
theless, an algebraically small anharmonicity ∼

√
EC/EJ that remains is

sufficient. To illustrate the limits mentioned above, the spectra at various
EJ/EC ratios are plotted in the Figure ??.

1.3.2 Fluxonium qubit

Figure 1.3. Fluxonium circuit

Another way to eliminate the charge dispersion while maintaining a
much larger level of anharmonicity is to implement it in another type of
superconducting qubit called fluxonium [27, 28]. The idea is to get rid of
the superconducting island by shunting it with an inductor:

Ĥ = 4EC(n̂− ng)2 + 1
2EL

(
φ̂+ φext

)2
− EJ cosφ. (1.15)

EL is related to the inductance as EL = (Φ0/2π)2 /L and φext is related
to the flux threaded through the loop φext = Φ/Φ0, where Φ0 = h/2e is
the flux quantum. The charge on the island is not quantized anymore,
so any induced charge ng in the kinetic term can be gauged away, and
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the spectrum is insensitive to it. Phase slips can also happen in the in-
ductor, introducing infinitely many copies of the inductive term shifted
by 2π. However, if the phase slips happen at time scales much larger
than the time scale of the experiment, it’s sufficient to keep only one.
Despite the simplicity of the Hamiltonian, its physics is very rich. We
focus on the regime where EL � ωp & EC � EJ . For the analysis, it
is convenient to write the Hamiltonian in the basis of the Bloch waves
Ψp,s(φ) ≡ 〈φ|s, p〉 = e−ipφup,s(φ). up,s(φ + 2π) = up,s(φ) is periodic and
diagonalizes the ’transmon’ part:(

4EC(n̂− p)2 − EJ cosφ
)
up,s = Es(p)up,s. (1.16)

p ∈ (0, 1] denotes the ’quasi-momentum’ and s denotes the band index.
Ψp,s(φ) are the functions of the non-compact phase and form a complete
orthonormal basis if up,s are normalized to 1 on the circle φ ∈ (0, 2π]. The
phase φ̂ in the basis is expressed as follows:

φ̂ = −i∂p + Ω̂. (1.17)

The matrix elements of this operator [27, 29]

〈p, s|Ω̂|p′, s′〉 = δ(p− p′)Ωs,s′(p) (1.18)

Ωs,s′(p) = −
(2EC
EJ

)1/4 (√
sδs+1,s′ +

√
s+ 1δs′,s−1

)
(1.19)

can be neglected in our limit, such that the Hamiltonian has a block-
diagonal structure:

Hs = EL
2 (−i∂p + φext)2 + Es(p). (1.20)

The wavefunctions in this basis are also periodic ψs(p + 1) = ψs(p). Be-
cause Es(p) = Es(1/4)− εs

2 cos 2πp (1.13), this Hamiltonian is dual (under
the exchange of the quasi-charge and the phase) to transmon. Hence, we
discuss the two regimes again.

Usual fluxonium EL � εs regime

The reason for the title is that it is the most common fluxonium regime,
which is the easiest to achieve experimentally. Like in the EC � EJ regime
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of transmon, Es is a perturbation on the top of the kinetic EL
2 (−i∂p+φext)2

term, whose eigenstates are fluxons:

|2πm, s〉 =
∫ 1

0
dpei2πmp|p, s〉, m ∈ Z. (1.21)

This is again a complete basis of states [27, 29]. In the phase representa-
tion, the fluxons 〈φ|2πm, s〉 are states localized around φ = 2πm minima
of the Josephson energy, originating from the s−th harmonic levels. Es(p)
acts like a weak scattering potential, coupling neighbouring fluxons and
introducing the avoided crossings. Similarly to the Cooper pair box, the
levels are highly anharmonic, but the spectrum depends strongly on the
flux bias φext. One can operate the qubit at φext = π, where one of
the avoided crossings for the lowest band happens, and the first deriva-
tive of the energy difference with flux vanishes. This is a so-called sweet
spot where most of the modern fluxoniums are operated. In the phase
φ space, the |0〉, |1〉 wavefunctions are the symmetric and antisymmetric
superpositions of fluxons localized at φ = −2π and φ = 0. Extremely
large coherence times were achieved with this type of qubit, of the order
of 1ms [30–33].

Blochnium EL � εs regime

This regime is tough to achieve, as it requires very small inductances due
to the exponential suppression of the phase slips. Thus, this regime has
been reached experimentally only marginally [34]. The lowest states are
localized in the quasi-charge minima of E0(p) and are dual to those in the
transmon EJ � EC regime. Hence, in this regime, the qubit’s energies
are insensitive to both ng and φext fluctuations, which is why achieving it
would be highly desirable.

1.4 Minimally twisted bilayer graphene

It was predicted more than 10 years ago that stacking two graphene layers
at the top of each other at a small angle (θ ∼ 1◦) leads to the appearance
of flat bands [35, 36]. Flat bands enable a variety of strongly correlated
phenomena and remarkable tunability of the material [37–39], the study of
which led to the emergence of a new field: twistronics [40]. However, also
at small angles∼ 0.1◦, where interactions can be neglected in certain cases,
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interesting physics can happen [41–43]. The magnetotransport properties
of such a material, called minimally twisted bilayer graphene, are discussed
in Chapter 5 and Chapter 6.
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Figure 1.4. Graphene honeycomb lattice and its Brillouin zone. Reprinted
figure with permission from A. H. Castro Neto, F. Guinea, N. M. R. Peres, K.
S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109, 2009. Copyright
(2009) by the American Physical Society.

Figure 1.5. Graphene band-structure. Reprinted figure with permission from A.
H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim,
Rev. Mod. Phys. 81, 109, 2009. Copyright (2009) by the American Physical
Society.

First, we recall the basic properties of single-layer graphene. The ma-
terial is made of carbon atoms arranged in a hexagonal 2D lattice (lattice
constant 2.46 Å) [44]. The unit cell has two atoms 1.4, which are usu-
ally named A and B. Figure 1.6 shows the band structure in the simplest
tight-binding model. There are two special points (K and K’) in the Bril-
louin zone where the two Dirac cones are (Fig. 1.5), with linear dispersion

https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.81.109
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.81.109
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relations E = ±vF |k| in their neighbourhoods. The value of vF is of the
order of 106 m/s. The valley (K or K’) index becomes an almost good
quantum number at low enough energies and in the absence of short-scale
disorder.

Figure 1.6. Lattice structure of Bernal AB stacking configuration of bilayer
graphene and the corresponding Brillouin zone. Reprinted figure with permission
from A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A.
K. Geim, Rev. Mod. Phys. 81, 109, 2009. Copyright (2009) by the American
Physical Society.

Second, we introduce Bernal stacked bilayer graphene, which is the
lowest energy stacking configuration. In an AB (BA) configuration, the
B(A) atoms will be on the top of the centres of the hexagons in the bottom
layers (Fig. 1.6 ) . The effect on the band structure is that the Dirac
cones from the two layers hybridize and become parabolas, as shown in
the Figure 1.7. Two of these parabolas touch at each Dirac point. If
a perpendicular electric field is applied (by gating the material), a gap
proportional to the strength of the field opens. As a result, the material
becomes a semiconductor with a tunable gap. Another important feature
is that each valley has a non-trivial Chern number ±1, even though the
total Chern number is 0 [44].

Finally, when the two layers are stacked at a very small ∼ 0.1◦ angle,
a superlattice with a large ∼ 100 nm unit cell appears [45–47]. Such
twist angles can even happen in nature [48]. Because Bernal stacking
is the lowest energy configuration [44], the lattice will relax into sharply
defined triangular AB/BA domains, as shown in the Figure 1.8. As already
explained, the domains become gapped if a perpendicular electric field is
applied. Gapped AB and BA domains will have the opposite (±1) Chern
numbers for a fixed valley index. As a result, a topological phase transition
happens across each domain wall, and because the Chern number changes
by 2, there will be two chiral modes around each domain for one valley and

https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.81.109
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Figure 1.7. Left panel: Band-structure of Bernal stacked bilayer graphene Right
panel: Band-structure of Bernal stacked graphene with perpendicular electric
field applied.

Figure 1.8. Left panel: Moire pattern of minimally twisted bilayer graphene
Reprinted figure with permission from J. D. Verbakel, Q. Yao, K. Sotthewes,
and H. J. W. Zandvliet, Phys. Rev. B 103, 165134, 2021. Copyright (2021)
by the American Physical Society. Right panel: Network model for transport
in electrically gated minimally twisted bilayer graphene. Reprinted figure with
permission from C. De Beule, F. Dominguez, and P. Recher Phys. Rev. Lett.
125, 096402, 2020. Copyright (2020) by the American Physical Society.

spin. The network of these states was experimentally observed with STM
[48, 49], and the absence of inter-valley scattering due to disorder, which
is crucial for the arguments, was confirmed as well [48]. The direction
of propagation of the modes is reversed for the opposite valley, which
ensures the T -reversal symmetry. Typically, it’s assumed that the modes
propagate ballistically along the boundaries of the domains and scatter
according to some scattering matrix in the nodes with AA alignment of the
atoms [41, 43]. This model was successful in describing magnetotransport
experiments [50, 51].

https://journals.aps.org/prb/abstract/10.1103/PhysRevB.103.165134
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.096402
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.096402
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1.5 Bloch oscillations

An important concept that will be encountered in Chapter 5 and Chapter
6 is Bloch oscillations. This is one of the counterintuitive phenomena in
crystals: if a weak electric field is applied, the velocity of the electrons
will oscillate with frequency eEa (where E is the strength of the electric
field and e is the charge of the electron) due to the Bragg reflection [52,
53]. Despite early predictions, it has not been measured in a crystal, as
for the typical electric fields and lattice constants, the mean free times
of the electrons are typically too low. However, it’s been observed in
superlattices [54–58] and a mathematical analogue of Bloch oscillations in
minimally twisted bilayer graphene, which should be possible to observe,
will be discussed in the Chapter 5.

The simplest model where Bloch oscillations can be explained is a 1D
tight-binding model of non-interacting electrons in a lattice. The disper-
sion relation will be E = h cos ka, where a is the lattice constant, k is the
quasi-momentum and h is the hopping strength. If a sufficiently weak elec-
tric field is applied to the crystal, such that the single-band model stays
intact, this will generate a force on the electrons k̇ = −eE. The equation
is trivial to integrate: k(t) = k0 − eEt. This means that the velocity
v(k) = ∂kE of each electron will oscillate in time due to the periodicity in
k dispersion relation, and an AC current will be generated.

If we imagine a semi-classical wave-packet, localized around z(0) at
the lengthscale � a with some quasi-momentum = q, its position will
oscillate in time too:

z(t)− z(0) =
∫ t

0
∂kε(k)dt′ = h

eE
(cos(k0a− eEta)− cos(k0a)). (1.22)

However, if the wave packet is localized only at the scale of one lattice
constant, and the quasimomentum is not well-defined, the probability den-
sity will have the oscillation pattern of the so-called breathing mode [59],
shown in the Figure 1.9. The horizontal axis corresponds to time and the
vertical axis corresponds to the position (z). The wave packet returns to
the initial lattice site exactly after one period of oscillations: T = 2π

eEa ,
unlike in the semi-classical case, where such return happens twice during
the period.
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Figure 1.9. Breathing mode for a state initially localized at the origin. The
colour scale stands for the probability density of the wave packet. The image
below illustrates that the semi-classical wavepacket returns to the origin twice
during one Bloch period of oscillation, while the breathing mode does so only
once

1.6 Altermagnets

There are two well-known magnetic phases that have collinear spins and
are enabled by exchange interactions: ferromagnetism and antiferromag-
netism. However, in the recent 5 years, a new, third phase was theoreti-
cally predicted: altermagnetism [60–63]. It shares some similarities with
both phases. Like in ferromagnets, the time-reversal symmetry is broken,
which leads to the anomalous Hall effect [63–66], confirmed experimentally
in semiconducting MnTe [67] and metallic RuO2 [68]. Like antiferromag-
nets, altermagnets have no net magnetization [64, 65, 69, 70]. However,
there are also cases where altermagnets behave like neither of the two, one
of them will be considered in this thesis.

The simplest Neel antiferromagnet can be seen as follows. Let’s imag-
ine a 1D crystal lattice of magnetic ions having collinear spins. Every
second spin is flipped with respect to the neighbouring spin, and one can
divide the chain into two opposite spin sub-lattices, which are related by
a translation by one unit cell. Since the Hamiltonian should be sym-
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metric under such a translation, for both spins the electronic dispersion
relation will be the same and the Hamiltonian will be time-reversal sym-
metric, hence the 0 net polarization. Also more sophisticated versions
of antiferromagnets exist, where two spin sub-lattices can be connected
by inversion. However, the magnetic properties of such materials are the
same as those of the Neel antiferromagnets at the qualitative level [69].

Another possibility can theoretically happen; when two sub-lattices
are related by neither inversion nor translation. For example, it can be
a rotation, like in RuO2 [64, 71]. Because the atoms with opposite spins
are rotated by π/2 relative to each other, the dispersion relations for the
two spins are no longer the same, but related by the same rotation. A

Figure 1.10. Example configurations of spins and atoms for three magnetic
phases: ferromagnetism, antiferromagnetism and altermagnetism. In altermag-
netic RuO2, atoms with opposite spins are rotated by π/2. From Savitsky, Zack.
"Researchers discover new kind of magnetism." Science (New York, NY) 383.6683
(2024): 574-575. Reprinted with permission from AAAS.

minimal model for such a material is the following [72] (Fig. 1.11):

H = 1
2m

(
k2
x + k2

y

)
σ0 − t(k2

x − k2
y)σz, (1.23)

where kx, ky are the momenta and σz is the Pauli matrix acting in the spin
space. The first term corresponds to the usual isotropic contribution and
the second term is the altermagnetic one. This term is also referred to as
d-wave magnetism – a magnetic counterpart to the d-wave superconduct-
ing order parameter (in that sense, s-wave magnetism is a ferromagnet)
[65]. It’s immediately obvious that the time-reversal symmetry is bro-
ken, and the Fermi-surface is spin-split. These two important signatures
have been recently verified experimentally [71, 73]. Nevertheless, the net

https://www.science.org/content/article/researchers-discover-new-kind-magnetism
https://www.science.org/content/article/researchers-discover-new-kind-magnetism
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Figure 1.11. Fermi surface of an altermagnetic material. Blue colour stands for
the spin up and red colour stands for the spin down. By Libor Šmejkal - Provided
by the author, CC BY-SA 4.0.

magnetization is 0, since the two Fermi-surfaces are the same up to the
rotation. Note, that unlike spin-orbit coupling, which doesn’t break time-
reversal symmetry, this interaction is quadratic in momentum and is of
non-relativistic origin (it can be caused by exchange interactions, as men-
tioned in the beginning). Due to the latter fact, t is predicted to be quite
large in some materials, up to ∼ 1 eV [65, 72, 74].

Despite the recent discovery, this phenomenon is believed to be quite
common; there are dozens of such materials already [65], some of them
(such as MnTe) were initially believed to be antiferromagnets [75]. One
of the experimental obstacles is the existence of domains, which makes
many of the predicted effects cancel [76]. Despite the difficulty, this novel
magnetic phase is worth studying from both fundamental and practical
points of view, as the unique combination of spin-polarized Fermi surface
and the absence of net magnetization makes it a promising material for
spintronics [65].

A relatively recent direction of research is the study of the interplay
between superconductivity and altermagnetism. A number of interesting
phenomena have been already discovered: orientation-dependent Andreev
reflection [77, 78], π Josephson junction [8, 9] and topological Majorana
modes [79, 80]. In Chapter 4 we study the second effect in a more micro-
scopic and non-perturbative way by calculating the Andreev Bound states’

https://commons.wikimedia.org/w/index.php?curid=145420925
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spectrum for arbitrary transparency. We recover the π junction behaviour
and observe a large anisotropy with respect to the orientation of the al-
termagnet in the normal part. This provides us with an example when
altermagnet behaves neither as a ferromagnet, nor an antiferromagnet: an
antiferromagnetic junction wouldn’t show the π junction behaviour, but
a ferromagnetic junction doesn’t have such large anisotropy.

1.7 This thesis

Bellow I briefly highlight the main results presented in the thesis.

1.7.1 Chapter 2

In the second chapter, we compute analytically the amplitudes of 2π and
4π phase slips occurring in a resonant level capacitively shunted Joseph-
son junction, which determines the charge dispersion of the transmon
qubit. The amplitude for quantum tunneling under the Josephson po-
tential barrier is modified by the Landau-Zener amplitude of adiabatic
passage through an Andreev level crossing, resulting in the suppression
of 2π phase slips. The Landau-Zener amplitude vanishes when the level
is on resonance with the Fermi energy in the leads and the couplings are
symmetric (which corresponds to high effective transparency of the junc-
tion). As a consequence, 4π phase slips become the dominant tunneling
process. The analytical expressions demonstrate this crossover, showing
that a very small residual charge dispersion persists even at perfect trans-
parency. These results are of relevance to the experimental observation of
the vanishing charge dispersion in the InAs-Al shell nanowire transmons
[16, 17].

1.7.2 Chapter 3

The next chapter considers a fluxonium circuit consisting of a capacitively
shunted resonant level junction in parallel with an inductor. In the high-
transparency regime discussed in 1.7.1, fluxons are predominantly coupled
by 4π quantum phase slips. This regime implies that, at the sweet-spot
φext = π, the avoided crossings between (anti-)symmetric superpositions
of degenerate fluxons separated by phase 2π should disappear. We calcu-
late how the fluxonium spectrum is affected by the presence of the resonant
level using low-energy WKB for arbitrary effective transparency. We also
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Figure 1.12. A nanowire transmon device where the vanishing charge disper-
sion was observed [16]. Reprinted figure with permission from Arno Bargerbos,
Willemijn Uilhoorn, Chung-Kai Yang, Peter Krogstrup, Leo P. Kouwenhoven,
Gijs de Lange, Bernard van Heck, and Angela Kou Phys. Rev. Lett. 124,
246802 (2020). Copyright 2020 by the American Physical Society.

show that if the inductive energy of the loop is much smaller than the
plasma frequency of the junction, the low-energy Hamiltonian of the cir-
cuit is dual to that of a topological superconducting island. These findings
can inform experiments on bifluxon qubits as well as the design of novel
types of protected qubits.

1.7.3 Chapter 4

In the fourth chapter, we move away from the qubit applications and
consider a hybrid planar Josephson junction with an altermagnet (d-wave
magnet) inside the normal part. We compute the effect of the altermagnet
on the Andreev bound state spectrum in a non-perturbative way, assuming
the short junction limit. Unlike in a non-magnetic Josephson junction, the
Andreev bound states with opposite spins acquire opposite phase shifts
E(φ ± δφ), such that the spectrum becomes spin-polarized. When the
magnetic order has pure dx−y symmetry with respect to the y direction
perpendicular to the junction, the Andreev bound state spectrum acquires
a simple form:

E = ∆0

√
1− T (ky) sin2 1

2(φ± δφ(ky)), (1.24)

where ky is the transversal momentum (which is a good quantum num-
ber here), T is the transparency of the mode with such a transversal
momentum and δφ is a phase shift that depends on the length of the junc-
tion, altermagnetic coupling, ky and is opposite for opposite spins. We

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.246802
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.246802
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also calculate the corresponding total Josephson energy and supercurrent,
recovering the possibility of π-junction behaviour, which was predicted
earlier [8, 9].

1.7.4 Chapter 5

In this chapter, we investigate the magnetotransport in minimally twisted
bilayer graphene. We use a well-established network model [41–43, 48, 49,
81, 82] of chiral ballistic modes (arranged in a triangular network), which
applies to samples where the inter-valley scattering can be neglected and
an additional perpendicular field is applied. In a certain parametric regime
of the phenomenological model (which is expected to hold in the real sam-
ples), the 2D transport can be mapped to a 1D random walk. One of the
spatial dimensions (along which backscattering of the ballistic modes is
not possible) maps to time in the random walk, and the perpedicular mag-
netic field is mapped onto the electric field. In this way, a mathematical
analogue of 1D Bloch oscillations can be observed in the 2D magneto-
transport of minimally twisted bilayer graphene, as the oscillations in the
magnetoconductace with the magnetic field will have periodicity set by
the Bloch frequency.

1.7.5 Chapter 6

The last chapter concerns magnetotransport in 2D materials with open
Fermi surfaces, which is a generalization of the model considered in the
previous chapter. The stationary Schroedinger equation in the presence of
the magnetic field can be mapped to the evolution equation of a particle
in a 1D crystal in the presence of an electric field (where time maps to the
spatial direction x in which the orbit is open). Due to the Bragg reflection
in the 1D crystal as the particle reaches the Brillouin zone boundary, the
spatial profile of the corresponding 2D density profile will show periodicity
with x. If the wave-function is localized at the lengthscale of the unit cell
for a certain x0, it will be refocused after ∆x = (eaB/h)−1 (a is the
lattice constant and B is the magnetic field). Unlike the usual magnetic
focusing effect due to the Lorentz force with the focal length kF

eB (kF
– Fermi momentum), the focusing effect in this chapter is intrinsically
quantum.
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