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ABSTRACT
NetKAT is a powerful model extending Kleene algebra with tests

(KAT) to programming networks. It supports the specification and

reasoning about software-defined networks via automata-based

operational semantics. This paper extends the NetKAT automata

model to support concurrency using shared ports for communica-

tion and synchronization. We first extend the language of NetKAT

protocols with communication actions and a parallel operator and

give a closed and an open semantics using NetKAT automata. We

show that NetKAT automata with an open semantics can be used as

a model of the coordination language Reo via symbolic constraint

automata.
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1 INTRODUCTION
The rapid evolution of technology, increasing network traffic,

and the need for flexible and scalable computer networks have

necessitated a paradigm shift in network management. Traditional

network architectures use distributed switches to receive and for-

ward packets, each switch consisting of hardware and dedicated

control software. Software Defined Networks (SDNs) provide a

centralized approach to network control and management by sepa-

rating the control plane from the data plane [14]. This separation

allows for programmability and agility in network configurations,

enabling dynamic provisioning of resources, efficient traffic man-

agement, and the ability to adapt to changing requirements.

The level of programmability of the software controllers in an

SDN to handle traffic flow, routing decisions, and network poli-

cies together with the use of protocols such as OpenFlow [22]
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have generated increasing interest in the academic community

to provide a theoretical foundation for understanding the princi-

ples, components, and interactions within SDNs. Examples include

model-checking to verify controller programs [1, 5, 6, 12], formal

models of OpenFlow [11, 18], or some specific part of it, such as

the topology discovery mechanism [26] or security protocols [9].

Different from other process algebras like CSP [15], a policy-

based approach is taken by NetKAT [2], a model that emphasizes

the policy-driven nature of SDNs. It consists of an extension with

variables of Kleene Algebra with Tests tailored to define high-level

policy specification and network components and observe the net-

work behavior from the point of view of a packet [19]. NetKAT,

however, is not stateful and does not allow modeling concurrent

policies and multiple packets. In this paper, we present pNetKAT, a

conservative extension of NetKAT, allowing multiple concurrent

policies to communicate via shared ports. In pNetKAT, ports are

treated as shared variables that can be undefined when no commu-

nication is possible. We give an operational semantics to pNetKAT

using non-deterministic NetKAT automata with a slightly modified

acceptance rule that enforces observability only of sequences with

successful synchronization steps). Without ports, both syntactically

and semantically pNetKAT and NetKAT coincide.

Under the assumption that ports are declared as either input

or output, we give another semantics to pNetKAT by refining the

acceptance rule of non-deterministic NetKAT automata to allow for

the system to interact with the environment along the input and

output ports. The new semantics is an extension of the previous one

(and thus the new equivalence is stricter, in general). We show that

this model can be used as semantics for the coordination language

Reo [3]. from which we can borrow the join composition operator

and define it for NetKAT automata with input and output ports.

Unlike other methods, our pNetKAT extension to a stateful and

concurrent NetKAT is conservative as it remains in the semantic

realm of language equivalence instead of moving to pomset [24] or

bisimulation equivalence [8]. The connection with Reo paves the

way to a more expressive concurrent NetKAT, with (concurrent,

stateful) policies declaring input and output ports (as switches and

controllers in SDNs) that can be composed using a join operation

(only communication on common ports must synchronize, while

policies using undeclared ports in another process can proceed in

parallel).

We proceed as follows. In Section 2 we briefly present NetKAT

with a focus on the automata model. While the original model is de-

terministic we present also an equivalent but more compact model

based on non-deterministic NetKAT automata (NKA). In Section

3 we extend NetKAT protocols with communication actions and

concurrency and define a closed semantics using non-deterministic

NetKAT automata with ports (pNKA). We continue in Section 4 by

introducing non-deterministic NetKAT automata with input and
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output ports (ioNKA) and use them to model NetKAT with ports.

We then briefly recall Reo and its symbolic constraint automata

semantics and show how to compositionally translate them into

NetKAT automata.

Related work
There are several works extendingNetKAT in different directions.

For example, [21] introduces network event structures to model

constraints on updates and define an extension of NetKAT policies

with mutable state to give semantics to stateful SDN controllers.

DyNetKAT [8] is a NetKAT extension with concurrency and a state-

ful state to model SDNs with dynamic configurations. The extended

language is a process algebra with constructs for synchronization,

sequential composition, and recursion built on top of NetKAT poli-

cies. While DyNetKAT allows for multi-packet behavior, the syntax

does not allow for the basic NetKAT “dup” action. Also, the focus

is on bisimulation rather than our (and NetKAT) language equiv-

alence, which comes equipped with sound and ground-complete

axiomatization.

Staying in the realm of Kleene algebra is the line of works fol-

lowed by [24], where CNetKAT is introduced as a combination of

Kleene algebra with tests, concurrent Kleene algebra, and network

operators. The semantics is given in terms of pomset languages

and is thus based on true concurrency rather than interleaving.

Besides the work we already mentioned, there are other formal

models for SDN closely related to NetKAT that involve concurrency.

For example, concurrent NetCore [23] extends NetCore with con-

currency, while NetKAT is an extension of NetCore with Kleene

star. In terms of tools, SDNRacer [10] checks various concurrency-

induced errors in SDNs and precisely captures the asynchronous

interaction between controllers and switches.

Constraint automata are the first automata-based model for Reo

connectors [4]. Since then, various other operational models have

emerged (see [17] for an overview). Relevant to our work here

is the extension of constraint automata with memory [16] and

the more recent work of symbolic constraint automata [12] that

focus on an implementable subset, instead of an efficient compu-

tation of the composition operator. In this paper, we show how to

embed symbolic constraint automata into ioNKA. We follow I/O

automata [20] and constraint automata [4] by explicitly declaring

at the interface the ports that are used as input and output. Transi-

tions in ioNKA, however, are neither action-based nor imperative,

but rather declarative using pre- and post-conditions in the style of

NetKAT automata.

2 NETKAT
In this section, we briefly introduce NetKAT [2], a language for

specifying the flow of a packet through a network, and give its

semantics in terms of finite automata and languages.

We assume fixed a finite set of fields 𝐹𝑙𝑑 , say of size 𝑘 , and a finite

set of values Val. A packet 𝜋 is a record of fields, that is, a function

from 𝐹𝑙𝑑 to Val that we represent by [𝑓1 = 𝑣1, · · · , 𝑓𝑘 = 𝑣𝑘 ]. Tests
for the value stored in a field form the basic building block for the

set of predicates 𝐵(𝐹𝑙𝑑) defined by the following grammar:

𝑎, 𝑏 F 1 | 0 | 𝑓 = 𝑣 | 𝑎 + 𝑏 | 𝑎 · 𝑏 | ¬𝑎 .

The set of all predicates (modulo the usual equations) forms a

Boolean algebra, where + is interpreted as the disjunction, · as the
conjunction, and ¬ as negation. Further, 1 is the truth predicate,

and 0 denotes false. The set 𝐴𝑡 of atoms 𝛼, 𝛽 of the Boolean alge-

bra 𝐵(𝐹𝑙𝑑) corresponds to the set of valuations, that is complete

conjunctions of basic tests 𝑓 = 𝑣 ranging over all fields in 𝐹𝑙𝑑 . For

simplicity, and with a convenient abuse of notation, we denote an

atom as a record 𝛼 = [𝑓1 = 𝑣1, · · · , 𝑓𝑘 = 𝑣𝑘 ], allowing us to switch

between packets and atoms. The behavior of a packet through the

network is specified by policies

𝑝, 𝑞 F 𝑎 | 𝑓 ← 𝑣 | 𝑑𝑢𝑝 | 𝑝 + 𝑞 | 𝑝 · 𝑞 | 𝑝∗ .

Here 𝑎 is a predicate in 𝐵(𝐹𝑙𝑑), 𝑓 ← 𝑣 is the assignment of the

value 𝑣 to the field 𝑓 of a packet, 𝑝 + 𝑞 is the nondeterministic

choice between the policies 𝑝 and 𝑞, 𝑝 · 𝑞 specify the sequential

composition of two policies, and 𝑝∗ the iterative execution of a

policy 𝑝 . The predicate 0 denotes failure and 1 is skip. As usual, we

will often not write “·” in policies. When applied to predicates, “+”
and “·” act as disjunctions and conjunctions, respectively.

The behavior of a packet 𝜋 through the network is specified

by a string in (𝐴𝑡 · 𝐴𝑡) · 𝐴𝑡∗, denoting a sequence of conditions

satisfied by the packet 𝜋 before and after being forwarded from

one switch to another in the network. Syntactically, the forwarding

is specified by the action 𝑑𝑢𝑝 , which is thus the only observable

action of a policy. The semantics of a policy is then given by the

set of all possible behaviors of a packet under that policy. Since

this is a regular subset of (𝐴𝑡 · 𝐴𝑡) · 𝐴𝑡∗, following [13], we use an

automaton to describe it.

Definition 2.1. A deterministic NetKAT automaton (dNKA) is a

tuple (𝑆, 𝐹𝑙𝑑, 𝛿, 𝜉, 𝑠0) where
• 𝑆 is a finite set of states,

• 𝐹𝑙𝑑 is a finite set of fields,

• 𝛿 : 𝑆 ×𝐴𝑡 ×𝐴𝑡 → 𝑆 is a transition map,

• 𝜉 : 𝑆 ×𝐴𝑡 ×𝐴𝑡 → 2 is an observation map, and

• 𝑠0 ∈ 𝑆 is a distinguished initial state.

Here 𝐴𝑡 is the set of atoms of 𝐵(𝐹𝑙𝑑), and 2 is the two-element

Boolean set.

Differently from an ordinary automaton, a dNKA uses pre- and

post-conditions as labels to specify the execution of an action in

a computation. Here 𝛿 (𝑠, 𝛼, 𝛽) = 𝑠′ denotes a transition from state

𝑠 to a state 𝑠′ executed by an action satisfying the pre-condition

𝛼 and resulting in a post-condition 𝛽 . Further, the observation

map 𝜉 (𝑠, 𝛼, 𝛽) = 1 if and only if an action in state 𝑠 satisfies the

pre-condition 𝛼 , results in the post-condition 𝛽 , and successfully

terminates a computation.

Figure 1 shows a dNKA. There are four states but only {𝑠0, 𝑠1, 𝑠2}
are accepting computations that end in the pair of atoms labeling

the respective vertical down arrows. The state 𝑠0 is the initial state,

as marked by an incoming arrowwithout a source. As usual, labeled

arrows between two states represent the transition map. Here we

assume only three atoms: 𝛼, 𝛽 , and 𝛾 .

The language accepted by a dNKA is a subset of strings in (𝐴𝑡 ·
𝐴𝑡) · 𝐴𝑡∗ and is defined with the help of the following auxiliary

acceptance predicate:
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𝑠0 𝑠1 𝑠2

𝛼, 𝛽 𝛽,𝛾

𝛼, 𝛼 𝛽, 𝛼 𝛾, 𝛼

𝑒𝑙𝑠𝑒

𝑒𝑙𝑠𝑒

𝑎𝑙𝑙

𝑎𝑙𝑙

Figure 1: An example of a dNKA

Definition 2.2. For a dNKA 𝑀 = (𝑆, 𝐹𝑙𝑑, 𝛿, 𝜉, 𝑠0), we say that

a string 𝜎 ∈ (𝐴𝑡 · 𝐴𝑡) · 𝐴𝑡∗ is accepted by 𝑀 if and only if the

deterministic acceptance predicate 𝐷𝐴𝑐𝑐 (𝑠0, 𝜎) holds, where 𝐷𝐴𝑐𝑐
is defined inductively as follows:

• 𝐷𝐴𝑐𝑐 (𝑠, 𝛼𝛽) = 𝜉 (𝑠, 𝛼, 𝛽),
• 𝐷𝐴𝑐𝑐 (𝑠, 𝛼𝛽 · 𝜏) = 𝐷𝐴𝑐𝑐 (𝛿 (𝑠, 𝛼, 𝛽), 𝛽 · 𝜏),

where 𝑠 ∈ 𝑆 , 𝛼, 𝛽 ∈ 𝐴𝑡 , and 𝜏 ∈ 𝐴𝑡+. The language 𝐿𝑑 (𝑀) is defined
as the set of all strings accepted by𝑀 .

The language of the automaton in Figure 1 is {𝛼𝛼, 𝛼𝛽𝛼, 𝛼𝛽𝛾𝛼}. In
fact, for example, 𝐷𝐴𝑐𝑐 (𝑠0, 𝛼𝛽𝛼) = 𝐷𝐴𝑐𝑐 (𝑠1, 𝛽𝛼) = 𝜉 (𝑠1, 𝛽, 𝛼) = 1.

For a more compact representation of the operational seman-

tics of NetKAT, we use non-deterministic NetKAT automata as

introduced in [25].

Definition 2.3. A non-deterministic NetKAT automaton (NKA)

is a tuple (𝑆, 𝐹𝑙𝑑, Δ, Ξ, 𝑠0), where
• 𝑆 is a finite set of states;

• 𝐹𝑙𝑑 is a finite set of fields;

• Δ : 𝑆 ×𝐴𝑡 ×𝐴𝑡 → P(𝑆) is a transition relation;

• Ξ: 𝑆 ×𝐴𝑡 ×𝐴𝑡 → 2 is an observation map, and

• 𝑠0 ∈ 𝑆 is a distinguished initial state.

As before, here 𝐴𝑡 is the set of atoms of 𝐵(𝐹𝑙𝑑).

For example, the sub-automaton defined by restricting the one

in Figure 1 to the three states 𝑠0, 𝑠1 and 𝑠2 is an NKA.

Having non-determinism is reflected in the definition of the

language accepted, which now selects only transitions leading to

successful computations.

Definition 2.4. For an NKA 𝑁 = (𝑆, 𝐹𝑙𝑑, Δ, Ξ, 𝑠0), we say that

a string 𝜎 ∈ (𝐴𝑡 · 𝐴𝑡) · 𝐴𝑡∗ is accepted by 𝑁 if and only if the

non-deterministic acceptance predicate NDAcc(𝑠0, 𝜎) holds, where
NDAcc is defined inductively as follows:

• NDAcc(𝑠, 𝛼𝛽) = Ξ(𝑠, 𝛼, 𝛽),
• NDAcc(𝑠, 𝛼𝛽 · 𝜏) ⇐⇒ ∃𝑠′ ∈ Δ(𝑠, 𝛼, 𝛽) .NDAcc(𝑠′, 𝛽 · 𝜏),

where 𝑠 ∈ 𝑆 , 𝛼, 𝛽 ∈ 𝐴𝑡 , and 𝜏 ∈ 𝐴𝑡+. The language 𝐿𝑛𝑑 (𝑁 ) is
defined as the set of all strings in (𝐴𝑡 · 𝐴𝑡) · 𝐴𝑡∗ accepted by 𝑁 .

Every dNKA can be easily seen as an NKA with a functional

transition relation. Conversely, given an NKA, we can construct a

dNKA that is language equivalent.

Theorem 2.5. For every NKA 𝑁 there exists a dNKA 𝑀 such that
𝐿𝑑 (𝑀) = 𝐿𝑛𝑑 (𝑁 ).

The result is similar to the powerset construction for ordinary

finite automata. In fact, given a NKA 𝑁 = (𝑆, 𝐹𝑙𝑑, Δ, Ξ, 𝑠0) we can
define a dNKA𝑀 = (P(𝑆), 𝐹𝑙𝑑, 𝛿, 𝜉, {𝑠0}) with
• 𝜉 (𝑋, 𝛼, 𝛽) = 1 if and only if ∃𝑠 ∈ 𝑋 .Ξ(𝑠, 𝛼, 𝛽) = 1,

• 𝑠 ∈ 𝛿 (𝑋, 𝛼, 𝛽) if and only if ∃𝑠′ ∈ 𝑋 .𝑠 ∈ Δ(𝑠′, 𝛼, 𝛽).
Then, for all 𝑋 ⊆ 𝑆 , 𝛼, 𝛽 ∈ 𝐴𝑡 , and 𝜎 ∈ 𝐴𝑡∗ we can prove that

𝐷𝐴𝑐𝑐 (𝑋, 𝛼𝛽 ·𝜎) if and only if there exists 𝑠 ∈ 𝑋 such thatNDAcc(𝑠, 𝛼𝛽 ·
𝜎). Note that the above language equivalence does not hold if Δ
and Ξ would take as input general Boolean predicates instead of

atoms.

In Table 1 we give the operational semantics of NetKAT policies

in terms of an NKA. States of the automaton are policies themselves,

that we consider modulo associativity, idempotency, and commuta-

tivity of the “+” operation to guarantee local finiteness. Basically,

a state represents (an equivalence class of) what still needs to be

executed.

Table 1: Operational semantics of NetKAT

𝑑𝑢𝑝
𝛼,𝛼−−−→ 𝛼

𝛼 ≤ 𝑎

𝑎↓(𝛼,𝛼 )
𝛽 ≤ (𝑓 = 𝑣)
𝑓 ← 𝑣↓(𝛼, 𝛽 )

𝑝1

𝛼,𝛽
−−−→ 𝑝

𝑝1 + 𝑝2

𝛼,𝛽
−−−→ 𝑝

𝑝1↓(𝛼, 𝛽 )

𝑝1 + 𝑝2↓(𝛼, 𝛽 )

𝑝1

𝛼,𝛽
−−−→ 𝑝

𝑝1 · 𝑝2

𝛼,𝛽
−−−→ 𝑝 · 𝑝2

𝑝1↓(𝛼, 𝛽 ) 𝑝2↓(𝛽,𝛾 )

𝑝1 · 𝑝2↓(𝛼,𝛾 )

𝑝1↓(𝛼, 𝛽 ) 𝑝2

𝛽,𝛾
−−−→ 𝑝

𝑝1 · 𝑝2

𝛼,𝛾
−−−→ 𝑝

𝑝
𝛼,𝛽
−−−→ 𝑝1

𝑝∗
𝛼,𝛽
−−−→ 𝑝1 · 𝑝∗

𝑝∗↓(𝛼,𝛼 )

𝑝↓(𝛼, 𝛽 ) 𝑝∗
𝛽,𝛾
−−−→ 𝑝1

𝑝∗
𝛼,𝛾
−−−→ 𝑝1

𝑝↓(𝛼, 𝛽 ) 𝑝∗↓(𝛽,𝛾 )

𝑝∗↓(𝛼,𝛾 )

We have two types of rules: those specifying transitions (on the

left-hand side of Table 1), and those for observations, specifying the

accepting states (on the right-hand side). Intuitively, the behavior of

a policy is to guide a given packet into a network. This is described

by the assignment of values to the fields to record, for example,

where the packet is, where it has to go, and other information.

Policies filter out executions via predicates. The basic transition

step of a policy is given only by the execution of a 𝑑𝑢𝑝 action.

Predicate evaluations and field assignments are evaluated locally in

the current state. A policy execution may terminate in an accepting

state (as specified on the right-hand side of Table 1) or may diverge

in an infinite computation (via the transition rules of 𝑝∗) and not be
observed. Note that since we consider states modulo associativity,

commutativity, and idempotency of the “+” operation, there is no
need for symmetric rules for the “+” for both the transition and the

observation relation.

1724



SAC’24, April 8 –April 12, 2024, Avila, Spain H. Feng and M.M. Bonsangue

For a given policy 𝑝 , in [13] a dNKA𝑀 (𝑝) is constructed using

syntactic derivatives. Similarly, Let 𝑁 (𝑝) denote the NKA con-

structed using the rules in Table 1, with as initial state (the equiva-

lence class of) 𝑝 . We then have the automata𝑀 (𝑝) and 𝑁 (𝑝) accept
the same language [25].

3 NETKATWITH PORTS
Next, we extend NetKAT protocols with a parallel operator and

allow policies to communicate via ports. A port𝑥 is a shared variable

between two processes that can be updated with a value 𝑣 by an

output operation 𝑥 !𝑣 and can be destructively read by an input

operation 𝑥?𝑓 which stores the communicated value into a field 𝑓 .

Unlike a variable, however, a port may be undefined, here denoted

by the symbol ⊥ that we assume is not a value in Val. Intuitively,
a port 𝑥 is undefined, i.e. 𝑥 = ⊥, if it can be used by an output

operation. Dually, input on a port 𝑥 can only take place if 𝑥 is not

undefined, i.e. ¬(𝑥 = ⊥) that, as usual, we denote by 𝑥 ≠ ⊥. In other
words, we see an output 𝑥 !𝑣 as the atomic execution of the guarded

command 𝑥 = ⊥ · 𝑥 ← 𝑣 , whereas an input 𝑥?𝑓 can be seen as the

atomic execution of the guarded command 𝑥 ≠ ⊥ · 𝑓 ← 𝑥 · 𝑥 ← ⊥.
Here we use the assignment 𝑓 ← 𝑥 of a variable to a field, which

is just an abbreviation for the protocol Σ𝑣∈Val (𝑥 = 𝑣 · 𝑓 ← 𝑣)
because𝑉𝑎𝑙 is assumed to be finite. Communication of two parallel

protocols via a port 𝑥 in an undefined state is then the atomic

execution of an output command on 𝑥 followed by an input on 𝑥 ,

resulting in the command

(𝑥 = ⊥ · 𝑥 ← 𝑣) · (𝑥 ≠ ⊥ · 𝑓 ← 𝑣 · 𝑥 ← ⊥)

which, because is executed atomically, can be thought of as equiva-

lent to 𝑥 = ⊥ · 𝑓 ← 𝑣 · 𝑥 ← ⊥.
Formally, we assume a finite set of variables Var partitioned in

a set of fields 𝐹𝑙𝑑 and a set of ports Prt. As for NetKAT, fields are
ranged over by 𝑓 , while ports are ranged by 𝑥 . All variables can

store values from Val but only ports can be undefined, which we

denote with ⊥ ∉ Val. The set of predicates 𝐵(Var) extends those of
NetKAT by allowing basic tests on all variables, including ports, as

defined by the grammar

𝑎, 𝑏 F 1 | 0 | 𝑓 = 𝑣 | 𝑥 = 𝑣 | 𝑥 = ⊥ | 𝑎 + 𝑏 | 𝑎 · 𝑏 | ¬𝑎 ,

where, 𝑓 ∈ 𝐹𝑙𝑑 , 𝑥 ∈ Prt, and 𝑣 ∈ Val. We use 𝑓 = 𝑥 as a shorthand

for the test Σ𝑣∈Val𝑥 = 𝑣 · 𝑓 = 𝑣 . This is well defined because the

set Val is finite. The behavior of a packet in pNetKAT through

a network subject to several communicating parallel policies is

specified by the following grammar that extends the one of NetKAT

with communication actions and a parallel operator:

𝑝, 𝑞 F 𝑎 | 𝑓 ← 𝑣 | 𝑑𝑢𝑝 | 𝑥?𝑓 | 𝑥 !𝑣 | 𝑝 + 𝑞 | 𝑝 · 𝑞 | 𝑝 | |𝑞 | 𝑝∗ .

As discussed above, here 𝑥?𝑓 is an input action that is executed only

when the port 𝑥 has a value available that is assigned immediately

to the field 𝑓 . The output action 𝑥 !𝑣 is executed if the port 𝑥 is not

busy (there is no value) and makes available the value 𝑣 at the port.

Note that only fields can be assigned directly by policies, whereas

ports can change values only through successful communications.

Policies can be executed in parallel via the operator “| |”. Parallel
policies executing an input, respectively an output, action on the

same port synchronize.

The operational semantics of pNetKAT is given in terms of NKA

as presented in Definition 2.3. The only addition to the rules given

in Table 1 is the transition and observationmap for input and output

actions and for the parallel composition of policies. The extra rules

are presented next.

Input and output actions are, like 𝑑𝑢𝑝 , primitive actions that

have a transition step and do not terminate for any observable pairs

of atoms:

𝛼 ≤ (𝑥 = 𝑣) 𝛽 = 𝛼 [⊥ /𝑥] [𝑣/𝑓 ]

𝑥?𝑓
𝛼,𝛽
−−−→ 𝛽

𝛼 ≤ (𝑥 =⊥) 𝛽 = 𝛼 [𝑣/𝑥]

𝑥 !𝑣
𝛼,𝛽
−−−→ 𝛽

The conditions in the premises of the two rules express the precon-

dition and postcondition of the input and output, respectively, as

we already discussed. Here 𝛼 [𝑣/𝑥] (𝛼 [𝑣/𝑓 ]) is the atom assigning

a port 𝑥 to 𝑣 (a field 𝑓 to 𝑣 , respectively) and all other variables are

as in 𝛼 .

The transition relation of the parallel composition 𝑝1 | |𝑝2 of two

policies 𝑝1 and 𝑝2 is described by three types of rules, namely: syn-

chronization, interleaving, and termination. When they occur in

parallel, an input and an output action on the same ports synchro-

nize:

𝑝1

𝛼1,𝛽1−−−−→ 𝑝 𝑝2

𝛼2,𝛽2−−−−→ 𝑞

𝑝1 | |𝑝2

𝛼,𝛽
−−−→ 𝑝 | |𝑞

𝑝1

𝛼1,𝛽1−−−−→ 𝑝 𝑝2

𝛼2,𝛽2−−−−→ 𝑞

𝑝2 | |𝑝1

𝛼,𝛽
−−−→ 𝑞 | |𝑝

under the condition that there is a port 𝑥 ∈ Prt and a field 𝑓 ∈ 𝐹𝑙𝑑
such that 𝛼 (𝑥) = 𝛽 (𝑥) = 𝛼1 (𝑥) = 𝛽2 (𝑥) =⊥ and 𝛽1 (𝑥) = 𝛼2 (𝑥) =
𝛽2 (𝑓 ), whereas for all other variables 𝑦 ∈ Var different from 𝑥 ,

𝛼1 (𝑦) = 𝛼2 (𝑦) = 𝛼 (𝑦) and 𝛽1 (𝑦) = 𝛽2 (𝑦) = 𝛽 (𝑦). The above

condition says that the pair (𝛼1, 𝛽1) describes the output of the

value 𝑣 on a port 𝑥 , that is received and assigned to field 𝑓 by

the input action specified by (𝛼2, 𝛽2). For all other variables, the
preconditions and the postconditions of all transitions involved do

not change.

If the transition of a policy does not have a visible effect on the

state of a port, then when in parallel with any other policy it can

proceed in an interleaving fashion:

𝑝1

𝛼,𝛽
−−−→ 𝑝

𝑝1 | |𝑝2

𝛼,𝛽
−−−→ 𝑝 | |𝑝2

𝑝1

𝛼,𝛽
−−−→ 𝑝

𝑝2 | |𝑝1

𝛼,𝛽
−−−→ 𝑝2 | |𝑝

where 𝛼 (𝑥) = 𝛽 (𝑥) for all port 𝑥 ∈ Prt. Note that, the above sym-

metric rules in combination with the synchronization rules imply

that there cannot be multiparty synchronization.

Similar to the shuffle of languages, if a policy 𝑝1 terminates when

in parallel with another policy 𝑝2, then 𝑝2 can continue alone from

the postcondition observed at the termination of 𝑝1:

𝑝1↓(𝛼, 𝛽 ) 𝑝2

𝛽,𝛾
−−−→ 𝑝

𝑝1 | |𝑝2

𝛼,𝛾
−−−→ 𝑝

𝑝1↓(𝛼, 𝛽 ) 𝑝2

𝛽,𝛾
−−−→ 𝑝

𝑝2 | |𝑝1

𝛼,𝛾
−−−→ 𝑝

𝑝1↓(𝛼, 𝛽 ) 𝑝2↓(𝛼, 𝛽 )

𝑝1 | |𝑝2↓(𝛼, 𝛽 )

Generally, the parallel composition of two policies does not ter-

minate immediately, as it may involve input and output actions.

However, if no communication action is involved, then it terminates

observing the pair (𝛼, 𝛽) if both policies do the same. Note that this

means inconsistent policies cannot terminate successfully, as they

both act atomically on the same packet.
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As in the previous section, we denote by 𝑁 (𝑝) the NKA con-

structed using the rules in Table 1 and the above ones for the parallel

composition, with as states equivalence classes of policies modulo

commutativity and associativity of both “+” and “| |”, and idempo-

tency of only “+”, and with as initial state (the equivalence class of)

𝑝 . To enforce synchronization, we impose that ports are undefined

at all times in every accepted string (a condition satisfied by the

synchronization step but not by the postcondition of an open output

and a precondition of an open input). We thus refine the acceptance

predicate for NKA with ports (thus, pNetKAT) as follows:

Definition 3.1. Let 𝐴𝑡 be the set of atoms of the Boolean algebra

𝐵(Var). For an NKA (with ports) 𝑁 = (𝑆, Var, Δ, Ξ, 𝑠0), we say

that a string 𝜎 ∈ (𝐴𝑡 · 𝐴𝑡) · 𝐴𝑡∗ is accepted by 𝑁 if and only if the

predicate PAcc(𝑠0, 𝜎) holds, where PAcc is defined inductively as

follows:

• PAcc(𝑠, 𝛼𝛽) ⇐⇒ Ξ(𝑠, 𝛼, 𝛽) and ∀𝑥 ∈ Prt .𝛼 (𝑥) = 𝛽 (𝑥) = ⊥,
• PAcc(𝑠, 𝛼𝛽𝜎) ⇐⇒ ∃𝑠′ ∈ Δ(𝑠, 𝛼, 𝛽) . PAcc(𝑠′, 𝛽𝜎) and ∀𝑥 ∈
Prt .𝛼 (𝑥) = ⊥,

where 𝑠 ∈ 𝑆 , 𝛼, 𝛽 ∈ 𝐴𝑡 , and 𝜎 ∈ 𝐴𝑡+. The language 𝐿𝑝 (𝑁 ) is defined
as the set of all strings in (𝐴𝑡 ·𝐴𝑡) ·𝐴𝑡∗ accepted by 𝑁 . We refer to

NKA with PAcc predicates as pNKA.

Because of the symmetry in the rules of the parallel composition,

we have that “| |” is a commutative and associative operator. It is

not idempotent in general, except for policies with no occurrences

of 𝑑𝑢𝑝 , input, or output actions. For example 𝑎 | |𝑏 = 𝑎 · 𝑏 and

𝑓 ← 𝑣 | |𝑓 ← 𝑣 = 𝑓 ← 𝑣 .

Clearly, if there are no ports in Var (i.e. Var = 𝐹𝑙𝑑) then they

do not appear in atoms in 𝐴𝑡 . In this case, the definition of PAcc
coincides with the usual definition NDAcc of accepted strings for an
NKA. Note that because ports are undefined in every atom occurring

in a string accepted by PAcc ports can be removed (or added) to an

NKA without changing its language equivalence. Using the Kleene

theorem for NetKAT [13], we can relate (non-compositionally)

pNetKAT with NetKAT:

Theorem 3.2. For every pNetKAT policy 𝑝 there is a NetKAT policy
𝑞 such 𝐿𝑛𝑑 (𝑁 (𝑞)) is equal to 𝐿𝑝 (𝑁 (𝑝)) after removing the ports from
every atom.

This implies that for every process in pNetKAT we can find

an ’equivalent’ process in NetKAT, basically by compiling paral-

lel processes into interleaved ones if no open communication is

involved and transforming synchronizations into assignments. In

other words, the semantics of pNetKAT is a closed semantics not

allowing any external communication after the system is defined.

In the next section, we define an open semantics that allows for the

synchronization of several ports at the same time.

We conclude this section with an example adapted from [8] and

sketched in Figure 2. Two switches 𝑆𝑋 and 𝑆𝑌 have 3 ports each:

𝑥1, 𝑥2, 𝑥3 and 𝑦1, 𝑦2, 𝑦3, respectively. Their behavior depends on

their current flow table and it is described by the following set of

policies:

𝑆𝑋0 = 0 𝑆𝑌0 = 0

𝑆𝑋1 = (𝑓 = 𝑥1) · 𝑓 ← 𝑥3 𝑆𝑌1 = (𝑓 = 𝑦3) · 𝑓 ← 𝑦1

𝑆𝑋2 = (𝑓 = 𝑥2) · 𝑓 ← 𝑥3 𝑆𝑌2 = (𝑓 = 𝑦3) · 𝑓 ← 𝑦2 ,

Figure 2: A SDN with two switches and two controllers

where 𝑓 is a field of a packet that records the last passed port. The

switches are linked through ports 𝑥3 and 𝑦3:

𝐿 = (𝑓 = 𝑥3) · 𝑑𝑢𝑝 · 𝑓 ← 𝑦3 .

Under the flow tables 𝑆𝑋1 and 𝑆𝑌1, for example, a packet that arrives

at port 𝑥1 of switch 𝑆𝑋 is forwarded to port 𝑥3. The latter is linked

to port 𝑦3 of switch 𝑆𝑌 , which forwards the packet to port 𝑦1. Note

the role of the 𝑑𝑢𝑝 action to record that a packet moves from one

switch to another.

Each switch is linked with a controller via the ports 𝑠𝑥 and 𝑠𝑦.

𝐶𝑋 is the controller of switch 𝑆𝑋 and 𝐶𝑌 of switch 𝑆𝑌 . The two

controllers are concurrently acting on their switch by updating

their flow tables. The task of the two controllers is to guarantee

that incoming packets at port 𝑥1 arrive at port 𝑦1 and incoming

packets at port 𝑥2 arrive at port 𝑦2. No mixing of flow is allowed.

To avoid race conditions, the controllers have to synchronize and

guarantee a proper order of execution of their concurrent behaviors:

𝐶𝑋 = (𝑓 = 𝑥1) · (𝑠𝑥 !0 · 𝑐!1 · 𝑐?𝑔 · 𝑠𝑥 !1)
+ (𝑓 = 𝑥2) · (𝑠𝑥 !0 · 𝑐!2 · 𝑐?𝑔 · 𝑠𝑥 !2)

𝐶𝑌 = 𝑐?𝑔 · ((𝑔 = 1 · 𝑠𝑦!1) + (𝑔 = 2 · 𝑠𝑦!2)) · 𝑐!0 .

Here 𝑠𝑥 and 𝑠𝑦 are the ports connecting the controllers to their

controlled switches. When sending the flow message 0, 1, or 2, the

flow table will be updated accordingly. The two controllers use

port 𝑐 to synchronize each other and pass the information about

which flow table they have updated. While waiting for the update

of the flow table of switch 𝑆𝑌 , the switch 𝑆𝑋 first drops all incoming

packets, and only after 𝑆𝑌 is updated then 𝑆𝑋 accept packets from

the correct port.

The behavior of the entire network is given by

(𝑓 𝑡1← 0) · (𝑓 𝑡2← 0) · (𝑁 ∗ | |𝐶𝑋 | |𝐶𝑌 )∗ ,
where

𝑁 = Σ2

𝑗=0
(𝑓 𝑡1 = 𝑗) · 𝑆𝑋 𝑗 + Σ2

𝑗=0
(𝑓 𝑡2 = 𝑗) · 𝑆𝑌𝑗 + 𝐿 + 𝑠𝑥?𝑡1 + 𝑠𝑦?𝑡2

Initially, both switches start with empty flow tables that are updated

when a controller sends a flow message to its switch via the port

𝑠𝑥 or 𝑠𝑦, respectively.

4 NETKAT AUTOMATAWITH I/O PORTS
In the previous section, we used NKA for giving a closed se-

mantics of our concurrent policy language pNetKAT using the

acceptance predicate PAcc that takes into account ports. Next, we
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consider NetKAT automata for open concurrent systems and use

them as a model of pNetKAT.

To begin with, we partition the set of ports Prt into input ports

IPrt and output ports OPrt. Together with the disjoint set of fields

𝐹𝑙𝑑 they form a finite set of variables Var . Input ports are ranged
over by 𝑖 and output ports by 𝑜 . As before, all variables can store

values from Val but only input and output ports can be undefined,

which we denote with ⊥ ∉ Val. Intuitively, an input port 𝑖 of a

connector is enabled if it contains a value different from ⊥ so that

this value is ready to be taken by the connector when synchronizing

on 𝑖 with the environment that puts the value in it. Dually, an output

port 𝑜 of a connector is undefined (i.e., 𝑜 = ⊥) when the port 𝑜 is

ready to receive a value from the connector and synchronizes with

the environment when it will read from 𝑜 .

We use input and output ports to define a novel operational

behavior of NKA by an acceptance predicate that, differently from

𝑃𝐴𝑎𝑐𝑐 , does not enforce synchronization and leaves the system

open to communication instead of closing it in the style of [7].

Definition 4.1. Let 𝐴𝑡 be the set of atoms of the Boolean pred-

icates 𝐵(Var), where Var = IPrt ∪ OPrt ∪ 𝐹𝑙𝑑 . For an NKA 𝑁 =

(𝑆, Val, Δ, 𝜉, 𝑠0) with atoms 𝐴𝑡 involving input and output ports,

we say that a string 𝜎 ∈ (𝐴𝑡 ×𝐴𝑡)+ is accepted by 𝑁 if and only if

the predicate IOAcc(𝑠0, 𝜎) holds, where IOAcc is defined inductively
as follows:

• IOAcc(𝑠, (𝛼, 𝛽)) ⇐⇒ Ξ(𝑠, 𝛼, 𝛽),
• IOAcc(𝑠, (𝛼, 𝛽)𝜎) ⇐⇒ ∃𝑠′ ∈ Δ(𝑠, 𝛼, 𝛽) . IOAcc(𝑠′, 𝜎) and
𝛽 ▷ ℎ𝑒𝑎𝑑 (𝜎),

where 𝑠 ∈ 𝑄 , 𝛼, 𝛽 ∈ 𝐴𝑡 , 𝜎 ∈ (𝐴𝑡 × 𝐴𝑡)+. The language 𝐿𝐼𝑂 (𝑁 ) is
defined as the set of all strings in (𝐴𝑡 × 𝐴𝑡)+ accepted by 𝑁 . We

refer to NKA with IOAcc predicates as ioNKA

A pair (𝛼, 𝛽) in a string accepted above represents the pre/post

condition of an action executed by a component. In between two

pairs, the environment can communicate with the components

and change the values at its ports. We formalize this using the

▷ predicates. In fact, for every string in (𝐴𝑡 × 𝐴𝑡)+, we define

ℎ𝑒𝑎𝑑 ((𝛼, 𝛽)𝜎) = 𝛼 , and for every two atoms 𝛼 and 𝛽 we say that

the predicate 𝛽 ▷ 𝛼 holds if and only if:

a. local variables cannot be modified by the environment, i.e.,

𝛽 (𝑓 ) = 𝛼 (𝑓 ) for every field 𝑓 ∈ 𝐹𝑙𝑑 ;
b. the environment can put a value to an input port only if

the port is not already enabled, i.e. either 𝛽 (𝑖) = 𝛼 (𝑖) or
𝛽 (𝑖) = ⊥;

c. the environment can take a value from an output port only

if there is one, i.e., either 𝛽 (𝑜) = 𝛼 (𝑜) or 𝛼 (𝑜) = ⊥.
Here we see 𝛽 as the postcondition of an action, and 𝛼 as the pre-

condition of the next action both to be executed by the component,

or, dually, they are the pre- and postcondition of actions executed

by the environment. The conditions on the second and third items

above allow the environment to communicate with a component

only through input ports that are not enabled and output ports that

contain values. As such the semantics of a component caters to all

possible interactions with the environment and is open. For exam-

ple, if a component executes an action ending in a postcondition

[𝑓 = 1, 𝑖 = ⊥, 𝑜 = 3] then the environment could assign a value

to the input port 𝑖 so that at the next step the component would

start with a precondition [𝑓 = 1, 𝑖 = 2, 𝑜 = 3]. Alternatively, the
environment could take the value from the output port 𝑜 and put a

value in the input variable 𝑖 resulting in the next step component

precondition [𝑓 = 1, 𝑖 = 2, 𝑜 = ⊥]. However, the environment could

never change the value of the field 𝑓 as it is local to the component.

The set of input and output ports used by a pair (𝛼, 𝛽) is defined
by

𝐼 (𝛼, 𝛽) = {𝑖 ∈ IPrt | 𝛼 (𝑖) ≠ 𝛽 (𝑖) = ⊥} and

𝑂 (𝛼, 𝛽) = {𝑜 ∈ OPrt | 𝛽 (𝑜) ≠ 𝛼 (𝑜) = ⊥} .
The above reflects the fact that an input port must be enabled in

the precondition and is available for communication after the value

has been taken, and dually for an output port.

In the absence of input and output ports, the condition on the

first item ensures that for any two consecutive pairs (𝛼1, 𝛽1) (𝛼2, 𝛽2)
occurring in an accepted string, the postcondition 𝛽1 is equal to

the precondition 𝛼2. In this case, we can transform a strings 𝜎 ∈
(𝐴𝑡 × 𝐴𝑡)+ into essentially equal strings in 𝑡 (𝜎) ∈ (𝐴𝑡 · 𝐴𝑡) · 𝐴𝑡∗
as follows:

𝑡 ((𝛼, 𝛽)) = 𝛼𝛽 𝑡 ((𝛼, 𝛽)𝜎) = 𝛼 · 𝑡 (𝜎) .
The transformation 𝑡 unifies the subsequent postcondition and

precondition because they are equal. The inverse 𝑡−1
of 𝑡 maps

strings in (𝐴𝑡 · 𝐴𝑡) · 𝐴𝑡∗ into strings in (𝐴𝑡 × 𝐴𝑡)+ by equating

subsequent postcondition and precondition:

𝑡−1 (𝛼𝛽) = (𝛼, 𝛽) 𝑡−1 (𝛼, 𝛽𝜎) = (𝛼, 𝛽) · 𝑡−1 (𝛽𝜎) .
Here 𝜎 ∈ 𝐴𝑡+ and 𝛼, 𝛽 are atoms in 𝐵(𝑉𝑎𝑟 ), with Var = IPrt ∪
OPrt ∪ Fld.

Theorem 4.2. For every NKA automaton with no (input and out-
put) ports, IOAcc(𝑠, 𝜎) = PAcc(𝑠, 𝑡 (𝜎)) = NDAcc(𝑠, 𝑡 (𝜎)), for any
state 𝑠 and string 𝜎 ∈ (𝐴𝑡 ×𝐴𝑡)+.

In other words, the predicate IOAcc is a conservative extension
of 𝑁𝐷𝐴𝑐𝑐 in the context of NetKAT automata when there are no

ports. However, if we assume Prt = IPrt ∪Oprt and Var = Prt ∪ Fld
so that atoms in 𝐵(𝑉𝑎𝑟 ) are of the correct type for both predicates

PAcc and IOAcc, we then have the following result.

Theorem 4.3. Let Var = Prt ∪ Fld and Prt = IPrt ∪ Oprt and
(𝑆, Var, Δ, Ξ, 𝑠0) be a NKA. For every string 𝜎 ∈ (𝐴𝑡 · 𝐴𝑡) · 𝐴𝑡∗
where 𝐴𝑡 is the set of atoms of 𝐵(Var) and 𝑠 ∈ 𝑆 if the predicate
PAcc(𝑠, 𝜎) holds then also IOAcc(𝑠, 𝑡−1 (𝜎)) holds.

As a consequence of the above, we have that if two policies of

pNetKAT are language equivalent with respect to the IOAcc then
they are also language equivalent with respect to PAcc. The con-
verse is in general not true, meaning that the equivalence generated

by pNKA is coarser than that of ioNKA.

4.1 Reo and symbolic constraint automata
Next, we show that NetKAT automata can be used to express

the semantics of the coordination language Reo [3] too. Reo is

a formalism that allows for the specification and composition of

complex concurrent systems by focusing on the communication and

synchronization of components. At its core are ports, which serve as

connector endpoints for data transfer and synchronization, enabling

the exchange of information between components. Connectors

impose data and synchronization constraints on the data flow, and
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when all constraints are satisfied the data moves from input ports

to output ports. Dual ports sharing the same name are connected

forming complex circuits and linking the several components of a

system.

In this paper, we use symbolic constraint automata as a semantic

model of Reo connectors [12]. In symbolic constraint automata,

transitions are labeled by guarded actions. Transitions may only be

taken if enabled, a property expressed by a predicate on the current

local state and the current values present at the input ports. In this

case, an action is executed that may change the value of the local

state and output ports.

For simplicity, we abstract from a concrete syntax for predi-

cates and actions, and we denote by 𝜙 (𝑥,𝑦) = 𝑃 (𝑥) → 𝑦 .
.= 𝑎(𝑥),

a guarded action, with 𝑃 (𝑥) a predicate on a finite list (without

repetition) 𝑥 of variables in IPrt ∪ 𝐹𝑙𝑑 , and 𝑎(𝑥) an actions that

given 𝑥 as input modify the variables in 𝑦, a finite list (without

repetition) of variables in OPrt ∪ 𝐹𝑙𝑑 . The guard 𝑃 is evaluated only

when each input port in 𝑥 receives a value from the environment

(thus not equal to ⊥). If the guard holds and all output ports in

𝑦 are ready to communicate (i.e. they are all ⊥) then the action

𝑎 is executed using the values at the input ports and the current

value of the fields in 𝑥 . The result is assigned to the variables in

𝑦. Since output ports are only used to communicate a value to the

environment, we assume no occurrence of them on the guard and

as input of the action. Dually, since input ports receive values only

from the environment, we assume no occurrence of them on the

left-hand side of the assignment. We denote by GAct (𝐼 ,𝑂, 𝐹 ) the
set of all guarded action over a set 𝐼 ⊆ IPrt,𝑂 ⊆ OPrt, and 𝐹 ⊆ 𝐹𝑙𝑑 .

We use symbolic constraint automata as introduced in [12] with

additional accepting states.

Definition 4.4. A symbolic constraint automata (SCA) is a tuple

(𝑆, 𝐼 , 𝑂, 𝐹 −→, 𝐴, 𝑠0) where
• 𝑆 is a finite set of states;

• 𝐼 ⊆ IPrt, 𝑂 ⊆ OPrt, and 𝐹 ⊆ 𝐹𝑙𝑑 are the relevant ports and

fields;

• −→⊆ 𝑆 × GAct (𝐼 ,𝑂, 𝐹 ) × 𝑆 is a transition relation;

• 𝐴 ⊆ 𝑆 is a set of accepting states, and

• 𝑠0 ∈ 𝑆 is a distinguished initial state.

In symbolic constraint automata, a transition denotes the possi-

bility of executing a guarded action. However, for the actual exe-

cution of the guarded action to take place, the guard of the action

must hold upon evaluation in the current assignment of variables

to values.

0

𝑜 .
.= 𝑖

(a) Synch connector

0 1

𝑓 .
.= 𝑖

𝑜 .
.= 𝑓

(b) Fifo 1 connector

0

𝑃 (𝑖) → 𝑜 .
.= 𝑖

¬𝑃 (𝑖) → 𝑠𝑘𝑖𝑝

(c) Filter connector

Figure 3: Three symbolic constraint automata

In Figure 3, we show three symbolic constraint automata. The

one on the left corresponds to the synchronous channel in Reo as

the data received at the input port 𝑖 is synchronously passed to

the output 𝑜 . The symbolic constraint automaton in the middle

describes Reo’s Fifo 1 channel: it assigns to the field 𝑓 the value

taken from 𝑖 if it is in the empty state 0, and puts to the port 𝑜

the value from 𝑓 if it is in the full state 1. Finally, the rightmost

automaton corresponds to a Filter channel in Reo. If the predicate 𝑃

holds when a value is available at an input port 𝑖 , then the connector

behaves like a synchronous connector and passes the input value

to the output port 𝑜 . Otherwise, ¬𝑃 holds on the value of 𝑖 and the

value is taken from 𝑖 and lost, meaning that the component waiting

for synchronization on port 𝑖 is released.

4.2 From SCA to ioNKA
Given a guarded action 𝜙 (𝑥,𝑦) = 𝑃 (𝑥) → 𝑦 .

.= 𝑎(𝑥) and atoms

𝛼, 𝛽 assigning values to all variables (and possibly ⊥ to some input

or output ports) we denote by 𝑃 (𝛼) the evaluation of 𝑃 (𝑥) where
all occurrences of (free) variables 𝑧 ∈ 𝑥 are substituted with 𝛼 (𝑧) ∈
Val. Similarly, we denote by 𝑎(𝛼) the list of values obtained by

evaluating 𝑎 when all variables 𝑧 ∈ 𝑥 get value 𝛼 (𝑧) ∈ Val. Finally,
we say that the Hoare triple {𝛼}𝜙{𝛽} holds if
• 𝜙 is executable under 𝛼 , that is 𝛼 (𝑖) ≠ ⊥ for all input ports

𝑖 ∈ 𝑥 and 𝛼 (𝑜) = ⊥ for all output port 𝑜 ∈ 𝑦.
• 𝛼 is a precondition of 𝜙 enabling its guard, that is 𝛼 ≤ 𝑃 (𝛼);
and

• 𝛽 is a postcondition of 𝜙 changing only the variables in 𝑦

and consuming the value from all input ports in 𝑥 , that is

𝛼 [𝑎(𝛼)/𝑦, ⊥̄/𝑖] ≤ 𝛽

where 𝛼 [𝑣/𝑦, ⊥̄/𝑖] is the atom mapping variables in 𝑦 to the respec-

tive values in 𝑣 , enabling input ports in 𝑥 to receive values, and

remaining unchanged otherwise.

Pre and postconditions of a guarded action are used to construct

an ioNKA from a symbolic constraint automaton

Definition 4.5. A SCA (𝑆, 𝐼 , 𝑂, 𝐹 −→, 𝐴, 𝑠0) can be transformed

into a ioNKA (𝑆, 𝑉𝑎𝑟 Δ, Ξ, 𝑠0) with 𝑉𝑎𝑟 = 𝐼 ∪𝑂 ∪ 𝐹 and

• 𝑠′ ∈ Δ(𝑠, 𝛼, 𝛽) if and only if 𝑠
𝜙
−→ 𝑠′ and {𝛼}𝜙{𝛽};

• Ξ(𝑠, 𝛼, 𝛽) if and only if 𝑠
𝜙
−→ 𝑠′ ∈ 𝐴 and {𝛼}𝜙{𝛽}.

Here 𝛼 and 𝛽 are atoms in 𝐵(𝑉𝑎𝑟 ).
Consider, for example, the symbolic constraint automaton in

Figure 3.(b) of a Fifo 1 connector. The corresponding NetKAT au-

tomaton has the following transition and observation maps:

Δ(0, 𝛼, 𝛽) = {1} Δ(1, 𝛼 ′, 𝛽′) = {0} , and Ξ(1, 𝛼 ′, 𝛽′)
for any atom 𝛼 ≤ 𝑖 = 𝑣 , 𝛽 ≤ (𝑖 = ⊥ · 𝑓 = 𝑣), 𝛼 ′ ≤ (𝑜 = ⊥ · 𝑓 = 𝑢)
and 𝛽′ ≤ (𝑜 = 𝑢 · 𝑓 = 𝑢). A string accepted by this automaton is,

for example, ( [𝑖 = 𝑣, 𝑜 = ⊥, 𝑓 = 𝑢], [𝑖 = ⊥, 𝑜 = ⊥, 𝑓 = 𝑣]) · ( [𝑖 =
⊥, 𝑜 = ⊥, 𝑓 = 𝑣], [𝑖 = ⊥, 𝑜 = 𝑣, 𝑓 = 𝑣]).

As another example, the ioNKA obtained from the symbolic

constraint automaton in Figure 3.(c) denoting a filter connector has

the following transition and observation maps:

Δ(0, 𝛼, 𝛽) = {0} Δ(0, 𝛼 ′, 𝛽′) = {0} , and Ξ(0, 𝛼, 𝛽) Ξ(0, 𝛼 ′, 𝛽′)
for any atom 𝛼 ≤ 𝑖 = 𝑣 ∈ 𝑃 (𝑣), 𝛽 ≤ (𝑖 = ⊥ · 𝑜 = 𝑣), 𝛼 ′ ≤ 𝑖 = 𝑣 ∉

𝑃 (𝑣), and 𝛽′ ≤ (𝑖 = ⊥).

1728



SAC’24, April 8 –April 12, 2024, Avila, Spain H. Feng and M.M. Bonsangue

Correctness of the translation from symbolic constraint automata

to NKA with respect to the following notion of bisimulation is

immediate by construction. However, this bisimulation relation

will become more interesting when proving the correctness of the

parallel composition of two automata.

Definition 4.6. Given symbolic constraint automaton𝐶 = (𝑆, 𝐼 , 𝑂,
𝐹, −→, 𝐴, 𝑠0) and an NKA 𝑁 = (𝑄, 𝑉 Δ, Ξ, 𝑞0) with𝑉 = 𝐼 ∪𝑂 ∪ 𝐹 ,
we say that a binary relation 𝑅 ⊆ 𝑆 ×𝑇 is a bisimulation if (𝑠0, 𝑞0) ∈
𝑅 and whenever (𝑠, 𝑞) ∈ 𝑅 then

• for all 𝑠
𝜙
−→ 𝑠′ and {𝛼}𝜙{𝛽} there exists 𝑞′ ∈ Δ(𝑞, 𝛼, 𝛽) such

that (𝑠′, 𝑞′) ∈ 𝑅;

• for all 𝑞′ ∈ Δ(𝑞, 𝛼, 𝛽) there exists 𝑠
𝜙
−→ 𝑠′ such that {𝛼}𝜙{𝛽}

and (𝑠′, 𝑞′) ∈ 𝑅;

• Ξ(𝑞, 𝛼, 𝛽) holds for all 𝑠
𝜙
−→ 𝑠′ ∈ 𝐴 and {𝛼}𝜙{𝛽};

• for all Ξ(𝑞, 𝛼, 𝛽) there exists 𝑠
𝜙
−→ 𝑠′ such that {𝛼}𝜙{𝛽} and

𝑠′ ∈ 𝐴.

Transitions with guarded actions must be matched by transitions

with all pre and postconditions of those actions, and vice-versa,

every pair of pre and postconditions must be related to at least one

guarded action. Note that if two states 𝑞 and 𝑞′ of an ioNKA are

language equivalent with respect to IOAcc, and a state 𝑠 of an SCA

is bisimilar to 𝑞 then 𝑠 is bisimilar to 𝑞′ too, where bisimilarity is

the largest bisimulation between an SCA and an ioNKA.

4.3 Composing ioNKA
We conclude this section with a very brief presentation of a

composition operator between NetKAT automata with input and

output ports inspired by the one used in Reo [4]. The idea is that the

two automata synchronize via all (and only) the shared ports that

are input for one automaton and output port for another. To avoid

broadcasting, shared ports become local fields. No other synchro-

nization is allowed, as all fields are only visible within the scope

of an automaton. The composition is defined only if no causality

problem can arise when the input and output ports of two automata

are synchronized in the same step.

Definition 4.7. Let 𝑁1 = (𝑆1, 𝑉1 ,Δ1, Ξ1, 𝑠1) and 𝑁2 = (𝑆2, 𝑉2 ,

Δ2, Ξ2, 𝑠2) be two non-deterministic NetKAT automata with 𝑉𝑖 =

𝐼𝑖 ∪𝑂𝑖 ∪ 𝐹𝑖 for 𝑖 = 1, 2 such that 𝐹1 and 𝐹2 are disjoint sets of fields

in 𝐹𝑙𝑑 . Assume that for every pair of (𝛼1, 𝛽1) and (𝛼2, 𝛽2) and state
𝑠1 and 𝑠2 such that either Δ1 (𝑠1, 𝛼1, 𝛽1) ≠ ∅ and Δ2 (𝑠2, 𝛼2, 𝛽2) ≠ ∅
or both Ξ1 (𝑠1, 𝛼1, 𝛽1) and Ξ2 (𝑠2, 𝛼2, 𝛽2) holds, the two automata

synchronize only on the input ports used by one and output ports

used by the other, but not on both input and output ports at the

same time, that is

𝐼 (𝛼1, 𝛽1) ∩𝑂 (𝛼2, 𝛽2) ≠ ∅ ⇒ 𝑂 (𝛼1, 𝛽1) ∩ 𝐼 (𝛼2, 𝛽2) = ∅ .

In this case, the composition 𝑁1 ⊲⊳ 𝑁2 is defined as the ioNKA
(𝑆, 𝑉 Δ, Ξ, 𝑠0) where:
• 𝑆 = 𝑆1 × 𝑆2;

• 𝑠0 = ⟨𝑠1, 𝑠2⟩;
• 𝑉 = 𝐼 ∪𝑂 ∪ 𝐹 with 𝐼 = (𝐼1 \𝑂2) ∪ (𝐼2 \𝑂1),𝑂 = (𝑂1 \ 𝐼2) ∪
(𝑂2 \ 𝐼1), and 𝐹 = 𝐹1 ∪ 𝐹2 ∪ (𝐼1 ∩𝑂2) ∪ (𝐼2 ∩𝑂1);

1 2

𝑚1

.

.= 𝑖

𝑥 .
.= 𝑚1

⊲⊳ a b

𝑜 .
.= 𝑚2

𝑚2

.

.= 𝑥

= 1,a 2,b

𝑚1, 𝑜
.
.= 𝑖,𝑚2

𝑚2

.

.= 𝑚1

Figure 4: Symbolic constraint automata for Fifo 1 composed
with Fifofull

• ⟨𝑠′, 𝑡 ′⟩ ∈ Δ(⟨𝑠, 𝑡⟩, 𝛼, 𝛽) whenever 𝑠′ ∈ Δ1 (𝑠, 𝛼1, 𝛽1) and 𝑡 ′ ∈
Δ2 (𝑡, 𝛼2, 𝛽2) such that if 𝑥 ∈ 𝐼1∩𝑂2 then 𝛼1 (𝑥) = 𝛽2 (𝑥) ≠ ⊥,
and if 𝑥 ∈ 𝑂1 ∩ 𝐼2 then 𝛼2 (𝑥) = 𝛽1 (𝑥) ≠ ⊥;
• Ξ(⟨𝑠, 𝑡⟩, 𝛼, 𝛽) holds if bothΞ1 (𝑠, 𝛼1, 𝛽1) andΞ2 (𝑡, 𝛼2, 𝛽2) hold,
such that if 𝑥 ∈ 𝐼1 ∩ 𝑂2 then 𝛼1 (𝑥) = 𝛽2 (𝑥) ≠ ⊥, and if

𝑥 ∈ 𝑂1 ∩ 𝐼2 then 𝛼1 (𝑥) = 𝛽2 (𝑥) ≠ ⊥,
where, in the last two items, for all 𝑖 ∈ 𝐼 , 𝑜 ∈ 𝑂 and 𝑓 ∈ 𝐹 ,

𝛼 (𝑖) =

{
𝛼1 (𝑖) if 𝑖 ∈ 𝐼1 \𝑂2

𝛼2 (𝑖) if 𝑖 ∈ 𝐼2 \𝑂1

𝛽 (𝑖) =

{
𝛽1 (𝑖) if 𝑖 ∈ 𝐼1 \𝑂2

𝛽2 (𝑖) if 𝑖 ∈ 𝐼2 \𝑂1

𝛼 (𝑜) =

{
𝛼1 (𝑜) if 𝑜 ∈ 𝑂1 \ 𝐼2
𝛼2 (𝑜) if 𝑜 ∈ 𝑂2 \ 𝐼1

𝛽 (𝑜) =

{
𝛽1 (𝑜) if 𝑜 ∈ 𝑂1 \ 𝐼2
𝛽2 (𝑜) if 𝑜 ∈ 𝑂2 \ 𝐼1

𝛼 (𝑓 ) =

{
𝛼1 (𝑓 ) if 𝑓 ∈ 𝐹1 ∪ (𝐼1 ∩𝑂2)
𝛼2 (𝑓 ) if 𝑓 ∈ 𝐹2 ∪ (𝐼2 ∩𝑂1)

𝛽 (𝑓 ) =

{
𝛽1 (𝑓 ) if 𝑜 ∈ 𝐹1 ∪ (𝑂1 ∩ 𝐼2)
𝛽2 (𝑓 ) if 𝑜 ∈ 𝐹2 ∪ (𝑂2 ∩ 𝐼1)

The above operation is a congruence with respect to language

equivalence as defined in Definition 4.1 and is correct with respect

to the parallel operator for symbolic constraint automata as given

in [12] in the sense that if there is a bisimulation relation between

two symbolic constraint automata and two ioNKA then we can find

a bisimulation between their respective parallel composition.

As an example, we show the composition of two SCA constraints

automata, one representing a FIFO buffer of size taking values from

the input port 𝑖 , buffering in the field𝑚1 and outputting the buffered

value at the port𝑥 , and the other similar but with input port𝑥 output

port 𝑜 and starting with a full buffer𝑚2 instead of the empty𝑚1.

The two symbolic constraint automata are described at the top

of Figure 4, while their composition is the SCA depicted at the

bottom. We concentrate on the synchronization of the transition

execution of the action 𝑚1

.

.= 𝑖 with that executing the action

𝑜 .
.= 𝑚2. They are implemented in the ioNKA in Figure 5, where

𝛼1 = [𝑖 = 𝑣1, 𝑥 = 𝑣2, 𝑚1 = 𝑣0], 𝛽1 = [𝑖 = ⊥, 𝑥 = 𝑣2, 𝑚1 = 𝑣1],
𝛼2 = [𝑥 = 𝑢1, 𝑜 = ⊥, 𝑚2 = 𝑢2], and 𝛽2 = [𝑥 = 𝑢1, 𝑜 = 𝑢2, 𝑚2 = 𝑢2].
Here 𝑣1 is the data received as input by the first connector and 𝑢2

the one output by the second connector, while 𝑣2 and 𝑢1 are values

(possibly bottom) already present at the output and input port of
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1 2

𝛼1 · 𝛽1

· · ·

⊲⊳ a b

𝛼2 · 𝛽2

· · ·

= 1,a 2,b

𝛼 · 𝛽

· · ·

Figure 5: pNKA for Fifo 1 composed with Fifofull

the two connectors, respectively. Following the definition we get

the following sets of "used" ports:

𝐼 (𝛼1, 𝛽1) = {𝑖} 𝑂 (𝛼1, 𝛽1) = ∅ ,
𝐼 (𝛼2, 𝛽2) = ∅ 𝑂 (𝛼2, 𝛽2) = {𝑜} .

The composition of the above transitions results in the precondition

𝛼 = [𝑖 = 𝑣1, 𝑥 = 𝑣2, 𝑜 = ⊥, 𝑚1 = 𝑣0, 𝑚2 = 𝑢2], and postcondition

𝛽 = [𝑖 = ⊥, 𝑥 = 𝑣2, 𝑜 = 𝑢2, 𝑚1 = 𝑣1, 𝑚2 = 𝑢2], where 𝑥 becomes

a local field. Note that if we create a loop and let the port 𝑜 = 𝑖

in the second SCA then we have a problem of causality and the

composition cannot take place. The problem could be solved by

inserting e.g., a (synchronous) connector between 𝑜 and 𝑖 .

We leave it as futurework the extension of the syntax of pNetKAT

with an explicit declaration of input and output ports for each pol-

icy, that can be combined with the join operation ⊲⊳ as defined

above.

5 CONCLUSION AND FUTUREWORK
We extended NetKAT with concurrency and communication via

shared ports.We followed two semantics lines using non-deterministic

constraints automata: one observing successful synchronization

only, and another allowing interaction with the environment. In

both cases, communication by ports played an important role, and

the second one can be used as a compositional model of the Reo

coordination language too.

We focussed on the operational semantics and compositionality.

A possible next step is the study of axiomatizations of our two

extensions. From a more practical point of view, we could use our

work on model checking Reo with SPIN [12] to obtain a model

checker for concurrent NetKAT. An orthogonal extension is to

combine concurrency with stacks to model VLANs [25].
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