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Abstract
During the past 14 years, a clinical audit has been used in the Netherlands to provide hos-
pitals with data on their performance in colorectal cancer care. Continuous feedback on 
the quality of care provided at each hospital is essential to improve patient outcomes. It is 
unclear which methods should be used to generate most informative output for the identi-
fication of potential quality issues. Our aim is to compare the commonly employed funnel 
plot with existing cumulative sum (CUSUM) methodology for the evaluation of postopera-
tive survival and hospital stay outcomes of patients who underwent colorectal surgery in 
the Netherlands. Data from the Dutch ColoRectal Audit on 25367 patients in the Nether-
lands who underwent surgical resection for colorectal cancer in 71 hospitals between 2019 
and 2021 is used to compare four methods for the detection of deviations in the quality 
of care. Two methods based on binary outcomes (funnel plot, binary CUSUM) and two 
CUSUM charts based on survival outcomes (BK-CUSUM and CGR-CUSUM) are con-
sidered. A novel approach for determining hospital specific control limits for CUSUM 
charts is proposed. The ability to detect deviations as well as the time until detection are 
compared for the four methods. Charts were constructed for the inspection of both postop-
erative survival and hospital stay. Methods using survival outcomes always yielded faster 
detection times compared to approaches employing binary outcomes. Detections between 
methods mostly coincided for postoperative survival. For hospital stay detections varied 
strongly, with methods based on survival outcomes signalling over half the hospitals. Fur-
ther pros and cons as well as pitfalls of all methods under consideration are discussed. 
Methodology for the continuous inspection of the quality of care should be tailored to the 
specific outcome. Properly understanding how the mechanism of a control chart functions 
is crucial for the correct interpretation of results. This is particularly true for CUSUM 
charts, which require the choice of a parameter that greatly influences the results. When 
applying CUSUM charts, consideration of these issues is strongly recommended.
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CGR-CUSUM  Continuous time Generalised Rapid response CUSUM (Gomon et al. 
2022)

BK-CUSUM  Biswas & Kalbfleisch CUSUM (Biswas and Kalbfleisch 2008)
DCRA   Dutch ColoRectal Audit
OR  Odds Ratio

1  Background

Continuous evaluation of the quality of care in healthcare institutions is vital, and allows 
for the detection and swift resolution of deviations in performance. Almost a century ago, 
industrial processes were faced with a similar problem resulting in the creation of the field 
of statistical process control. Consequently, many of the methods (called control charts) 
developed for industrial production lines found their way into health care inspection. 
It quickly became apparent that the inspection of patient outcomes is more complicated 
due to the presence of underlying risk factors, called covariates/prognostic factors. This 
resulted in the development of risk-adjusted control charts, allowing for covariates to be 
incorporated into the model. One drawback of using control charts for clinical outcomes 
is that they are primarily constructed for discrete, mostly binary outcomes such as failure/
success or dead/alive. In the rest of this article such methods will be called binary control 
charts. However, patient outcomes are often considered in continuous time, where one is 
interested in whether a patient is still alive or has experienced an event during follow-up. 
Recently continuous time extensions of control charts have been developed, allowing to 
incorporate survival outcomes into survival control charts.

The current study focuses on the scenario within the context of the continuous evalu-
ation of the quality of care at a single hospital, where this hospital is initially performing 
well (in-control) and might perform sub-optimally (out-of-control) later on. When con-
structing control charts for a hospital over a study period, extreme values of the chart sup-
port the hypothesis that the quality at this hospital has deteriorated. To determine when the 
quality is no longer acceptable, a control limit is used. When the value of the chart exceeds 
the control limit, a signal is produced indicating a possible deterioration in performance at 
the specific hospital being evaluated. Control limits are usually determined by guarantee-
ing that either hospitals performing on target will not be detected for a long time, or by 
limiting the number of false alarms over the study period (similar to the confidence levels 
in the funnel plot). The value of the control limit should be hospital specific, as hospitals 
vary in the number of patients treated per time unit (Gomon et  al. 2022). Due to a lack 
of algebraic results for risk-adjusted control charts, control limits are usually determined 
using a simulation study. This significantly complicates the use of control charts in medi-
cal applications, as the variability introduced by the simulation procedure may favour one 
hospital over another. We propose an approach to determine control limits which attempts 
to eliminate the unfairness resulting from the variability in the simulation study.

This article focuses on cumulative sum (CUSUM) control charts, originally introduced 
by Page (Page 1954) and later applied for assessing healthcare quality (Steiner et al. 2000). 
Binary CUSUM charts and their applications in health care have been extensively stud-
ied and compared with other binary control charts (Woodall 2006; Tsui et al. 2011, 2008; 
Mahmoud et al. 2008; Jiang et al. 2012; Grigg et al. 2003; Fatt Gan et al. 2020). CUSUM 
charts have emerged as one of the most suitable charts for the detection of small fluctua-
tions in the quality of health care and have recently been shown to yield faster detections 
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than other control charts for sustained shifts in quality (Diko et  al. 2019). This property 
is especially useful in the context of audit monitoring, where the primary goal is that of 
identifying persistent changes in the quality of care. Several extensions of CUSUM charts 
to survival outcomes have been developed (Biswas and Kalbfleisch 2008; Gomon et  al. 
2022; Begun et al. 2019; Sego et al. 2009) as well as some continuous time extensions of 
other binary charts (Grigg 2018; Steiner and Jones 2009). All discussed survival charts 
have been shown to potentially detect deviations faster compared to their binary counter-
parts, both on real data sets as well as in simulation studies. Little research has been done 
however on the possible drawbacks of using survival CUSUMs, as well as the use of con-
trol charts for the detection of an increase in the quality of care.

We aim to fill this gap in research, detailing when the use of survival charts may be 
preferable and when it is not. We also highlight some dangers of using CUSUMs for the 
inspection of clinical outcomes. A data set from the Dutch ColoRectal Audit (DCRA) 
about colorectal surgery procedures in the Netherlands is used to compare the performance 
of the binary CUSUM (Steiner et al. 2000), the Biswas & Kalbfleisch CUSUM (Biswas 
and Kalbfleisch 2008) and the CGR-CUSUM (Gomon et  al. 2022) with the commonly 
used funnel plot (Spiegelhalter 2005). Although the funnel plot was not developed for the 
repeated inspection of a process, it is commonly used for this purpose in the medical field 
[e.g. Griffen et al. (2012); Verburg et al. (2017)], as well as currently by the DCRA. Some 
of the pitfalls of funnel plots are discussed in Willik et al. (2020) We show that CUSUM 
control charts are more appropriate for continuously monitoring the quality of care, pos-
sibly reducing the number of false detections as compared to the funnel plot while simulta-
neously providing new insights into the causes of deviations in the quality of care.

We propose the use of CUSUM charts for the inspection of an “inverse” survival prob-
lem where longer survival times are problematic and demonstrate its use for the inspec-
tion of hospital stay duration. Additionally, we investigate when and whether the use of 
survival/generalized control charts such as the CGR-CUSUM is appropriate in a medical 
setting.

This article is organised as follows. In Section “Methods” we give an overview of the 
four methods and propose as a novel procedure for determining control limits for multiple 
hospitals. Section “Results” describes the resulting performance of the considered methods 
on the DCRA data set followed by a Discussion. The article ends with a section describing 
our main “Conclusions”.

2  Methods

Consider the setting where multiple hospitals are performing the same medical procedure 
over the duration of a study period. Our goal is to compare four different methods that can 
be used to inspect the quality of care at different hospitals. These methods are used to dis-
tinguish between hospitals providing unsatisfactory care from hospitals that are performing 
well, which we define as out-of-control and in-control hospitals respectively. This helps the 
hospitals to identify where it might be necessary to evaluate the care process with plans for 
subsequent improvement. As early interventions are crucial, we are primarily interested 
in the time that each method takes to detect deviating hospitals. We are also interested in 
evaluating which hospitals are detected by each method. The comparison is performed on a 
real-life study about surgical resection of colon cancer.
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We start with a description of a real-life data set on colon cancer surgery. Afterwards 
we introduce a binary outcome and give two examples of commonly used (binary) charts 
in this context: the funnel plot (Spiegelhalter 2005) and Bernoulli Cumulative SUM 
(CUSUM) chart (Steiner et al. 2000). We then introduce survival outcomes and present two 
survival charts: the Biswas & Kalbfleisch CUSUM (BK-CUSUM) (Biswas and Kalbfleisch 
2008) and the Continuous time Generalised Rapid response CUSUM (CGR-CUSUM) 
(Gomon et al. 2022). We consider a method to determine control limits for the CUSUM 
charts and conclude this section with a discussion on an alternative use of quality control 
charts: the detection of an increase in the quality of care.

2.1  Data

The Dutch ColoRectal Audit (DCRA) is a nationwide clinical audit in the Netherlands that 
includes all patients that underwent surgery for primary colorectal cancer. The audit moni-
tors, evaluates and improves the colorectal cancer care and has a completeness up to 95% 
which is externally validated (Van Leersum et al. 2013).

A total of 25367 patients who underwent a surgical resection in the period 01/01/2019 
up until 31/12/2021 were included in this study, with 71 hospitals performing surgeries. 
The following patient, disease and procedural characteristics were extracted from the data-
base for risk-adjustment: sex, body mass index (BMI), age, Charlson Comorbidity Index 
(CCI), American Society of Anesthesiologist (ASA) score, solitary of synchronous tumor, 
preoperative tumor complications (e.g. obstruction/ileus, perforation, anemia or peri-
tumoral abscess), T-stage, M-stage, emergency or elective resection, additional resection 
due to tumor ingrowth or metastasis (Kolfschoten et al. 2011). A summary of these prog-
nostic factors can be found in Table 1. BMI showed the highest percentage of missing data 
which is only 1.0%, therefore complete case analysis was performed. Outcomes considered 
were postoperative mortality within 90 days after resection (average 2.4%) and length of 
hospital stay in days (mean 7.05, SD 8.93, median 4).

2.2  Binary charts

After a surgical procedure, the health of a patient is closely monitored. Due to practical 
constraints and medical necessity, this usually happens for a fixed amount of time if no 
complications arise. For this reason, the treating hospital often only knows the vital status 
of a patient in that specific time period. This practical limitation has made the use of binary 
outcomes popular where the vital status of a patient is only considered at the end of the 
follow-up period.

This can be formalised as follows: suppose we have j = 1, ..., k hospitals and consider 
for each patient i = 1, ..., nj being treated at hospital j the binary outcome Xi,j , which is 
equal to zero if a patient is alive 90 days after surgery and one if the patient is deceased. 
For duration of stay, consider Xi,j to be zero if a patient is still at the hospital 21 days after 
surgery and one if the patient was discharged. Outcomes for some patients may be cen-
sored, indicating that we did not observe the outcome. This can happen for a number of 
reasons, for example when a patient can no longer be reached for follow-up. We assume 
that these patients had desirable outcomes (not deceased), but it is also possible to not 
include these patients into the study. Furthermore, for each patient we have p prognostic 
factors denoted by Zi.
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Table 1  Description of the 
characteristics of patients in 
the DCRA data set between 
01/01/2019 and 31/12/2021

71 hospitals, 25367 patients Number Percent (%)

Gender
Female 11857 46.7
BMI
< 18.5 448 1.8
18.5–25 10013 39.9
25–30 9869 39.3
> 30 4763 19
Age (years)
≤ 60 5800 22.9
61–70 6612 26.1
71–80 8506 33.5
≥81 4448 17.5
Charlson comorbidity index
0 12920 50.9
1 5533 21.8
2 3630 14.3
3 1691 6.7
4 777 3.1
5 277 1.1
6 286 1.1
7 137 0.5
8 56 0.2
9 25 0.1
≥ 10 35 0.1
ASA score
1-2 16773 66.1
3-5 8594 33.9
Double tumor
Yes 698 2.8
Preoperative tumor complications
Yes 8297 32.8
T stage
0 149 0.6
1 3457 13.6
2 5490 21.6
3 12620 49.7
4 3651 14.4
M stage
Yes 2385 9.4
Emergency resection
Yes 2125 8.4
Additional resection metastasis
Yes 741 2.9
Additional resection ingrowth
No 23213 91.5
Extensive 975 3.8
Restricted 1179 4.6
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There are many disadvantages associated with the use of a binary outcome. The DCRA 
uses a follow-up time of 90 days for postoperative mortality, meaning that deaths later than 
90 days after surgery will be ignored. Moreover, the outcome does not reflect how long 
after surgery a patient passed away. As a consequence, there is no difference in outcome 
between a patient who passed away one day after surgery and a patient who died 90 days 
after surgery. Additionally, the choice of follow-up duration is often relatively arbitrary. 
Choosing a slightly different follow-up time (e.g. 85 days instead of 90) can already signifi-
cantly change the results of quality control methods. Finally, the use of a binary outcome 
introduces a time delay in the information stream. As vital status is only registered 90 days 
after surgery, no information on a patient is known before that point in time. This means 
that binary outcomes provide “outdated” information, potentially leading to delays in the 
detection of deviations.

In the following sections, we describe two methods based on binary outcomes that can 
be used to inspect the quality of care. We introduce the term failure, which is either death 
( < 90 days) or prolonged hospital stay ( > 21 days). We consider the problem of inspecting 
the quality of care in a specific study period, which is between 01/01/2019 and 31/12/2021 
for the DCRA.

2.2.1  Funnel plot

The funnel plot (Spiegelhalter 2005) can be used to compare the proportion of failures 
between different hospitals. Suppose that p0 is an acceptable (baseline) probability of fail-
ure for a patient at the end of follow-up. Usually, such a probability is not known and the 
average failure probability over all patients at all hospitals is considered instead. We would 
now like to test the null hypothesis that patients at hospital j have an acceptable failure 
probability against the alternative that they do not. For this, we consider the proportion of 

failures at the hospital during the study period: �j =
∑nj

i=1
Xi,j

nj
 . By the central limit theorem, 

this proportion is asymptotically normally distributed. This means that we can conclude 
that the probability of failure at this hospital is not in an acceptable range with confidence 
level 1 − � when the proportion is outside the prediction limits:

where �� is the �− th quantile of the standard normal distribution. This means that if �j is 
larger/smaller than the upper/lower boundary, the probability of failure is larger/smaller 
than baseline, indicating that the quality of care at this hospital is worse/better than 
expected. Note that the prediction limits only depends on the number of patients treated at 
a hospital and baseline failure probability.

Simply comparing the proportions of failure does not adequately capture the complexity 
of treatment between patients. Some patients might have worse prognostic factors than oth-
ers, making an undesirable outcome more likely. To account for this, a risk-adjusted proce-
dure can be considered where for each patient an individual probability of failure pi is 
modelled using logistic regression. We determine the expected number of failures at a hos-
pital as Ej =

∑nj

i=1
pi . A risk-adjusted proportion of failures is then given by �RA

j
=

Oj

Ej

⋅ p0 

(1)�j ∉

[

p0 + � �

2

√

p0(1 − p0)

nj
, p0 − � �

2

√

p0(1 − p0)

nj

]

,
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where Oj is the observed number of failures at hospital j. For the risk-adjusted procedure, 
�RA
j

 is used instead of �j in Eq. (1) to draw conclusions.
When constructing a (risk-adjusted) funnel plot, we determine the proportions �RA

j
 for 

all k hospitals ( j = 1, ..., k ) and plot them against the number of treated patients at that 
hospital in a scatter plot, along with the prediction limits in Eq. (1). An example of risk-
adjusted funnel plot is given in Fig. 1.

The goal of funnel plots from a mathematical point of view is to check for an increase/
decrease in the failure probability at an institution over a fixed time period. In practice 
funnel plots are often used to continuously compare the performances of hospitals (Warps 
et al. 2021), with many consecutive funnel plots being constructed over overlapping time 
periods. This approach introduces multiple problems, such as an increased probability of a 
type I error incurred by repeatedly performing a dependent testing procedure. In addition, 
hospitals that have had a good historical performance and end up in the right lower quad-
rant of Fig. 1a may not be detected by future funnel plots due to the buffer they have built 
up in previous years. Finally, with this approach it is not clear how to handle past informa-
tion of hospitals that have been signalled by a funnel plot. Due to these disadvantages, con-
trol charts that allow for the continuous inspection of the quality of care should be used for 
the intended goal. We focus on such control charts in the following sections.

2.2.2  Binary CUSUM

The binary cumulative sum (CUSUM) chart (Steiner et al. 2000) is a control chart which 
can be used to test for an increase or decrease in the failure probability of a process. 
CUSUM charts can be used to test hypotheses sequentially, meaning that the test can be 
performed after observing each individual outcome. This is not the case for the funnel plot, 
where the test is performed at the end of the study duration. Consider a single hospital j 
and suppose we want to test whether the post surgery failure probability has increased from 
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p0 to p1 (with p1 > p0 ) starting from some chronological patient � ≥ 1 . In other words, we 
are looking for a change point in the failure probability at a single hospital. Again, p0 is 
usually not known in practice and therefore determined as an average over all patients. 
Choosing p1 can pose considerable challenges; therefore we consider the Odds Ratio 
OR =

p1(1−p0)

p0(1−p1)
=∶ e� . Choosing e𝜃 > 1 results in a test for an increase in failure rate, while 

e𝜃 < 1 produces a test for detecting a decrease in failure rate. The odds ratio is often chosen 
to be equal to two (Steiner et  al. 2000), but a practical reason for this choice is usually 
lacking.

The binary CUSUM for hospital j after observing the outcome of the n− th chronologi-
cal patient is given by:

where

For a risk-adjusted procedure the patient specific baseline probability of failure p0,i is first 
modelled using logistic regression and afterwards substituted for p0 in Eq. (3). Note that 

(2)Sn,j = max
(

0, Sn−1,j +Wn,j

)

,

(3)Wn,j = Xn,j ln
(

e�
)

+ ln

(

1

1 − p0 − e�p0

)

.

0.0

0.2

0.4

0.6

0.8

1.0
Ja

n1
9

Mar1
9

May
19

Ju
l19

Sep
19

Nov
19

Ja
n2

0
Mar2

0
May

20
Ju

l20
Sep

20
Nov

20
Ja

n2
1

Mar2
1

May
21

Ju
l21

Sep
21

Nov
21

Date

Va
lu

e
Detected only by funnel plot

Hospital 47A

0.0

0.5

1.0

1.5

2.0

2.5

Ja
n1

9
Mar1

9
May

19
Ju

l19
Sep

19
Nov

19
Ja

n2
0

Mar2
0

May
20

Ju
l20

Sep
20

Nov
20

Ja
n2

1
Mar2

1
May

21
Ju

l21
Sep

21
Nov

21

Date

Va
lu

e

Detected by all methods
Hospital 33B

0.00

0.25

0.50

0.75

1.00

Ja
n1

9
Mar1

9
May

19
Ju

l19
Sep

19
Nov

19
Ja

n2
0

Mar2
0

May
20

Ju
l20

Sep
20

Nov
20

Ja
n2

1
Mar2

1
May

21
Ju

l21
Sep

21
Nov

21

Date

Va
lu

e

Detected only by CGR−CUSUM
Hospital 53C

0.0

0.4

0.8

1.2

Ja
n1

9
Mar1

9
May

19
Ju

l19
Sep

19
Nov

19
Ja

n2
0

Mar2
0

May
20

Ju
l20

Sep
20

Nov
20

Ja
n2

1
Mar2

1
May

21
Ju

l21
Sep

21
Nov

21

Date

Va
lu

e

Detected only by binary and BK−CUSUM
Hospital 31D

Chart Binary BK CGR

Fig. 2  Binary (dot-dash), BK- (solid) and CGR-CUSUM (dashed) control charts for postoperative survival 
for four hospitals: a 47, b 33, c 53, d 31. Charts were scaled with respect to their control limits, resulting in 
a shared control limit with value one. A signal is produced when a chart surpasses the control limit



289Health Services and Outcomes Research Methodology (2024) 24:281–303 

1 3

Wn,j is positive if patient n has failed, and negative otherwise. This means that the value 
of the binary CUSUM chart increases when patients fail and decreases when favourable 
outcomes are observed.

When constructing a binary CUSUM chart, the value of the chart is plotted against the 
chronological patient number or against the time at which the outcome was observed for 
said patient. We signal a change in the failure rate when the value of the chart exceeds the 
value of a pre-specified control limit h. We discuss how to determine such a control limit in 
Section “Control limits”. Note that the value of the chart is cut-off at zero, meaning that the 
CUSUM cannot build up a buffer when the proportion of observed desirable outcomes is 
large. Examples of binary CUSUM charts can be seen in Figs. 2 and 3.

In addition to employing a binary outcome, the major limitation of a binary CUSUM 
chart is the need to specify the odds ratio in advance. In most practical scenarios, there will 
be no information about the expected increase in the failure probability at sub-optimally 
performing hospitals. Choosing an unsuitable value for the odds ratio may cause the proce-
dure to lose statistical power or cause a delay in detections. Grigg et al. (2003); Grigg and 
Farewell (2004) describe this problem and other considerations when using risk-adjusted 
CUSUM charts.
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2.3  Survival charts

Instead of considering a binary outcome, it is often advantageous to consider the time until 
event for each patient, also known as a survival outcome. We then consider Ti,j to be the 
time (f.e. in days) until death or discharge of patient i at hospital j. In contrast to binary 
outcomes, failure here means the observed death or discharge of a patient. Considering 
the discharge of a patient as a failure might seem unnatural, as discharge is usually con-
sidered a positive outcome. The aforementioned dilemma is examined in Section “Lower 
CUSUM”. For the rest of this section we drop the subscript j and consider the problem of 
detecting an increase in the failure rate at a single hospital.

We model the survival times using a Cox proportional hazards model (Cox 1972) where 
the patient specific hazard rate is given by hi(t) = h0(t) exp(�

⊤
Zi) ; the term h0(t) represents 

the baseline hazard and � a coefficient vector indicating the risk associated with the cor-
responding prognostic factors. The baseline hazard indicates an acceptable failure prob-
ability and is usually not known in practice, similarly to p0 for binary charts. The baseline 
hazard (and coefficient vector) is usually estimated by fitting a Cox model on all hospitals 
together, thereby recovering an “average” performance measure. As we are only interested 
in following a patient during their participation in the study, we consider the risk indicator 
Yi(t) which is one if a patient is at risk of failure at time t and zero otherwise. A patient is 
not at risk of failure when they have not entered the study yet, or after they have failed or 
their observation has been censored. To keep track of the number of failures at a hospital 
in real time, we introduce a counting process N(t), which is equal to the number of failures 
at a hospital at time t after the start of the study. As for the binary outcomes, survival out-
comes can also be right-censored. In our case we again consider censored observations as 
having a desirable outcome at the censoring time, but other assumptions are also possible.

There are many advantages to the use of survival outcomes instead of binary out-
comes. First of all, the binary charts required a choice for an outcome threshold (i.e. 90 
days) whereas for survival outcomes this is no longer necessary. The absence of such an 
(arbitrary) choice therefore no longer impacts the resulting conclusions, making the use 
of survival charts consistent. This is a major advantage, especially when there is no clear 
motivation for the choice of a threshold. Additionally, the survival outcome holds the most 
recent information about the status of a patient at any point in time, possibly leading to 
quicker detections. The disadvantages of using survival outcomes primarily relate to practi-
cal considerations. The registration of survival outcomes requires a continuous follow up 
of patients, which is often not feasible for long periods after the initial procedure. For this 
reason, times to event may only be known exactly in a fixed period after surgery, as is the 
case for postoperative survival in the DCRA data. The duration of stay is known exactly for 
each patient.

In the following two sections we describe two control charts that use survival outcomes, 
with the goal to detect an increase in the failure rate at a single hospital during the study 
period.

2.3.1  BK‑CUSUM

The Biswas & Kalbfleisch CUSUM (Biswas and Kalbfleisch 2008) (BK-CUSUM) is 
a control chart for survival outcomes, used to test for a change in the failure rate of 
a process. This chart can be seen as the survival analogue of the binary CUSUM in 
Section “Binary CUSUM”. The BK-CUSUM however is used to test slightly different 
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hypotheses. Where the binary CUSUM was used to test for an increase in failure rate 
starting from a chronological patient � ≥ 1 , the BK-CUSUM is used to test for a sudden 
change in the failure rate of all patients in the study at some time s ≥ 0 after the start of 
the study. This sudden change is then described by an increase in the baseline hazard 
rate from h0(t) to h0(t) exp(�) , with exp(�) called the hazard ratio. The hazard ratio can 
be seen as an analogue of the Odds Ratio in binary CUSUM charts. It has to be chosen 
in advance, with a wrong choice potentially leading to delayed and/or false detections 
(Gomon et al. 2022). To facilitate testing the described hypotheses, we consider a time-
constrained counting process N(s, t) = N(t) − N(s) for t ≥ s , which keeps track of the 
failures at a hospital between times s and t.

The BK-CUSUM is given by:

where Λ(s, t) =
∑nj

i=1
∫

t

s
Yi(u)hi(u)du is the accumulated cumulative hazard at a hospital 

between times s and t. Heuristically, the accumulated cumulative hazard indicates how 
much risk was built up by patients present at a specific hospital between times s and t. 
Note that the value of the BK-CUSUM will increase by � any time a failure is observed 
and drift downwards at all other time points, with the downward slope depending on the 
current amount of patients at the hospital and their risk of failure. Even though the BK-
CUSUM does not have an explicit cut-off at zero, the maximisation term implicitly stops 
the value of the chart dropping below zero. As with the binary CUSUM, the value of the 
BK-CUSUM is plotted against study time and a signal is produced when the value exceeds 
a pre-defined control limit h.

In parallel to the binary CUSUM, the choice of a hazard rate e� complicates the use 
of the BK-CUSUM, as it is usually not known in advance what the increase in hazard 
rate will be at sub-optimally performing hospitals. (Biswas and Kalbfleisch 2008) chose 
to use a value of e� = 2 , corresponding to the use of OR = 2 in binary CUSUM charts. 
Even though this choice seems to be commonplace (Gomon et al. 2022; Steiner et al. 
2000; Biswas and Kalbfleisch 2008), there is no guarantee that an OR equal to 2 will 
perform well in real life applications.

2.3.2  CGR‑CUSUM

The Continuous time Generalised Rapid response CUSUM (Gomon et al. 2022) (CGR-
CUSUM) is a control chart for survival outcomes, similar to the BK-CUSUM. There are 
two key differences between the CGR- and BK-CUSUM. First of all, the CGR-CUSUM 
can be used to test the continuous time alternative to the discrete time hypotheses con-
sidered for the binary CUSUM: the detection of a change in failure rate starting from 
some chronological patient � ≥ 1 , ignoring the information of all patients before this 
patient. The BK-CUSUM can be used to test for a change point in time, considering the 
information of all patients still in the study. Secondly, the CGR-CUSUM is also used 
to test for a sudden increase of exp(�) in the baseline hazard rate, but � is determined 
“automatically” using a maximum likelihood estimator. Suppose at time t > 0 after the 
start of the study, n patients have been treated at a specific hospital. The CGR-CUSUM 
chart is then given by:

(4)BK(t) = max
s∶0≤s≤t

{�N(s, t) −
(

e� − 1
)

Λ(s, t)},
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where N
≥�(t) counts the number of failures at time t after the entry of patient � and 

Λ
≥�(t) =

∑

i≥� ∫
t

0
Yi(u)hi(u)du is the accumulated cumulative hazard rate of those patients. 

The maximum likelihood estimator is then given by:

Details on the calculation of the CGR-CUSUM are described in Appendix A. Similarly to 
the BK-CUSUM, the CGR-CUSUM will jump up at any observed failure and drift down-
wards when no failures are observed. There is also an implicit cut-off at zero due to the 
maximisation term. In contrast, the CGR-CUSUM no longer makes upwards jumps of 
fixed size due to the updating maximum likelihood estimate �̂(t) . This estimate becomes 
large when recent patients fail rapidly compared to their accumulated cumulative hazard, 
and small when failures happen infrequently. The maximum likelihood estimate provides 
an indication on how the recent failure rate at a hospital compares to the baseline fail-
ure rate (usually the average over all hospitals). The value of the CGR-CUSUM is plotted 
against study time and a signal is produced when the value of a control limit h is exceeded.

The value of the maximum likelihood estimator �̂(t) can become very unstable, espe-
cially when some patients fail very quickly after their study entry. For this reason, (Gomon 
et al. 2022) chose to limit the value of the estimator between 0 ≤ e�̂(t) ≤ 6 , thereby aim-
ing to detect an increase in the hazard rate of by at most a factor 6. While the difference 
between the hypotheses concerning the increase in a failure rate from a specific patient 
in the CGR-CUSUM and a change at some point in time for the BK-CUSUM may seem 
trivial, it changes the considered problem significantly. The CGR-CUSUM assumes that at 

(5)CGR(t) = max
1≤�≤n

{

�̂
≥�N≥�(t) −

(

e�̂(t) − 1
)

Λ
≥�(t)

}

,

�̂(t) = max

(

0, ln

(

N
≥�(t)

Λ
≥�(t)

))

.
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Fig. 4  Estimated control limits vs estimated daily arrival rate of patients for all hospitals in the DCRA data 
set, with each dot representing the simulated control limit for a single hospital. The left panel a indicates 
the control limits determined for postoperative survival and the right panel b for hospital stay. The lines 
represent a monotonous cubic regression spline fit through the simulated control limits. Control limits used 
in the study were determined from the fitted lines



293Health Services and Outcomes Research Methodology (2024) 24:281–303 

1 3

some point in time all future patients will have an increased probability of failure, whereas 
the BK-CUSUM assumes that at a certain point in time all current and future patients have 
an increased failure probability.

2.4  Control limits

Even though CUSUM charts give a visual representation of a hospital’s performance, we 
require a practical method to determine when a change in quality should be signalled. This 
is achieved using a control limit, a numeric value indicating when the value of a chart has 
become too large. A CUSUM chart is constructed until the time when its value exceeds the 
control limit, signalling a change in the failure rate at that specific hospital.

A natural question that arises is how this control limit should be chosen. Two 
approaches are commonly used: either the expected time until detection or the probability 
of wrongfully detecting an in-control hospital during the study period is restricted. For a 
single CUSUM chart, define the run length as the time since the start of the study until the 
first detection. The first approach chooses a control limit such that the expected run length 
of an in-control hospital is restricted to some suitable quantity. Using the second approach, 
the control limit is chosen such that an arbitrary in-control hospital has at most probabil-
ity � to be detected during the study period. In other words, the type I error probability is 
restricted over a certain time period. To the best of our knowledge, for both approaches no 
algebraic results for determining control limits for risk-adjusted survival CUSUM charts 
are available. For this reason, Monte Carlo simulation methods are usually employed to 
determine a control limit.

A commonly overlooked problem for CUSUM charts is that hospitals can differ in 
the number of patients treated during the study period. (Gomon et al. 2022) have shown 
that this difference warrants the use of control limits varying depending on the vol-
ume of patients treated at a hospital. Mathematically we model the number of patients 
treated at a specific hospital by using a Poisson process with rate � . For each hospital 
we therefore estimate a Poisson arrival rate �̂� using the Poisson maximum likelihood 
estimator and determine a hospital specific control limit for this rate. The estimated rate 
�̂� can be seen as the expected number of people to be treated at a hospital per time unit 
(e.g. per day).

We choose a simulation approach to determine hospital specific control limits. Sup-
pose we want to estimate the control limit associated with an estimated arrival rate of �̂�j 
for hospital j over a study period of length T. We fit a Cox model on all available data 
(all hospitals):

to obtain an estimate for the baseline hazard ĥ0(t) and regression coefficients �̂ . N dummy 
hospitals are then generated by bootstrapping patient characteristics from the full data 
set, with the amount of patients at each simulated hospital determined by independently 
sampling from a Poisson process with rate �̂�j . Survival times are then generated using the 
inverse transform method described in Bender et al. (2005). CUSUM charts are then con-
structed over the study duration T for each hospital in the dummy data set and a value for 
the control limit is chosen such that at most a proportion � of the simulated hospitals is 
signalled using this value. This is the empirical analogue of choosing a type I error rate of 
� over a study duration of T.

hi(t) = h0(t)e
�⊤

Zi
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To compensate for variance in the simulation procedure we propose to determine 
control limits for hospitals with different arrival rates � and fit monotone cubic regres-
sion splines (see Section 5.3.1 of Wood (2017)) on the determined control limits. We 
can then use the smoothed values as control limits instead, see Fig. 4 for an example. 
The reason for fitting monotone functions on the estimated control limits stems from 
Gomon et al. (2022), who showed that a variant of the CGR-CUSUM is asymptotically 
normally distributed with variance increasing with the arrival rate � . Heuristically this 
means that in-control hospitals treating a larger number of patients are more likely to be 
detected than hospitals treating fewer patients over a fixed study period.

2.5  Lower CUSUM

For certain studies, detecting a decrease in the failure rate may be of greater interest than an 
increase. The goal would then be to detect hospitals performing better than what is deemed 
to be on target. This is easily achieved by choosing a value of exp(𝜃) < 1 for the binary 
and BK-CUSUM in Eqs. (2) and (4). For the CGR-CUSUM this is achieved by restricting 
the maximum likelihood 1

6
≤ exp(�̂(t)) ≤ 0 in Eq. (5). Page (1954) suggested a procedure 

where we test for both an increase and decrease in the failure rate at the same time by 
plotting the two procedures in a single plot, with (usually) the CUSUM for a decrease in 
failure rate facing downwards. This is often called a two-sided CUSUM procedure, with 
one upper and one lower CUSUM chart. We will adhere to the usual naming convention by 
referring to CUSUMs for an increase/decrease in failure rate as upper and lower CUSUM 
charts respectively.

The lower CUSUM procedure solves the problem discussed in section “Survival 
charts”, which is that a discharge from a hospital is not usually regarded as “failure”. We 
are indeed interested in detecting a decrease in the discharge rate at hospitals and will 
therefore construct lower CUSUM charts for this outcome.
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3  Results

In this section, we compare the performance of the four methods mentioned earlier for 
detecting changes in the quality of care at the hospitals in the DCRA data set. First we 
describe the approach taken to ensure comparability of the results obtained from the meth-
ods, then we look at the resulting detections for postoperative survival and hospital stay 
separately.

We construct the funnel plot with 95 percent prediction limits (Eq. (1)), including all 
71 hospitals in the data set. For the CUSUM charts we first determine hospital specific 
control limits as described in Section “Control limits” with type I error guarantee � ≤ 0.05 
over the duration of the study (three years) and exp(�) = 2 (upper) or exp(�) = 0.5 (lower) 
for both the binary and BK-CUSUM. In this way, the type I error of both funnel plot and 
CUSUM procedures over the study duration is restricted to five percent. The funnel plot 
and CUSUM charts are constructed for both outcomes. The resulting control limits for 
CUSUM charts can be seen in Fig. 4. We determine binary, BK- and CGR-CUSUM charts 
for all hospitals in the DCRA data set using their associated smoothed control limits. Chart 
and control limit calculations were performed using the R packages success(Gomon 
et al. 2023) and mgcv (Wood 2011). The resulting charts for all the hospitals are available 
as interactive plotly (Sievert 2020) charts in Additional files 1-2. The code used to per-
form the analyses is available at https:// github. com/d- gomon/ DCRA_ CUSUM.

3.1  Postoperative survival

A Venn diagram detailing the number of detected hospitals for postoperative survival 
is shown in Fig.  5a. Notably, only 2 hospitals were detected by all methods. The fun-
nel plot detected 4 hospitals in total, with 2 of those hospitals not detected by any of the 
CUSUM charts. The BK-CUSUM signalled 4 hospitals in total, also detected by the binary 
CUSUM. Furthermore, the binary CUSUM identified 2 additional hospitals that were not 
detected by any of the other charts. The CGR-CUSUM was the sole chart to detect 3 hos-
pitals, but shared only 2 detections with the rest of the methods in total. Detection times 
in days since the start of the study for all hospitals can be found in Additional file 3. The 
BK-CUSUM had faster detection times than the binary CUSUM for all hospitals except 
for one. The CGR-CUSUM was fastest in detecting the 2 hospitals signalled by all other 
methods. Due to the stark contrast in detected hospitals, no meaningful comparison sum-
maries of signalling times can be made. We attempt to explain the differences in these 
detections by looking at some of them individually. The CUSUM charts for hospital 47, 
which was detected only by the funnel plot, are displayed in Fig. 2a. The value of each 
chart is scaled by their respective control limit resulting in a shared control limit with value 
1 to make visual comparisons. We can see that over the whole study period, failures were 
happening at this specific hospital at a steady rate. None of the charts go back to zero after 
the initial failure. The binary CUSUM initially departs from zero later than the survival 
CUSUMs due to the 90 day delay in observing the outcome. The BK- and CGR-CUSUM 
jump upwards at the same times (at failure times), but with different jump sizes. The BK-
CUSUM always jumps up by � whereas the CGR-CUSUM jumps upwards depending on 
the current value of �̂(t) . For the same reason both charts also drift downwards at different 

Table 1  (continued) BMI stands for Body Mass Index and ASA for American Society of 
Anesthesiology

https://github.com/d-gomon/DCRA_CUSUM
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rates. This difference is particularly evident towards the end of the study, where the CGR-
CUSUM takes significantly lower values than the BK- and binary CUSUM charts. From 
these charts we conclude that even though the proportion of failures over the study period 
was high at this specific hospital, the failures were spread out over the total study duration 
and most failure times were acceptable.

To investigate why some charts produce signals faster than others, we take a look at hos-
pital 33 in Fig. 2b. This hospital was detected by all charts, with the CGR-CUSUM leading 
in detection time (243 days), followed by the BK-CUSUM (300 days), binary CUSUM 
(369 days) and finally the funnel plot (3 years - end of study). Due to its variable jump 
size, the CGR-CUSUM crosses its control limit after the fourth death is observed. The BK-
CUSUM does so only after the fifth death, causing a delay in detection. The same reason 
holds for the discrepancy between the BK- and binary CUSUM, combined with the 90 day 
delay. At the time of detection, the maximum likelihood estimate for the CGR-CUSUM 
was �̂(t) = 6 (maximal allowed value), meaning that patients were failing at an extremely 
rapid rate compared to the national average in those three years. Due to the choice of an 
alternative failure rate of e� = 2 in the BK- and binary CUSUM, we therefore experienced 
delays in detection using those charts.

The maximum likelihood estimator �̂(t) can be a double edged sword if not used prop-
erly. An example can be seen in Fig. 2c showing Hospital 53. The rapid consecutive fail-
ures in the beginning of the study inflate the estimated value of the hazard ratio, causing a 
possibly premature detection by the CGR-CUSUM. After the initial spike in all CUSUM 
charts, the values of all charts rapidly drift downwards, indicating good performance in 
that part of the study. For this study, the choice of restricting e�̂(t) ≤ 6 might not have been 
optimal.

Finally, we take a look at Hospital 31 in Fig. 2d; the BK- and binary CUSUM both cross 
their control limits but the CGR-CUSUM does not. This could indicate that even though 
many consecutive failures occur, patients experiencing failures had poor prognostic factors 
or were failing at acceptable times and therefore should not contribute much to the increase 
in the value of the chart.

3.2  Hospital stay

The number of hospitals signalled by each method with a significantly lower rate/propor-
tion of patient discharge is displayed in a Venn diagram in Fig. 5b. Detection times in days 
since the start of the study for all hospitals can be found in Additional file 4. Contrary to 
the results for postoperative survival, both survival charts detect way more hospitals than 
the binary charts with the CGR-CUSUM detecting more than half (37) of all hospitals. 
The binary CUSUM detects almost exclusively the same hospitals as the funnel plot, with 
the funnel plot agreeing on many detections with the BK-CUSUM. A total of 14 hospitals 
were detected by both survival charts, but not by the binary charts, stressing that these 
methods test very different hypotheses. The BK-CUSUM seems to yield the most “bal-
anced” detections, yielding only 2 exclusive detections and overlapping with at least one 
other method on the rest of its signals.

Hospital 70 in Fig. 3a was detected only by the funnel plot. We can see in the values 
of the binary CUSUM that over the whole study period quite a few patients were not dis-
charged 21 days after surgery. The survival charts only clearly show when a patient is dis-
charged, indicated by an upward jump. The downward slope indicates how many patients 
are at the hospital at that point in time, but does not allow for easy comparisons between 
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time periods. This hospital had a period of slow discharges between January 2019 and 
March 2020, followed by a reasonable discharge rate afterwards.

In Fig. 3b we can see that Hospital 14 had two periods when many patients were staying 
at the hospital, but were not being discharged at an acceptable rate. In the periods between 
September and November 2019, a large proportion of patients were being discharged 
slower than usual. The binary chart does not display any deterioration in the period, as all 
these patients were most likely being discharged within the 21 day window. It looks like 
something similar happened in the period after November 2020, with the binary CUSUM 
finally signalling at the end of the study period. This example shows how the use of binary 
vs survival outcomes can influence the conclusions.

Interestingly, Hospital 33 in Fig.  3c was detected only by the CGR-CUSUM, with 
both the BK- and binary CUSUM nearly exceeding their control limit at an early stage of 
the study. The CGR-CUSUM produces a signal, but only in the second half of the study 
period. The maximum likelihood estimate of the CGR-CUSUM seems to converge to a 
value around exp(�̂(t)) = 0.7 throughout the three years under consideration. The binary 
and BK-CUSUM are looking for a halving ( exp(�) = 0.5 ) of the discharge rate and there-
fore do not find sufficient evidence to produce a signal. This raises the question of whether 
0.7 times the baseline rate should be deemed acceptable or not.

Finally, the binary CUSUM follows a similar progression as the CGR-CUSUM for Hos-
pital 64 in Fig. 3d. Both charts drift downwards throughout the whole study duration, indi-
cating a persistent delay in patient discharge. The BK-CUSUM on the other hand stays 
close to zero, suddenly drifting downwards at multiple occasions and finally producing 
a signal at the end of the study. The CGR-CUSUM estimates a discharge rate of about 
0.74 the national average, leading to delays in detection with the BK-CUSUM. It is sur-
prising that the binary CUSUM, which also looks for a halving of failure rate, follows a 
similar trend to the CGR-CUSUM. This is likely due to a combination of the choice of 
cut-off at 21 days post surgery and looking for a halving of discharge rate. Whereas the 
discharge rate looking at overall hospital stay does not seem to be halved, it is possible that 
the 21-day post surgery discharge rate is very close to half the national rate. This example 
clearly shows that the choice of cut-off as well as value of � greatly affects the outcome.

4  Discussion

We applied and compared four methods for the continuous inspection of the quality of 
care after colorectal surgery in the Netherlands, exploring the funnel plot and three meth-
ods based on CUSUM statistics. For the clinical outcome we looked at both survival after 
surgery as well as (prolonged) hospital stay. We found that survival charts outperformed 
binary charts with respect to the detection time of deviations at the considered hospitals. 
We discussed the differences between methods and highlighted some pitfalls that can 
occur.

The control limits used for signalling a decrease in the quality of care at a hospital are 
usually determined by a simulation study, where either a single value is used for all hospi-
tals (Steiner et al. 2000) or the hospitals are grouped into categories by size (Biswas and 
Kalbfleisch 2008) with each group using a separate control limit. When grouping hospitals, 
the difference between the smallest and largest hospital within a group may be substantial. 
In contrast to previous studies, we determined control limits for the CUSUM charts using 
a novel approach where each hospital has a unique control limit, which can be considered 
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“fair” with respect to other hospitals. A drawback of this method is that it requires more 
computing time.

We found that the use of the funnel plot as continuous inspection scheme is unsuitable, 
not only yielding detections which are almost certainly false, but also not providing any 
insights into the reasons why certain hospitals were detected and others were not. Since 
the funnel plot can only be constructed once the study period is over, it logically resulted 
in very slow detections of deviations as well. Using the same information, the binary 
CUSUM chart was able to detect deviations much faster, and provided insights into when 
deviations at a hospital began and ended. The considered BK- and CGR-CUSUM charts 
boasted even quicker detection times, but due to the use of a survival outcome yielded very 
different detections, especially for hospital stay.

We used lower CUSUM charts to detect a decrease in the quality of a care regarding 
hospital stay, where long stay times are considered unfavourable. This contrast with the 
usual application of lower CUSUMs for the detection of an increase in the quality of care. 
Survival CUSUM charts for this outcome yielded signals for over half the considered hos-
pitals, indicating that either deviations were present at many hospitals or that the charts 
were too sensitive for the desired inspection procedure. As inspecting the duration of hos-
pital stay is more useful for managerial matters, the use of a binary CUSUM might be 
appropriate here. Even though the choice of a threshold (21 days in this case) can influence 
the final conclusions, it can be based on practical considerations such as preventing over-
crowding and cutting down on costs. Before making decisions of this nature, it is important 
to consider the objective of the continuous monitoring procedure.

The binary and BK-CUSUM require prior knowledge about the expected increase in 
failure rate, in the form of a choice for the odds or hazard ratio e� . We believe that many 
researchers use CUSUM charts with e� = 2 simply based on previous research. However, 
to the best of our knowledge there is no evidence that such a value is appropriate for many, 
if not any practical application in medicine. On the other hand, there are many simulation 
studies showing that misspecifying this parameter can lead to delays in detections as well 
as an increase in false detections. Even though the CGR-CUSUM attempts to solve this 
problem by using a maximum likelihood estimator, the authors recommend limiting the 
allowed range to at most 6 times the baseline rate to limit the amount of false detections. 
This choice is also arbitrary and might be unsuitable for the problem at hand, although it is 
less likely to influence the study results if the true increase in failure rate at the considered 
hospitals is not (much) larger than the chosen value.

A good understanding of the hypotheses being tested by each of the charts is vital for 
a successful inspection procedure. Whereas the difference between the funnel plot and the 
CUSUM charts is evident, the differences between the CUSUM charts are not as apparent. 
The binary and CGR-CUSUM test the same alternative hypothesis that the failure rate has 
increased starting with the surgery of a certain patient, with the CGR-CUSUM using sur-
vival outcomes (instead of binary) to test this. The BK-CUSUM is used to test the hypoth-
esis that the failure rate has increased for all patients suddenly, at a certain point in time. 
This may not sound like a big difference, but can significantly influence the conclusions, 
especially if one of the two assumptions is more likely to be true.

An important matter to consider when using control charts is that a signal does not 
imply deviations at the hospital in question. There are many possible reasons for an in-
control hospital to be signalled, with a false detection being one of the most obvious. 
Signals should therefore not be used to draw causal conclusions, but should be used with 
an additional evaluation of past performance at a specific hospital to determine potential 
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deviations. CUSUM charts provide visual and exact information on when deviations may 
have started and in which time periods they were exacerbated.

As the quality of care improves, the occurrence of adverse events can become exceed-
ingly rare, resulting in what is called a high-quality process. In such cases standard control 
charts such as the CUSUMs considered in this article can no longer adequately be used to 
monitor the process. Time-between-event charts have been developed specifically for the 
inspection of high-quality processes (for a review see Ali et al. (2016)). Unfortunately in 
this setting prognostic factors can no longer be incorporated into the model, but the het-
erogeneity between patients can in some cases still be modelled using an overdispersion 
parameter (e.g. Albers (2009)).

5  Conclusions

It is crucial to understand what the assumptions of a control chart are and which hypotheses 
are being tested before choosing the appropriate method. For the considered CUSUM charts 
the major pitfalls are the choices of parameters and understanding the hypotheses being 
tested. It is also important to be aware of the many pitfalls of binary and survival CUSUM 
charts when interpreting the resulting charts. The use of survival over binary CUSUM 
charts can yield quicker detections and provides different insights about failure rates at hos-
pitals during the study. The use of survival CUSUM charts may not always be appropriate, 
for example if the exact survival time of the patient is not relevant for the problem at hand. 
Constructing multiple CUSUM charts can give additional insights into the behaviour of the 
process. A comparison between different charts can aid the interpretation of chart values 
and help to distinguish true from false detections. The choice of a control limit is a compli-
cated issue for the use of control charts. We advise to consider our new approach discussed 
in this article, which assigns a similar value of the control limit for hospitals that treat a sim-
ilar number of patients. It eliminates the problem of grouping hospitals and provides a clear 
reason for the difference between control limits at different hospitals. In the future, survival 
CUSUM charts should be compared with other survival charts to determine how well they 
perform with respect to detection time and sensitivity to changes in the failure rate.

A limitation of our study is that we considered hospitals to have a constant stream of 
patients arriving over the whole study period. If this is not the case, the control limit used 
by a hospital might not be appropriate over the whole study period. Such a change in the 
number of treated patients is especially apparent in the considered downward CUSUMs 
(see Fig. 3) where the slope of the CUSUM chart can spontaneously increase or decrease, 
leading to possibly premature or delayed detections. A similar issue can arise when the risk 
distribution of the patient population changes over time. For the second issue dynamic con-
trol limits have been proposed by multiple studies (an overview is given in Tighkhorshid 
et al. (2019)). Dynamic control limits could however be used to solve both of these issues 
simultaneously.

The use of survival charts for continuously monitoring health care requires the informa-
tion on the status of patients to come in continuously. Although hospitals usually record 
information in a timely manner, the aggregation of data across hospitals into a registry hap-
pens in a delayed fashion. Measures should be taken to streamline the aggregation of data 
into registries to improve the quality of care. In the meanwhile, individual hospitals can 
continuously monitor their own quality compared to some historical average performance 
measure.
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Appendix A: Details on the calculation of the CGR‑CUSUM

In this section we sketch how the value of the CGR-CUSUM can be calculated in prac-
tice. This procedure is implemented in the R package success (Gomon et  al. 2023). 
We will only cover the procedure for upper-sided CUSUM charts as the procedure for 
lower-sided CUSUM charts is very similar.

Before we can construct a CUSUM chart for a hospital, we first need to determine 
what the target performance measure is. For this reason, we determine the cox baseline 
hazard rate h0(t) and associated risk-adjustment coefficients � using historical data. This 
allows us to determine the patient specific hazard rate hi(t) = h0(t) exp(�

⊤
Zi) . Preferably 

the historical data is known to have in-control failures, but often all available data is 
used to determine baseline characteristics instead. In the following steps we assume that 
we have estimates for these quantities. There are multiple ways to estimate them, we 
make use of the survival package (Therneau 2020).

Given a data set containing the information on n patients at a single hospital we per-
form four steps. 

Step 1: Order patients according to their surgery calendar time Si for i = 1,… , n and deter-
mine the K unique failure times of all patients. To minimise computational burden we 
usually only construct the chart at the failure times for upper-sided CUSUM charts. 
This results in K unique construction times at which we want to determine the value of 
the chart, denoted by tk for k = 1,… ,K . Let us denote the chronologically sorted union 
of the unique surgery times and unique failure times by {sb} with b = 1,… ,B and call 
these the vital times.

Step 2: For  each  b = 1,… ,B  and  each  pa t i en t  i = 1,… , n  ,  ca l cu la t e 
Λi(sb) = ∫

sb
0

Yi(u)hi(u)du and store in a matrix � of dimensions n × B so that 
�ib = Λi(sb) . Note that Λi(sb) is only non-zero when the patient has had surgery before 
the vital time ( Si < sb ). The rows of this matrix then represent the patients (ordered 
chronologically in calendar time) and the columns represent the vital times s1,… , sB . 
The values of the matrix then represent the total individual cumulative hazard built up 
by a single patient at the considered time. Note that the column sums of this matrix 
represent the total cumulative hazard at the hospital at the respective calendar time: 
∑n

i=1
�ib = Λ(sb).

Step 3: Suppose we want to construct the chart at one of the vital times sl . We can calculate 
Λ

≥�(sl) from Eq. (5) using above matrix as follows: Λ
≥�(sl) =

∑n

i=1
�il −

∑n

i=1
�i� , where 

s� is the vital time corresponding to the surgery time of patient � . The value of N
≥�(sb) 

is easily calculated by considering only the failures of patients with surgery time larger 
than S� . Having obtained both Λ

≥�(sb) and N
≥�(sb) we can calculate �̂(sb) and therefore 

the value of the CGR-CUSUM by iterating over all patients � with a surgery time smaller 
than sl and taking the maximum of the obtained values.

Step 4: Repeat Step 3 for all K construction times considered in Step 1.
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