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Abstract
Neurotropic viruses may cause meningitis, myelitis, encephalitis, or meningoencephalitis. These inflammatory conditions of 
the central nervous system (CNS) may have serious and devastating consequences if not treated adequately. In this review, 
we first summarize how neurotropic viruses can enter the CNS by (1) crossing the blood-brain barrier or blood-cerebrospinal 
fluid barrier; (2) invading the nose via the olfactory route; or (3) invading the peripheral nervous system. Neurotropic viruses 
may then enter the intracellular space of brain cells via endocytosis and/or membrane fusion. Antiviral drugs are currently 
used for different viral CNS infections, even though their use and dosing regimens within the CNS, with the exception of 
acyclovir, are minimally supported by clinical evidence. We therefore provide considerations to optimize drug treatment(s) 
for these neurotropic viruses. Antiviral drugs should cross the blood–brain barrier/blood cerebrospinal fluid barrier and pass 
the brain cellular membrane to inhibit these viruses inside the brain cells. Some antiviral drugs may also require intracellular 
conversion into their active metabolite(s). This illustrates the need to better understand these mechanisms because these 
processes dictate drug exposure within the CNS that ultimately determine the success of antiviral drugs for CNS infections. 
Finally, we discuss mathematical model-based approaches for optimizing antiviral treatments. Thereby emphasizing the 
potential of CNS physiologically based pharmacokinetic models because direct measurement of brain intracellular exposure 
in living humans faces ethical restrictions. Existing physiologically based pharmacokinetic models combined with in vitro 
pharmacokinetic/pharmacodynamic information can be used to predict drug exposure and evaluate efficacy of antiviral drugs 
within the CNS, to ultimately optimize the treatments of CNS viral infections.

Key Points 

High mortality and severe health complications may 
result from viral infections of the central nervous system 
(CNS), indicating the need for better CNS antiviral treat-
ment.

As sampling of the human brain is rare, we propose 
mathematical model-based methodologies to inform and 
optimize CNS antiviral treatments.

1  Introduction

Neurotropic viruses are viruses that tend to spread from ini-
tially infected organs to the central nervous system (CNS), 
where they can trigger severe inflammation of different 
CNS compartments. This includes the spinal cord (myeli-
tis), the membranes that surround the brain and the spinal 
cord (meningitis), the brain itself (encephalitis), or brain and 
meninges (meningoencephalitis). Thus, the primary distinc-
tion between these diseases lies in the specific regions of 
the CNS that becomes inflamed following viral infection, 
as well as the associated mortality risk [1–3]. In general, 
viral meningitis is the most common CNS infection with an 
estimated incidence range from 0.26 to 17 cases per 100,000 
people, while encephalitis and myelitis occur less frequently 
[4, 5]. However, in contrast to meningitis, encephalitis is a 
life-threatening disease that is linked to high mortality rates 
in patients and therefore requires adequate treatment. For 
example, encephalitis triggered by the herpes simplex virus 
is linked to 70% mortality in the absence of any treatment, 
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which may be reduced but still is as high as 28% after antivi-
ral treatment [6, 7]. This illustrates the need for finding new 
therapies and optimizing the use of existing antiviral drugs 
for the treatment of encephalitis.

After viruses enter the human body, they infect organs by 
binding to entry receptors on the surface of cellular mem-
branes, and then reside within host cells [8]. The blood-
brain barrier (BBB) and the blood-cerebrospinal fluid barrier 
(BCSFB) normally prevent toxins or pathogens from enter-
ing the brain; however, neurotropic viruses can cross these 
barriers, or bypass these barriers via the peripheral nervous 
system (PNS) and/or via the nasal route, and consequently 
invade the brain [9].

Antiviral drugs that can inhibit the entry and/or persis-
tence of viral inflammation in the CNS are critical for the 
management of severe CNS infections and improving patient 
survival. Some antiviral drugs have proven to be effective to 
treat specific encephalitis. For instance, acyclovir and gan-
ciclovir are currently used for encephalitis caused by her-
pesviruses, leading to significantly reduced mortality rates 
[10]. In addition, the combination antiretroviral therapy has 
markedly improved the human immunodeficiency virus 
(HIV)-related neurocognitive disorder [11]. However, the 
mortality/morbidity of encephalitis remains high after treat-
ment [12–14]. Most neurotropic viruses (e.g., alphaviruses, 
bornaviruses, flaviviruses, rhabdoviruses) can be fatal (mor-
tality rate range from 1 to 90%) because there is no effective 
drug treatment [15]. As such, preventing viral invasion of the 
CNS can be achieved solely through the use of appropriate 
vaccines [16], or by new drugs, or even by improvement of 
drug treatment modalities.

A key prerequisite for antiviral drugs to successfully treat 
CNS infections is their ability to effectively reach their target 
site, i.e., brain intracellular space, where the viruses reside. 
However, drug distribution into the CNS is limited by the 
BBB and the BCSFB [17]. The tight junctions between the 
cells of the BBB and the BCSFB limit paracellular perme-
ability of drugs with high hydrophilicity and/or large molec-
ular size. In addition, active influx and efflux transporters at 
the BBB and the BCSFB regulate the transport of their sub-
strates, i.e., drugs, between blood and CNS. Apart from drug 
transport into the CNS, the intracellular exposure of drugs 
is also determined by the exchange of the antiviral drug 
between the extracellular and intracellular fluid (ECF and 
ICF). This is governed by passive diffusion and may as well 
be influenced by active brain cell membrane transport [18]. 
Only more lipophilic drugs with a low molecular weight 
can passively diffuse across the cell membrane. Hydrophilic 
drugs would need carriers. As brain cell membranes may 
have active transporters [18], the intracellular concentrations 
of antiviral drugs can be influenced if they are substrates of 
the transporters expressed on the brain cell membrane.

Furthermore, drug-metabolizing enzymes in the brain 
cells, such as some cytochrome P450 (CYP) enzymes and 
UDP-glucuronosyltransferase (UGT) [19, 20] may metabo-
lize antiviral drugs. This may also affect the intracellular 
concentrations of antiviral drugs. Then, the antiviral drugs 
that are nucleoside/nucleotide analogs exert their function 
after undergoing the intracellular metabolism mediated by 
cellular and/or viral kinases. Therefore, the knowledge on 
intracellular profiles of antiviral drugs and their potentially 
active metabolites is important in relation to the antiviral 
effect.

Our knowledge of the intracellular pharmacokinetics of 
antiviral drugs in the human brain is currently very limited, 
while it is important for understanding optimal drug treat-
ment of viral CNS infection. However, direct information 
on human brain pharmacokinetics is hampered by ethical 
limitations. Alternative approaches to study the antiviral 
drug distribution into the brain and the brain cells should 
therefore be considered.

Central nervous system physiologically-based pharma-
cokinetic (PBPK) modeling approaches are based on CNS 
physiological properties and drug physicochemical and bio-
logical properties, to predict PK profiles in different loca-
tions of the CNS. The PBPK model that distinguishes ECF 
and ICF spaces can be instrumental in predicting the distri-
bution of antiviral drugs within the CNS and their reach to 
intracellular target sites during CNS viral infections. When 
combined with information on the efficacy of antiviral drugs, 
this model can be also applied for predicting drug effects, 
and then be further used to improve existing antiviral drug 
dosing regimens, or even to predict the effects of new anti-
viral drug candidates.

In this review, we first comprehensively summarize the 
mechanisms of viral invasion into the CNS as well as the 
current means of treating CNS viral infections. We then con-
sider the potential factors that influence the effect of antiviral 
drugs. Finally, we discuss how we could utilize pharmaco-
logical modeling to improve antiviral treatment.

2 � Mechanisms of Viral Invasion into the CNS

Viruses normally first infect peripheral tissues and may then 
distribute into the CNS. A list of neurotropic viruses and 
their abbreviations is given in Table 1. In general, there are 
three different routes for viruses to enter the CNS: (1) the 
virus can transmit through the peripheral nerves connecting 
to some part of the CNS; (2) the virus can bind to the olfac-
tory receptor neuron located on the nasal epithelium, and (3) 
the virus can directly cross the blood-brain barriers (BBB/
BCSFB) (Fig. 1).
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Table 1   Entry receptors and pathways for neurotropic viruses

BBB blood-brain barrier, BCSFB blood-cerebrospinal fluid barrier, CD81 cluster of differentiation 81, CD155 cluster of differentiation 155, DC-
SIGN dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin, GAGs glycosaminoglycans, LBP laminin-binding protein, 
MAG myelin-associated glycoprotein, nAChR nicotinic acetylcholine receptor, NCAM neural cell adhesion molecules, Nectin-1 nectin cell adhe-
sion molecule 1, NRP2 neuropilin 2, ORN olfactory receptor neuron, PDGFRα platelet-derived growth factor receptor-α, PNS peripheral nerv-
ous system, SR-BI scavenger receptor class B member I

Virus Abbreviation Entry receptors Entry pathway

PNS ORN BBB/BCSFB

Herpesviridae
Herpes simplex virus HSV-1 and HSV-2 Nectin-1 Yes [21, 32] Yes [21, 32] ?
Varicella-zoster VZV MAG, Nectin-1 Yes [21] ? ?
Human cytomegalovirus HCMV NRP2 and PDGFRα [72] ? ? Yes [238]
Picornaviridae
Poliovirus – CD155 Yes [239] ? ?
Rhabdoviridae
Rabies virus RABV nAChR and NCAM Yes [28, 240] Yes [28, 240] ?
Flaviviridae
Hepatitis C virus HCV Tetraspanin CD81 and SR-BI 

[241]
? ? Yes [241]

West Nile virus WNV DC-SIGN, mannose receptor, 
GAGs [242]

Yes [243] Yes [243] Yes [243]

Tick-borne encephalitis virus TBEV LBP, integrin αVβ3 [244, 245] ? ? Yes [246]
Polyomaviridae
John Cunningham virus JCV Serotonin receptor 2A [247] ? ? Yes [248, 249] [250]
Retroviridae
Human immunodeficiency virus-1 HIV-1 CD4 ? ? Yes [251]
Coronaviridae
Severe acute respiratory syndrome 

coronavirus 2
SARS-CoV-2 ACE2 Yes [252] Yes [252] Yes [252]

Fig. 1   Routes of viral invasion into the central nervous system 
(CNS). A Viruses infect the CNS through peripheral nerves or neu-
romuscular junctions (NMJ); B viruses spread into the CNS via 

olfactory nerves; C viruses enter brain across the blood-brain barrier 
(BBB).  Adapted from Koyuncu et al. [9]
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2.1 � PNS Route

2.1.1 � Invasion Starting at the Sensory Neuron Terminal

Sensory neurons can receive external signals by stimulation 
of their nerve endings located in periphery tissues such as 
the skin or the viscera. Those signals are integrated in the 
cell body of sensory neurons and then conducted via axons 
that extend into the CNS. Similarly, viruses can bind to entry 
receptors on sensory nerve endings and then move along the 
peripheral nerves towards the PNS. As sensory neurons are 
in direct synaptic connection with CNS neurons, infection 
of PNS neurons provides a direct route of transmission into 
the CNS [21].

Alpha herpesviruses including herpes simplex virus 1 
(HSV)-1, HSV-2, and varicella-zoster virus (VZV) nor-
mally enter the brain through the PNS route. For HSV, 
the Nectin cell adhesion molecule 1 (Nectin-1) serves as a 
primary entry receptor. For VZV, both myelin-associated 
glycoprotein and Nectin-1 are engaged in VZV entry into 
sensory neurons [22–24] (Fig. 1A). Severe acute respira-
tory syndrome coronavirus 2 (SARS‑CoV‑2) may also use 
the sensory neurons as a potential target to access the CNS 
as SARS‑CoV‑2 receptor angiotensin-converting enzyme 
2 (ACE2) is broadly expressed on human sensory neurons 
[25].

2.1.2 � Invasion via Neuromuscular Junctions

Neuromuscular junctions (NMJs) are the synaptic connec-
tions between motor neurons and muscle fibers that are 
responsible for conversion of electrical impulses created by 
the motoneurons into action potentials in the target mus-
cle fibers [26]. Neuromuscular junctions can provide an 
entrance for viruses from muscles into motor neurons, and 
subsequently facilitate invasion into the CNS as the somas 
of motor neurons are mostly located in the spinal cord, and 
therefore could connect to the motor centers in human brain 
via a synapse formation (Fig. 1A).

Poliovirus, rabies virus as well as SARS-CoV-2 might 
spread into the CNS through binding to the receptors on the 
axon terminals of motor neurons at the NMJs. The entry 
receptor of the poliovirus is a transmembrane glycoprotein 
called cluster of differentiation 155, whereas the entry of 
rabies virus is mediated by the synergistic action of recep-
tors including nicotinic acetylcholine receptor and neural 
cell adhesion molecules [27, 28]. The nicotinic acetylcho-
line receptor, mainly presenting at NMJs, could concentrate 
viruses in front of the NMJs and improve the possibility 
of uptake by the neural cell adhesion molecules [29]. As 
the expression of ACE2 receptor is also found in skeletal 
muscle, SARS-CoV-2 has the potential to invade the CNS 
through the direct infection at NMJs [30].

2.2 � ORN Route

Olfactory receptor neurons (ORNs), also called olfactory 
sensory neurons, are the sensory neurons of the olfactory 
system. The ORNs are located in the olfactory epithelium 
in the nasal cavity. The cell bodies of the ORNs are distrib-
uted among all three of the stratified layers of the olfactory 
epithelium in the nasal cavity. The ORNs have dendrites that 
face the external surface of the cribriform plate, and axons 
that pass through the cribriform foramina with terminal end 
at olfactory bulbs [31] (Fig. 1B). Some viruses including 
HSV-1, west Nile virus, SARS-CoV2, Borna disease virus, 
rabies virus, prions, influenza A virus, and parainfluenza 
viruses can propagate into theh brain along the olfactory 
nerves by infecting ORNs in the nasal epithelium [32, 33].

2.3 � Brain Barrier (BBB and BCSFB) Routes

In addition to the routes above for viral infection of the CNS, 
viruses can also cross the brain barriers to enter the CNS. 
There are three viral pathways involved in crossing the brain 
barriers, including the trans/paracellular route and the “Tro-
jan horse” route.

2.3.1 � Trans‑ or Paracellular Route

Viruses present in the bloodstream may also infect and enter 
the brain microvascular endothelial cells, which make up 
the BBB. To that end, the viruses bind to specific mem-
brane receptors depending on viral types (shown in Table 1). 
The viruses inside the cells may then traverse the ablumi-
nal membrane of the BBB to complete transcellular CNS 
penetration [34]. The viral infection of brain microvascular 
endothelial cells often causes the disruption of the tight junc-
tions and impairs the integrity of the local BBB at the later 
stages of the CNS viral diseases [35–37]. The loss of tight 
junction proteins caused by viral infection might facilitate 
the further transmission of viruses via the paracellular route. 
Likewise, viruses may infect the choroid plexus epithelial 
cells and migrate to the CNS via those trans- or paracellular 
routes [38]. The BCSFB at the level of the blood vessels is 
more permeable than the BBB as the tight junctions between 
these endothelial cells are considered the “leaky type” [39].

The west Nile virus, John Cunningham virus, human 
cytomegalovirus (HCMV), and the hepatitis C virus are 
examples of viruses that can disrupt the BBB integrity and 
utilize both trans- and paracellular routes [9, 34] (Fig. 1C). 
The John Cunningham virus is involved in the viral infec-
tions at the BCSFB and may hire a direct transmigration to 
enter the CNS [38]. Furthermore, SARS-CoV-2 is also sus-
pected to invade the CNS via brain microvascular endothe-
lial cell/choroid plexus epithelial cell-mediated transmigra-
tion across the BBB/BCSFB [40]. This is mainly due to the 
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extensive expression of the SARS-CoV2 receptor ACE2 on 
various types of cells including the endothelial cells of the 
BBB and the epithelial cells of the BCSFB [41]. Neurologi-
cal symptoms were also observed in patients with corona-
virus disease 2019, suggesting the CNS invasion of SARS-
CoV2 [42].

2.3.2 � Trojan Horse Route

Viruses may also use a Trojan horse strategy to cross the 
BBB or BCSFB (Fig. 1C), by first getting into white blood 
cells (leukocytes) that may enter the CNS and thereby car-
rying the viruses along into the CNS [43–45]. This process 
may be further boosted when viruses cause the impairment 
in the tight junction and BBB integrity [46, 47].

Human immunodeficiency virus may use this Trojan 
horse mechanism to get into the CNS. The process of viral 
entry into leukocytes is handled by the interaction between 

the HIV glycoproteins and the cell-surface receptor CD4 
[48]. In addition to HIV, SARS-CoV2 possibly enters the 
CNS by a Trojan horse strategy as its ability to infect leuko-
cytes has been reported [49].

3 � Mechanisms of Viral Invasion 
into the Brain Cells

Once viruses have entered the CNS, they can invade specific 
cells in the brain through two routes, namely receptor-medi-
ated endocytosis and receptor-mediated membrane fusion 
(Fig. 2).

3.1 � Receptor‑Mediated Endocytosis

Cellular uptake of viruses can be achieved by receptor-
mediated endocytosis [8]. For many enveloped viruses, they 

Fig. 2   General pathways of viral invasion into the cells. Viruses enter 
cells via receptor-mediated endocytosis or the membrane fusion path-
way, wherein virion releases their genome by forming a pore or fus-

ing with the endosome membrane after endocytosis or directly releas-
ing DNA/RNA after fusion with the plasma membrane.  Adapted 
from Doms [8]
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start with binding the cell-surface receptors, after which the 
receptor-virus complexes are transferred to the endosomes 
(Fig. 2). The low pH in late endosomes (~5.5) induces struc-
tural changes in viral spike glycoproteins via the protona-
tion of acidic residues of the glycoproteins. This causes 
virus-endosome fusion through an interaction between the 
changed glycoproteins and the membrane lipids, which sub-
sequently promotes the release of the viral genome into the 
host cells [50].

Nonenveloped viruses (i.e., a virus lacking a bilayer 
lipid membrane), such as polioviruses, may use a similar 
approach to invade cells (Fig. 2, mechanism 1B). However, 
after viral attachment to their entry receptors and subsequent 
transfer of the complexes to endosomes, the low pH environ-
ment could lead to the structural changes in viral capsids 
rather than that of the glycoprotein, and then expose the 
hydrophobic domains of viral capsids. Finally, the hydro-
phobic domains can insert into the endosome membrane and 
form a pore [51].

3.2 � Receptor‑Mediated Membrane Fusion

Viruses can enter the cell also through receptor-mediated 
membrane fusion [8]. This process, compared to receptor-
mediated endocytosis, is characterized by the involvement of 
another cell surface receptor called a co-receptor to trigger 
the fusion of a viral membrane with a plasma membrane of 
a target cell.

For instance, HIV engages a non-endosomal dependent 
pathway to enter cells (Fig. 2). The process of membrane 
fusion by HIV requires the entry receptor CD4 and a co-
receptor, such as the chemokine receptors CCR5 or CXCR4 
[52]. Binding of HIV to CD4 induces the structural changes 
in the envelope glycoprotein (Env) enabling HIV to bind to 
the coreceptor. Coreceptor binding can further change the 
conformation of the Env, which triggers the fusion of the 
viral envelope with the plasma membrane. The virus-cell 
membrane fusion always occurs at the surface of the plasma 
membrane, without being affected by the acidic environment 
of endosomes.

Certain viruses can use both receptor-mediated endocyto-
sis and receptor-mediated membrane fusion as entry mecha-
nisms of the CNS cells, which depends on the expression 
of cell-surface receptors on host cells to be able to switch 
between entry mechanisms. For instance, HSV-1 could enter 
target cells via endocytosis by binding Nectin-1 while the 
overexpression of the viral co-receptor, paired immuno-
globulin-like type 2 receptor alpha, could change the entry 
route to membrane fusion [53]. HIV-1 could also enter target 
cells via endocytosis [54–57], partly owing to the absence 
of co-receptors [58]. In the case of SARS-CoV-2, if there is 
transmembrane serine protease 2 expressed on the surface 
of target cells, SARS-CoV-2 binds to the receptor ACE2 

and co-receptor transmembrane serine protease 2 in order, 
and then the conformational changes in viral glycoprotein 
is triggered to mediate SARS-CoV-2 entry through a mem-
brane fusion pathway [59]. However, without the expres-
sion of transmembrane serine protease 2, ACE2 binding can 
directly lead to the endocytic entry. Thus, all the information 
on the viruses mentioned indicate these are able to invade 
cells through multiple routes and may therefore potentially 
be more neurotropic.

4 � Brain Cell Preferences (Viral Tropism 
and Reservoir)

The brain parenchymal cells mainly consist of neurons and 
non-neuronal glial cells, such as astrocytes and microglia. At 
the cellular level, viral tropism is the specificity of a given 
virus to infect a particular type of cells within the brain/
CNS to ultimately complete viral replication inside these 
cells. In general, viral tropism is mainly determined by two 
factors; namely the presence of specific receptors on the cell 
membrane that mediate viral entry and the subsequent intra-
cellular events that are necessary for viral replication [60].

Once entering specific brain cells, virus can evade 
immune detection by remaining dormant, forming latent res-
ervoirs rather than actively replicating [61]. By definition, a 
viral cell reservoir is a certain cell type where a replication-
competent form of the virus accumulates and persists [61]. 
These cell reservoirs are significant as they remain viral 
genomes capable of producing infectious viruses and con-
tinuing to fuel the infection within the host organism. The 
persistence of viral genomes within these reservoirs poses 
challenges for treatment and eradication efforts.

4.1 � Impact of Entry Receptors

For the majority of viruses, the determinant of viral tropism 
is the availability of entry receptors on the surface of the 
host cells (Table 2). In the CNS, viruses might selectively 
infect neurons, astrocytes and/or microglia owing to the 
presence of specific entry receptors on the different CNS 
cell types (Fig. 3).

HIV-1, for example, prefers to reside in microglia 
because these resident macrophages within the CNS pri-
marily express the entry receptor CD4 antigen of HIV-1 
[62]. Although HIV-1 could also enter human astrocytes 
using a CD4-independent pathway, i.e., human mannose 
receptor-mediated endocytosis [63], the CNS tropism of 
HIV-1 is specific for microglia where HIV-1 undergoes a 
productive infection after HIV-1 entry via utilizing CD4 as 
well as its co-receptor, while restricted replication in astro-
cytes was observed at different stages of the viral life cycle 
[64]. According to the definition of viral reservoirs, which 
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involves productive viral replication, only microglia are 
acknowledged as the CNS reservoir for HIV-1.

Herpes simplex virus and VZV predominantly enter 
neurons as host cells through interactions with the receptor 

Nectin-1 that is highly expressed in neurons of the human 
CNS [65, 66]. The importance of Nectin for VZV tropism 
has been recently demonstrated in a human stem cell-based 
neuronal model in which both knock-down of endogenous 

Table 2   Overview of factors that determine the entry and tropism of viruses in the brain cells

ACE2 angiotensin-converting enzyme 2, CD155 cluster of differentiation 155, CCR5 C-C chemokine receptor type 5, CD4 cluster of differentia-
tion 4, CXCR4 C-X-C chemokine receptor type 4, EGFR epidermal growth factor receptor, mRNA messenger RNA, Nectin-1 nectin cell adhe-
sion molecule 1, NRP2 neuropilin-2, PDGFRα platelet-derived growth factor receptor-α, PILRα paired immunoglobulin-like type 2 receptor 
alpha, TMPRSS2 transmembrane serine protease 2
a RNA expression of primary receptor is estimated based on RNA transcripts per million, with 0 for no expression, + for low expression, ++ for 
medium, and +++ for high. Data from The Human Protein Atlas (https://​www.​prote​inatl​as.​org)

Virus Abbreviation Primary recep-
tor

Co-receptors Entry pathways Cells allowing 
virus entry

Cell allowing 
virus replica-
tion

mRNA expres-
sion of primary 
receptora

Herpes simplex 
virus 1

HSV-1 Nectin-1 PILRα Endocytosis/
fusion

Neuron [65, 66] Yes [70, 71] ++

Varicella-zoster VZV / Endocytosis
Human cyto-

megalovirus
HCMV NRP2, PDGFRα EGFR, integrin 

αvβ3 [253]
Endocytosis/

fusion [254]
Neuron Yes [73, 74] ++
Astrocyte [72] Yes [73, 74] +
Microglia [72] Yes [73, 74] ++

Human immu-
nodeficiency 
virus 1

HIV-1 CD4 CCR5/CXCR4 Endocytosis/
fusion

Microglia [62, 
255]

Yes [64] ++

Poliovirus - CD155 / Endocytosis Neuron 
[256–258]

Yes [81] ++

Astrocyte 
[256–258]

? +

Microglia 
[256–258]

? +

Severe acute 
respiratory 
syndrome 
coronavirus 2

SARS-CoV2 ACE2 TMPRSS2 Endocytosis/
fusion

Neuron [259] Yes [78] +
Astrocyte [259] ? +
Microglia [259] ? 0

Fig. 3   Viral replication in dif-
ferent types of brain cells. CMV 
cytomegalovirus, HIV-1 human 
immunodeficiency virus type 1, 
HSV-1 herpes simplex virus 1, 
SARS-CoV-2 severe acute res-
piratory syndrome coronavirus 
2 coronavirus, VZV varicella-
zoster virus
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Nectin-1 or introduction of soluble Nectin-1 as a decoy 
receptor markedly reduced VZV infection in neurons [24, 
67]. Through functional studies in Nectin-1 knockout mice, 
Nectin-1 has been shown to play an important role in the 
CNS tropism of both HSV-1 and HSV-2 [68, 69]. Herpes 
simplex virus particles, like VZV, have a tendency to repli-
cate within neurons [70, 71]. This propensity suggests that 
HSV might establish a latent reservoir in neurons within the 
CNS for ongoing virus production.

With respect to HCMV, there are numerous cell-surface 
receptors that can facilitate HCMV entry, which might 
explain the effective invasion of HCMV to various cell 
types [72]. Human cytomegalovirus productively infects 
CNS parenchymal cells, including astrocytes, microglia, and 
neurons, with susceptibility levels that range from high to 
low [73, 74]. Several post-mortem studies have shown that 
SARS-CoV-2 proteins were detected among neurons, astro-
cytes, and microglia [75–77]. Recently, Shen et al. found 
SARS-CoV-2 could invade the CNS cells (such as neurons, 
oligodendrocytes, and microglia) using both ACE2 and 
neuropilin-1 receptors [78]. They also revealed that SARS-
CoV-2 not only infects mature neurons but also completes 
intracellular replication in these neurons, which is indicative 
of SARS-CoV-2 tropism for mature neurons and they may 
serve as a potential reservoir of SARS-CoV-2.

4.2 � Intracellular Events in Restricting Viral Tropism

The specificity of viral tropism is also affected by other 
factors apart from the availability of entry receptors. Some 
viruses, such as poxvirus, can enter certain cells without 
being able to productively replicate in the cells they have 
invaded [79]. Interestingly, there are several downstream 
intracellular factors limiting poxvirus replication once they 
enter the cells, such as cell-cycle control, trans-regulatory 
elements, and innate cytokines [80]. Therefore, viral replica-
tion could be aborted by these intracellular restriction events 
occurring in the restricted cells and might result in specific 
infection of poxviruses to particular CNS cells.

Poliovirus is another example of whose tropism at a cel-
lular level is determined by intracellular factors. Although 
human poliovirus receptor (or cluster of differentiation 
155) proteins are generally expressed on the membrane of 
many cells of different organs including the intestine, lung, 
liver, heart, brain, and spinal cord, poliovirus replication is 
restricted to the skeletal muscle and the CNS, for the latter 
of which polioviruses prefer to infect neurons rather than 
glial cells [81]. However, it is still unclear why only neurons 
become primarily infected. As with poxvirus, some intracel-
lular factors could limit viral replication and further affect 
cellular tropism of poliovirus.

4.2.1 � IRES

Many studies have highlighted that the initiation process of 
viral translation mediated by the poliovirus internal ribo-
some entry site (IRES) could serve as an intracellular factor 
that limits viral replications [82–85]. As IRES is within a 
non-coding region of poliovirus genome, the mutation in this 
part of the viral genome or introducing new IRES from other 
viruses by recombinant DNA technology does not affect the 
utilization of host cell receptor by viruses, but influences the 
interaction between IRES and some downstream intracel-
lular factors such as cell proteins and canonical translation 
initiation proteins that are involved in viral replication [86]. 
The neurovirulence or the replication of poliovirus is sig-
nificantly reduced either by inducing the mutations of IRES 
or by incorporating new IRES from other viruses, which 
suggests that the IRES of poliovirus serves as a determinant 
of viral tropism [85, 87–89].

4.2.2 � Interferon Production

In addition to the viral IRES, poliovirus tropism is also regu-
lated by the secretion of alpha/beta interferons, which are 
self-protective cytokines that by binding to their cognate 
cellular receptors activate intracellular signaling events that 
can prevent viral infection [90]. In the IRES knockout mouse 
model, viral antigens were observed in non-target tissues 
that are not supposed to be infected by polioviruses, includ-
ing the liver, spleen, and pancreas. Similar observations 
were also reported for other types of viruses and demon-
strated altered cell and tissue tropism of viruses via abla-
tion of interferon-α/β functions [79, 91, 92]. These results 
reinforce that interferon-induced responses are a common 
pathway against viral tropism that can prevent viral replica-
tion and the spread of different types of viruses.

In conclusion, viruses employ various pathways to enter 
the CNS and subsequently infect brain cells. Viral tropism 
signifies the preference of a virus for specific brain cell 
types, therefore influencing the extent of intracellular viral 
accumulation. As viral replication occurs within these cells, 
the intracellular concentrations of drugs are directly linked 
to their efficacy in inhibiting or eradicating the virus.

5 � Current Treatments for CNS Viral 
Infections

Despite the presence of over 200 different virus species, the 
number of clinically approved antiviral drugs in the market 
is limited [93]. The ability of viruses to reside and replicate 
within (brain) cells for their survival, whereas other patho-
genic micro-organisms such as bacteria remain in extracellu-
lar compartments, makes the development of antiviral drugs 
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an additional challenge, as this requires that antiviral drugs 
can distribute into the cells that are infected.

Considering the persistence and latency of viruses, the 
best therapeutic strategy against CNS viral infections is 
to prevent the occurrence of viral infections by vaccines. 
Effective vaccines have been used to successfully control the 
outbreak of different viruses; however, life-threatening viral 
infections still happen and require antiviral drugs that can 
decrease the mortality [10]. For acute CNS viral infections, 
the immediate action by antiviral drugs should be empha-
sized to slow or stop, or even reverse the disease course. 
In such cases, patients would not get the obvious treatment 
benefit from virus vaccines, which require time to activate 
the immune system.

Viral meningitis is usually overcome by self-recovery, 
and drug treatment is therefore not needed [4]. There are 

also no recommended therapeutic agents for viral myeli-
tis owing to the lack of potent drugs [94]. However, viral 
encephalitis is generally considered to be one of the most 
severe CNS infections and the mortality rate varies between 
virus types reaching up to 70% without antiviral therapies 
[7]. Currently there are only a few antiviral drugs com-
monly used for treating viral encephalitis (Table 3). Despite 
antiviral interventions, the treatment outcome is still poor, 
which could be explained partly by insufficient doses [95]. 
As specific antiviral medications are only available for viral 
encephalitis, this section mainly focuses on the current treat-
ments for certain types of viral encephalitis in the CNS.

Table 3   Antiviral treatments: an overview of important drug-specific characteristics for the treatment of viral infections in the brain

BCRP breast cancer resistance protein, HCMV human cytomegalovirus, HIV-1 human immunodeficiency virus 1, HSV herpes simplex virus, 
IV intravenously, MATE multidrug and toxin extrusion, MCT monocarboxylate transporter, MRP multidrug resistance-associated protein, ND 
non-determined,OAT organic anion transporter, OATP1B1 organic anion transporting polypeptide 1B1, OCT organic cation transporter, P-gp 
P-glycoprotein, Q8h three times per day, Q12h twice per day, SARS-CoV-2 severe acute respiratory syndrome coronavirus 2, VZV varicella-
zoster virus

Virus Treatment Involved active transporters Standard dosing recom-
mendations

Mortality rate with vs with-
out therapy

Influx related Efflux related

Herpesviridae
HSV-1 Acyclovir OAT1/3, OCT1 [165] P-gp [260] Neonate: 20 mg/kg Q8h 

IV
Neonate or children: 6–19% 

vs ND [103, 104]
Adult and children: 10 

mg/kg Q8h IV [10, 261, 
262]

Adult: 28% vs 70% [7, 12]

VZV Acyclovir OAT1/3, OCT1 [165] P-gp [260] Neonate: 20 mg/kg Q8h 
IV

Neonate: ND
Adult: 11–15% vs ND [105, 

106]Adult and children: 10–15 
mg/kg Q8h IV [10, 261, 
262]

CMV Ganciclovir OAT1/3, OCT1 [165] P-gp [263] Ganciclovir: 5 mg/kg 
Q12h IV

Adult: 24% vs ND [13]

Foscarnet OAT1 [162] MCT1 [264] Foscarnet: 60 mg/kg Q8h 
IV or 90 mg/kg Q12h IV 
[10, 261, 262]

Retroviridae
HIV-1 Tenofovir OAT1/3 [164] MRP4 [164] 300 mg once daily [265] Neonate or children: 6% vs 

24% [120]Dolutegravir OCT2 [266] 50 mg once daily [265]
Emtricitabine MATE1 [267] 200 mg once daily [265]
Lamivudine OAT1, OCT1-3 [157, 

182]
MRP1/4, BCRP [182] 150 mg twice daily or 300 

mg once daily [265]
Adult: 28% vs ND [14]

Abacavir OCT1-3 [157, 182] P-gp, BCRP [182] 300 mg twice daily or 600 
mg once daily [265]

Zidovudine OAT1-4 [268] P-gp, BCRP, MRP4/5 
[268]

250–300 mg twice daily 
[265]

Coronaviridae
SARS-CoV-2 Remdesivir OATP1B1 [269] P-gp [269] ND ND
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5.1 � Antiviral Nucleoside Analogs

5.1.1 � Pharmacological Properties

Nucleoside analogs, the mimics of endogenous nucleosides, 
are a common class of antiviral drugs used for viral encepha-
litis. The actions of antiviral nucleoside analogs are prem-
ised on intracellular metabolism to their active forms, which 
are triphosphorylated nucleosides [96]. In general, these 
nucleoside analogs undergo three steps of successive phos-
phorylations (Fig. 4). The first phosphorylation is typically 
mediated by viral kinases such as thymidine kinases (TK) 
of herpes viruses. For viruses such as HIV and hepatitis B 
virus that cannot produce virus-encoded TK, cellular kinases 
are required as the initial step to convert nucleoside analogs 
into monophosphorylated products [97]. The process medi-
ated by viral kinases is considered more efficient than that 
of cellular kinases because virus-encoded TK has a higher 
affinity for their substrate. For the diphosphorylation and 
triphosphorylation steps, only nucleoside kinases from host 
cells are required to take charge of phosphorylation [98]. 
The active triphosphorylated derivatives thereby exert their 
functions in inhibiting viral replications by serving as a sub-
strate for viral enzymes and incorporating their metabolites 
into viral DNA or RNA to induce the chain termination, as 
well as by acting as an inhibitor to suppress viral polymer-
ases or ribonucleotide reductase [99]. As nucleoside analogs 
more readily interact with viral, but not human polymerase 
to block viral replication, most of these drugs are safe and 
well tolerated. Therefore, we mainly focus on drug efficacy 
instead of drug toxicity in the following discussion.

5.1.2 � Clinical Efficacy: Herpesviruses

Herpesviruses are a common cause of encephalitis, most 
notably infections by HSV that account for 10–20% of all 

viral-mediated encephalitis cases [100]. In addition, VZV 
and CMV can also cause encephalitis where each of them 
comprises a relatively lower percentage (~3%) of the total 
patients with encephalitis [101]. The nucleoside analogs 
acyclovir and ganciclovir are the most commonly used treat-
ments for viral encephalitis caused by herpesviruses [102].

5.1.2.1  Acyclovir  Acyclovir is a US Food and Drug Admin-
istration-approved antiviral agent for the treatment of HSV 
encephalitis and is the sole drug for which a randomized 
controlled trial has been conducted to determine its efficacy 
for this specific type of encephalitis [12]. This study dem-
onstrated that acyclovir can dramatically reduce mortality 
in adult patients with timely diagnosed HSV-1-mediated 
encephalitis. Despite the use of acyclovir, high mortal-
ity rates (up to 28%) are still seen with HSV-1-mediated 
encephalitis and survival can frequently be compromised by 
coexisting comorbidities. In neonates, encephalitis treated 
with intravenous acyclovir have been linked to lower mor-
tality rates (6–19%) [103, 104], which may be explained by 
the not yet developed BBB in neonates that may facilitate 
the entry of acyclovir into the brain and therefore the treat-
ment of encephalitis in these patients. However, the neu-
rologic impairment remains very high (~70%) in newborns 
with HSV-mediated encephalitis after the use of acyclovir 
[104]. Within neonates, higher dosages of acyclovir (60 mg/
kg/day) can further reduce the mortality to 6% [103], indi-
cating that higher concentrations of acyclovir are beneficial/
necessary for inhibiting the viral replication in the brain.

Intravenous acyclovir is also used to treat VZV encepha-
litis, with higher dosages proposed for these patients com-
pared with those with HSV encephalitis. The reason under-
lying the higher dose is that acyclovir is less efficiently 
phosphorylated by the VZV-TK, which has lower affinity for 
acyclovir compared with HSV- TK [1]. The mortality rate in 
VZV encephalitis remains high, reaching up to 15% despite 

Fig. 4   Process of intracellular 
phosphorylation of antiviral 
drugs in virus-infected cells. 
HBV hepatitis B virus, HCMV 
human cytomegalovirus, HIV 
human immunodeficiency virus 
type 1, HSV herpes simplex 
virus, HSV-TK herpes simplex 
virus-encoded thymidine kinase, 
pUL97 human cytomegalovirus 
UL97 protein, VZV varicella-
zoster virus, VZV-TK varicella-
zoster virus-encoded thymidine 
kinase
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acyclovir treatment [105]. Furthermore, full recovery is 
observed in only up to 49% of patients after discharge [106].

Regarding viral meningitis, although there is no clinical 
controlled trial based on which the specific antiviral thera-
pies could be recommended, acyclovir have been used to 
treat HSV-2 meningitis [107]. Acyclovir is also the principal 
treatment of HSV and VZV myelitis [108].

5.1.2.2  Valacyclovir  Valacyclovir is an l-valyl ester prod-
rug of acyclovir that can increase oral bioavailability of 
acyclovir, and is used as an alternative therapy for patients 
with HSV encephalitis if intravenous administration is not 
possible or because of the relatively high cost burden of acy-
clovir in resource-limited countries [109]. However, the use 
of valacyclovir within this patient population is first lim-
ited by the lack of clinical studies that have been able to 
thoroughly assess the clinical effectiveness of valacyclovir 
on the mortality that is associated with HSV encephalitis. 
Second, controlled trials have been suggesting that neuro-
cognitive dysfunctions that develop following these types of 
infections may not improve following the use of valacyclo-
vir [110]. Similar to acyclovir, valacyclovir have been used 
to treat HSV-2 meningitis [107], while clinical evidence 
shows the better outcomes were observed in patients treated 
with acyclovir [111].

5.1.2.3  Ganciclovir  Ganciclovir is a guanosine analog nor-
mally used in combination with foscarnet (a phosphonic 
acid derivative) to treat CMV encephalitis, which is the 
most common therapeutic regimen recommended by the 
experts [10, 13]. The two-drug combination regimen is fur-
ther proved to be efficacious in CMV encephalitis/myelitis 
by a multi-center, non-randomized, uncontrolled single-arm 
trial [13]. The combination of ganciclovir plus foscarnet 
caused clinical improvements in 71% of the 17 patients with 
encephalitis who were enrolled, though within this small 
clinical study 24% of patients also died despite the use of 
the combination.

5.1.3 � Clinical Efficacy: HIV

HIV-1 infection in the CNS may finally evolve into encepha-
litis and therefore damage the function of the human brain, 
and clinically result in the AIDS dementia complex [112]. 
Nucleoside reverse transcriptase inhibitors are the mainstay 
of antiretroviral therapeutic agents for HIV-associated CNS 
disease over the last 10 years [113, 114]. Antiretroviral drugs 
with good CNS penetration should be incorporated into the 
therapeutic strategies of HIV-1 encephalitis, as the inhibition 
of HIV-1 replication in the CNS seems to be an important 
factor for managing patients with neurological complica-
tions [115].

The revised 2010 version of the CNS Penetration Effec-
tiveness (CPE) score is a tool that classifies the potential of 
drugs to penetrate the CNS. The penetration efficacy of dif-
ferent drugs is categorized into ranks (1–4) for which mul-
tiple factors are taken into consideration [116], including 
pharmacokinetic (PK) and pharmacodynamic (PD) data to 
assess whether a drug’s cerebrospinal fluid (CSF) concen-
tration exceeds the half maximal inhibitory concentration 
(IC50), drug characteristics considering properties that may 
limit CNS penetration (e.g., large molecular weight), and 
clinical study outcomes evaluating improvements in patient 
cognition or reductions in the CSF viral load. With respect 
to antiviral nucleoside analogs, such as zidovudine (4, very 
good), emtricitabine (3, good), and abacavir (3, good), they 
have been allocated a higher CPE score, indicating a greater 
capability to penetrate the CNS. In contrast, lamivudine has 
modest penetration with a score of 2. Hence, theoretically, 
they are deemed more effective for patients experiencing 
HIV-associated neurological complications [117, 118]. 
However, relying solely on the CPE system to assess drug 
efficacy in the CNS is imprudent, as its application has not 
been uniformly validated. Certain studies suggest a link 
between higher CPE scores, cognitive enhancements, and a 
reduced viral load in the CSF, while other studies report no 
such correlation [118, 119].

In children with HIV encephalopathy, high CNS-pene-
trating antiretroviral regimens are recommended based on 
clinical evidence of reduced mortality of patients who were 
treated with the combination of highly permeable drugs, 
compared with those who never received any antiretroviral 
therapy (6% vs 24%) [120]. Despite effective antiretrovi-
ral therapy, more than 32% of patients with HIV-associated 
dementia have persistent neurocognitive impairment and 
28% of them died according to one retrospective study [14]. 
With regard to HIV myelitis, it also arises in the early and 
late stages of HIV infection, while the optimal therapeu-
tic regimens are unknown as antiretroviral drugs are often 
incapable of stopping the progression of related symptoms 
[108]. For the high CNS-penetrating antiviral drugs, still the 
question remains if adequate intracellular target site concen-
trations can be reached by these drugs.

5.2 � Antiviral Nucleotide Analog Prodrug

5.2.1 � Pharmacological Properties

In the case of mutations, viral kinases may fail to catalyze 
the initial phosphorylation of nucleoside analogs [121]. As 
nucleoside analogs have a similar structure to endogenous 
nucleosides, they can also hire cellular kinases to complete 
the first phosphorylation but this cell kinase-dependent reac-
tion is typically slow and inefficient, and thus considered a 
rate-limiting step of the whole process of phosphorylation 
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[122]. A nucleotide is the nucleoside with one to three phos-
phate groups and some nucleotide analogs that have only one 
phosphate attached (nucleoside monophosphate) have been 
developed to avoid the need for viral kinases and bypass the 
rate-limiting step in phosphorylation [121]. However, the 
cleavage of the P–O bond of a nucleoside monophosphate 
is prone to the catalysis of hydrolases before and after they 
enter viral-infected cells, which makes the chemical struc-
ture of phosphate analogs become less stable [123]. Hence, 
phosphonate nucleoside analogs, also a type of nucleotide 
analogs, are used to increase metabolic stability of these 
compounds by replacing the phosphonooxymethyl moi-
ety (P–O–C) with the phosphonomethoxy (P–C–O) while 
remaining as substrates for a variety of cellular kinases so as 
to successfully achieve intracellular conversion into nucleo-
side triphosphate analogs [123].

Tenofovir and cidofovir are the representative nucleotide 
analogs with the P–C–O moiety. However, the presence of 
negative charges in the phosphonate group limits penetration 
of the drugs into the cell [124].

In order to mask negative charges for the further improve-
ment of penetration, prodrugs of tenofovir, including tenofo-
vir disoproxil fumarate (double ester prodrug) and tenofovir 
alafenamide (phosphoramidate prodrug), have been devel-
oped that contain modifications of the phosphonate moi-
ety with either alkoxycarbonyl or with aryl and amino acid 
motifs [124]. These prodrugs can be rapidly converted into 
nucleoside phosphonate by removing the masking groups 
via intracellular enzymes [125]. Remdesivir is another 
example of a nucleotide analog prodrug, phosphoramidate, 
where the phosphate group instead of the phosphonate moi-
ety is masked by modified groups.

5.2.2 � Clinical Efficacy: HIV

Tenofovir disoproxil fumarate has proven effective in 
improving neurocognitive and neurological impairment by 
HIV in several clinical trials [126, 127]. Compared with 
tenofovir alafenamide, it might be more efficacious in HIV 
encephalitis because of a higher exposure to tenofovir in 
the CSF [128]. However, CSF concentrations may not reli-
ably reflect brain tissue concentrations. This is evident from 
the notably lower levels of tenofovir observed in brain tis-
sue compared with CSF in both human and animal models 
[129, 130]. Remdesivir is a Food and Drug Administration-
approved drug for the treatment of SARS-CoV-2 [131]; 
however, in general, patients did obtain an obvious benefit 
from the treatment [132]. There is no relevant evidence to 
support the effect of remdesivir on reducing neurological 
symptoms, and remdesivir also needs more data from clini-
cal trials to prove its own role in the fight against the pan-
demic of SARS-CoV-2 [133].

5.3 � INSTIs

5.3.1 � Pharmacological Properties

Integrase strand transfer inhibitors (INSTIs) stand as a piv-
otal class of antiretroviral drugs specifically used in the treat-
ment of HIV. Integrase strand transfer inhibitors can interact 
with the active site of the integrase enzyme to effectively 
block its activity. As a result, the inactive integrase enzyme 
lacks the function to integrate viral DNA into the host cell 
DNA, hindering the viral replication. The first-generation 
INSTIs of raltegravir and elvitegravir have been approved for 
anti-HIV treatment over 10 years [134]. However, some HIV 
strains developed drug resistance mutations against first-gen-
eration INSTIs, limiting their effectiveness [135]. Second-
generation INSTIs such as bictegravir and dolutegravir have 
been created to counteract the rapidly emerging resistance 
to first-generation INSTIs. These newer compounds demon-
strate strengthened potency against viral replication and a 
reduced likelihood of resistance mutations, ensuring durable 
effectiveness compared with their predecessors [136].

5.3.2 � Clinical Efficacy: HIV

Bictegravir and dolutegravir are currently the first-line drugs 
for HIV treatment, along with the use of a nucleoside analog 
such as lamivudine and emtricitabine and the nucleotide 
analog tenofovir [137]. As the concentrations of bictegra-
vir and dolutegravir in CSF are much higher above their 
respective IC50 values, they might exert a sufficient inhibi-
tive effect on viral replication in the CNS regions, despite 
modest penetration to the CNS (total CSF-to-plasma ratio 
less than 1%) [138–140]. Nevertheless, increased exposure 
of dolutegravir in the CNS has shown an association with an 
increased risk of CNS disorders, including dizziness, head-
ache, and anxiety [141]. Some preclinical studies also sug-
gested that both dolutegravir and bictegravir could disrupt 
the BBB integrity and enhance its permeability [142, 143].

Currently, there are no specific recommendations for 
INSTIs concerning HIV-related CNS infections. Further 
clinical trials are essential to ascertain the efficacy of bict-
egravir and dolutegravir in managing HIV-associated CNS 
infections.

Taken together, different nucleoside and nucleotide ana-
logs are available for the treatment of viral encephalitis and 
may drastically lower mortality. Nevertheless, patients with 
viral encephalitis remain at a high risk for mortality (>10%) 
and long-term complications, indicating the need for new 
drugs and/or improvements in the dosing of existing drugs. 
With respect to these classes of drugs, it is important to note 
that the desired inhibitory activity on viral replications takes 
place inside the neuron, microglia, or astrocyte in which fur-
ther metabolic conversion/activation of the different antiviral 
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drugs may be required. Thus, knowledge of the intracellular 
concentrations of antiviral drugs within brain cells is most 
relevant for future strategies that aim to optimize dosing 
regimens of antiviral drugs.

6 � Challenges in CNS Antiviral Treatment

As antiviral drugs should reach the target cells and maintain 
a sufficient concentration to completely suppress viral rep-
lication, insufficient intracellular concentrations might be 
one reason for treatment failure. To better assess the drug 
exposure–response relationship, the processes determining 
to which extent antiviral drugs remain inside the cells should 
be taken into account. These processes can influence drug 
intracellular concentrations by two different ways. More spe-
cifically, passive passage and active influx transport across 
the brain cell membrane determine how much antiviral drugs 
can enter brain cells, while intracellular metabolism and 
active efflux transport across the brain cell membrane can 
reduce the amount of drugs inside the cells.

Drug resistance caused by viral gene mutation is another 
challenge for antiviral treatment. Despite a low prevalence 
in immunocompetent individuals, antiviral drug resist-
ance among a specific population (HIV or organ transplant 
patients) is of concern given the observed high incidence (up 
to 30%) of drug resistance [144, 145].

6.1 � Passive Diffusion Across the Brain Cell 
Membrane

Antiviral drugs can pass through the lipid bilayer into the 
intracellular space by means of transmembrane passive 
diffusion, which is favored by small molecules. Many anti-
viral drugs cross the cell membrane through this route. 
This non-saturable process is facilitated by a drug concen-
tration gradient from high to low [146]. In addition, the 
balance between lipophilicity and hydrophilicity is very 
important as compounds with a real high lipid solubility 
can readily penetrate the lipid membrane, but tend to accu-
mulate there (i.e., non-specific binding) [147]. However, 
low lipophilicity can be a problem. As an example, for the 
hydrophilic drug acyclovir, limited penetration has been 
observed with the values of 50% for intravenous adminis-
tration and 20% for oral administration [148, 149], which 
also explains the limited permeability of acyclovir across 
the brain cell membrane into the brain ICF. Tenofovir is 
another hydrophilic drug with much lower concentrations 
in the CSF compared to plasma concentrations [150]. It 
has also been shown that only a small amount of tenofo-
vir can cross the cell membrane of microglia [151]. The 
hydrophilicity of both drugs might constrain their abil-
ity to cross the BBB/BCSFB barriers as well as the brain 
cell membrane, potentially leading to lower intracellular 
concentrations of these two prodrugs and, consequently, 
their active metabolites—acyclovir-triphosphate and 
tenofovir-diphosphate.

Fig. 5   Main active transporters expressed on human and rat brain parenchymal cells for transferring antiviral drugs. MRP multidrug resistance 
associated protein, OAT organic anion transporter, OCT organic cation transporter, P-gp P-glycoprotein
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6.2 � Active Drug Transporters on Brain Cell 
Membranes

Apart from the BBB and the BCSFB, drug efflux and 
influx transporters have been also identified on the brain 
cellular membranes [18, 152]. However, the presence and 
functional consequences of active transporters are primar-
ily understood at the level of the BBB/BCSFB, whereas 
its impact on the membranes of different cell types within 
the brain remains largely unclear. Based on recent find-
ings (see references in the text below), we summarized 
the expressions of active transporters that can transport 
antiviral drugs across the brain cell membrane (Fig. 5).

6.2.1 � Influx Transporters

The messenger RNA (mRNA) and protein expression of dif-
ferent influx transporters have been identified in brain paren-
chymal cells. Most of them belong to two families, namely 
the organic anion transporters (OATs) and the organic cation 
transporters (OCTs) [153–156], which may act as cellular 
influx transporters.

The antiviral drugs that are used for the treatment of 
encephalitis have been confirmed to be substrates of these 
influx transporters, as the intracellular drug concentra-
tions decreased after blocking the function of correspond-
ing transporters within cell models in which the respective 
human influx transporter gene was transfected [157, 158]. 
Acyclovir is eliminated by renal excretion involving interac-
tions with human OAT1 (SLC22A6) and OAT3 (SLC22A8), 
both of which contribute to the active uptake of drugs from 
the blood to kidney cells [159]. It is however unclear if 
acyclovir can interact with hOAT1/3 in brain parenchyma 
because of the lack of knowledge of hOAT distribution in 
brain parenchymal cells. However, OAT1/OAT3 has been 
found to be expressed on mouse and rat neurons [160, 161], 
suggesting that the intracellular concentration of acyclovir in 
neurons might be increased by these two influx transporters 
at least in rodent animal models [162, 163]. Some studies 
also showed that tenofovir and ganciclovir are substrates 
of OAT1 or OAT3 [164, 165], and the intracellular con-
centrations of these drugs might vary in different types of 
brain cells because only neurons express OAT1/3 that take 
their substrates into brain cells. The expression of OCTs 
have been also observed at neurons and astrocytes [152, 
166–168]. Hence, OCTs may be involved in the intracellular 
distribution of the antiretroviral drugs abacavir and lami-
vudine, which are high-affinity substrates for OCTs [157], 
and widen the concentration gaps in OCT-expressing and 
non-expressing brain cells.

6.2.2 � Efflux Transporters

The best-known efflux transporters are the ATP-binding 
cassette (ABC) transporters, including P-glycoprotein 
(P-gp/ABCB1), multidrug resistance associated protein 
1 (MRP1/ABCC1), and breast cancer resistance protein 
(BCRP/ABCG2). Within the brain, P-gp and MRP1 are not 
only expressed at the BBB but also on the brain cells [169], 
whereas BCRP is primarily expressed on the endothelial 
cells that form the BBB [170–173].

In this section, we do not go further to discuss BCRP 
expression at the BBB as our main focus is on the active 
transport on the brain cells. A species difference in MRP1 
expression in brain cells has been observed between humans 
and rats, where the gene expression was detected in the three 
main types of brain cells in rats [174–176] but not in humans 
[177]. P-glycoprotein is mainly identified at glial cells [175, 
178], but pathological conditions (such as seizures) and/or 
aging can increase the expression of P-gp also at neurons 
[179, 180]. The efflux transporters present on the brain cell 
membrane probably have an important impact on the dis-
tribution of antiretroviral drugs into the brain cells (such 
as abacavir and lamivudine), as antiretroviral drugs are 
substrates of these transporters [164, 181, 182]. By using 
different CNS cell lines, Patel et al. tested three antiretro-
viral drugs and revealed cell-type specific differences in 
intracellular drug concentrations (up to three-fold) between 
microglia and astrocytes, although the role of certain active 
transporters still remains to be further elucidated [183].

6.3 � Drug‑Metabolizing Enzymes Inside Brain Cells

Cytochrome P450 families and UGTs are the most predomi-
nant metabolic enzymes involved in phase I and II biotrans-
formation reactions in the liver that are required for drug 
elimination [184–186]. Even though drug-metabolizing 
enzymes are less expressed in the brain compared with the 
liver, some of these drug-metabolizing enzymes may also 
exhibit functional activity in the brain. [19, 20]. Different 
methodological approaches have been used to demonstrate 
the presence and functional consequences of the different 
CYP and UGT isoforms on the distinct cell types within the 
brains of rodents and humans [20, 187]. Through the use 
of rat and human brain microsomes, Voirol et al. demon-
strated functional metabolic activities of two essential CYP 
enzymes, CYP3A4 and CYP2D6 [188]. Further studies have 
confirmed mRNA expression of CYP2D6 and the protein 
presence of CYP3A4 in human neurons [189, 190]. In the 
brain, limited mRNA and/or protein expression of different 
UGT isoforms was also detected in both neuronal and non-
neuronal cells [187]. Noteworthy, studies in human brain 
microsomes demonstrated UGT-dependent glucuronidation 
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of morphine, which provides evidence for functional enzy-
matic activity of UGTs within the brain [191].

Antiviral agents used for treating viral encephalitis could 
be the substrates of some isoforms of these enzyme fami-
lies. For instance, dolutegravir is primarily metabolized by 
UGT1A1, with a small portion metabolized by CYP3A4 
[192]. Expression of UGT1A1 mRNA and CYP3A4 protein 
were found in rat astrocytes and human neurons, respectively 
[188, 193]. In addition, abacavir is metabolized in the liver 
by alcohol dehydrogenase (ADH1A) and UGT1A1 at a ratio 
of 1:1 [194]. This isoform of ADH1 also exists in the rat 
CNS [195] and significant ADH activity was found in the 
rat brain, although it is still lower than its counterpart in the 
rat liver [196].

With the information provided above, intracellular drug 
concentrations might be also affected by these enzymes, 
which are differentially expressed in each type of brain cell.

6.4 � Virus Resistance to Antiviral Treatment

Mutations at the genetic structure of virus-encoded enzymes 
are thought to be the main reason for the resistance to anti-
viral drugs [197]. These mutations are often related to 
different modes of action of the antiviral compounds. For 
instance, the existence of viral kinase mutants could largely 
explain the viral resistance to acyclovir or ganciclovir in the 
treatment of HSV or HCMV as the mutants cannot activate 
the initial phosphorylation of these two compounds [197]. 
Although less frequent, the mutations in the gene of viral 
DNA polymerase are the primary reason for the develop-
ment of HSV/HCMV resistance to foscarnet and cidofovir 
because these two drugs do not require the involvement of 
viral kinases to inhibit viral replications [197]. The mecha-
nism of HIV drug resistance is complex and drug resistance 
can be driven by different point mutations in the gene of 
HIV-encoded enzymes, which does not impair HIV replica-
tion but blocks the action of antiviral drugs [198].

The occurrence of acyclovir resistance is rare (~0.3%) in 
immunocompetent patients with HSV. However, in immu-
nocompromised hosts, the prevalence of viral resistance to 
acyclovir is relatively higher, typically between 4 and 7% 
[199]. Ganciclovir-resistant HCMV infection often occurs in 
organ transplant recipients with an incidence rate of 5–10% 
and in immunodeficient patients with an incidence rate of 
5% [200]. Foscarnet and cidofovir are the options when 
first-line therapies fail in HCMV/HSV infection because of 
drug resistance, as their actions do not require prior activa-
tion by viral kinases, although resistance to foscarnet and 
cidofovir can occur as well [201–203]. The prevalence of 
HIV resistant to antiretroviral therapy ranges from 3.5 to 
25.8% across different countries [204]. Some recent stud-
ies also suggest the rising levels of HIV drug resistance in 

low-income countries due to poor antiretroviral therapy and 
surveillance of resistance-related mutations [205, 206].

It seems that for both immunocompetent and immuno-
compromised patients drug resistance in CNS viral infection 
is very rare, with limited information from a few case reports 
[207–210]. The diagnosis of drug resistance is normally con-
ducted by genotype sequencing of both virus-encoded TK 
and DNA polymerase in CSF samples, based on these case 
reports. Furthermore, once drug resistance is confirmed, 
current therapeutic agents need to be substituted by or com-
bined with other drugs having a distinct mechanism of action 
to overcome the resistance. For instance, among patients 
who initially received acyclovir or ganciclovir treatment, the 
immediate involvement of foscarnet should be considered 
after the occurrence of drug resistance [207, 208]. Insuf-
ficient CNS exposure is often associated with inadequate 
viral suppression, allowing viruses ample time to develop 
resistance-related gene mutations [211]. Increasing the drug 
dose or using drugs with better CNS penetration therefore 
is a potential strategy to prevent antiviral drug resistance 
[209, 210].

In summary, it seems that insufficient intracellular con-
centrations and antiviral drug resistance are important 
reasons for drug treatment failures. The former might also 
facilitate the evolution of resistance to antiviral drugs owing 
to incomplete suppression of viral replication. For a specific 
population such as immunocompromised patients, they have 
a higher risk of developing drug resistance during the treat-
ment course, and thus optimization of dosing regimens as 
well as gene mutation surveillance are warranted for them.

It is important to note that there are no available intracel-
lular PK data from clinical studies on viral CNS infections 
that can be used for investigating the direct relationship of 
(in)adequate intracellular exposure and drug treatment suc-
cess/failure. As sampling from the human brain, including 
brain cells, is highly restricted, indirect approaches should 
be developed as an alternative to obtain the intracellular 
PK information that can be used to assess whether antiviral 
drugs fail to effectively inhibit viral replication. In many 
current studies involved with CNS viral infection, PK data 
are commonly generated from CSF, which typically do not 
represent brain ECF [212], let alone brain ICF concentra-
tions at the site where viruses reside.

7 � Mathematical Modeling Approaches 
for Optimizing Antiviral Treatment

Although it is crucial to know whether antiviral drugs can 
cross cellular membranes of brain cells in a sufficient man-
ner, there remains a knowledge gap in brain intracellular 
pharmacokinetics because direct sampling from the human 
brain to obtain PK data on intracellular drug concentrations 
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is highly restricted. Mathematical modeling approaches are 
an alternative way to predict drug concentrations, wherein 
population pharmacokinetic (POP-PK) models take up a 
relatively large proportion of the whole methods in antiviral 
treatment [213, 214].

7.1 � POP‑PK Model

Population-pharmacokinetic modeling have been success-
fully applied for HIV drugs [215–217]. A key advantage 
of these models is that they link plasma pharmacokinetics 
to the peripheral blood mononuclear cell compartment that 
could be a biomarker of intracellular target site concentra-
tions, and related to intracellular drug action. Letendre et al. 
developed a POP-PK model using data from both plasma 
and CSF to investigate the CNS penetration of indinavir 
[218]. The model predicted that CSF drug concentrations 
exceed a 95% inhibitory concentration range for clinical iso-
lates, which suggests that the current dosing regimen may be 
sufficient. As indicated earlier, CSF concentrations cannot 
generally be taken as a good indication of brain ECF/ICF 
concentrations [212]. Population-pharmacokinetic models, 
being data driven, are heavily based on actual measurements 
of drug concentrations in either plasma or CSF, which can-
not address intracellular concentrations of brain cells.

7.2 � PBPK Model

Here, we discuss the use of in silico PBPK models for 
enhancing our comprehension of drug treatment by predict-
ing the intracellular drug concentrations. Compared to the 
POP-PK models that fit the model with existing data, the 
physiologically based models need a good understanding 
of mechanisms and integration of the parameters on both 
human brain physiology and drug properties into a math-
ematical model to predict intracellular drug concentrations, 
i.e., a knowledge-driven or bottom-up approach. Then 
PK-PD relationships can be interpreted by comparing the 
predicted intracellular concentrations to the in vitro concen-
trations based on drug effects (IC50 or half maximal effective 
concentration).

The PBPK models are “bottom up”, which require a deep 
understanding of the physiological properties of organs, tis-
sues as well as tissue-related cells. Compared to empirical 
models, one of the advantages of PBPK models is that target 
site concentrations can be predicted based on tissue-specific 
and cell-specific data. Thus, both drug-specific and system-
specific information can be used as inputs to help construct 
these models. Moreover, cross-species PBPK modeling for 
drug development could be achieved by replacing the physi-
ological values of one species by another.

7.2.1 � Semi‑PBPK Modeling for CNS Regions

Some PBPK models have been applied for evaluating the 
toxicity or effectiveness of antiviral drugs based on the 
predicted data of intracellular drug concentrations [219, 
220]. These models are full PBPK models that represent 
the principal organs in the human body but miss the depth 
of specific mechanisms in the CNS. Of note, the intracel-
lular concentrations in the brain were not simulated as these 
models serve for improving the treatments of patients with 
infections in locations other than the CNS.

To investigate exposure-related effects of antiviral drugs 
in the brain, Ito et  al. constructed a CNS PBPK model 
including three compartments, i.e., the blood, the BBB, and 
the whole brain region [221]. Active transport at the BBB 
was also taken into account, by utilizing the information on 
the functional characteristics of drug transporters in mice 
studies. Given that this model employs a single general com-
partment to represent the entire brain, the human simulation 
focused on generating the area under the unbound brain drug 
concentration–time curve to reflect CNS exposure. However, 
it is important to note that this simplified representation may 
not fully capture the complex distribution patterns within 
the brain. The use of a single general compartment for the 
entire brain overlooks regional variations in drug distribu-
tion and may lead to an oversimplification of the drug PK 
profile. Despite these limitations, simulating the area under 
the unbound brain drug concentration–time curve provides 
a practical approximation of drug CNS exposure. According 
to the analysis from Ito et al., high brain exposure (seven-
fold higher area under the concentration–time curve) to 
oseltamivir occurs among the population with rare genetic 
variants in active transporters which may explain why only a 
few patients experienced neuropsychiatric adverse reactions.

7.2.2 � PBPK Modeling of CNS Regions into Physiological 
Compartments

Several PBPK models [222–225] have been developed to 
enhance the structural accuracy and mechanistic representa-
tion of the anatomy and physiology in CNS regions. These 
models divided the CNS regions into multiple physiologi-
cal compartments representing CSF and brain parenchyma, 
interlinking these physiological compartments through fluid 
bulk flows. Despite validation of the models in animal and 
human data, their application is limited to predicting either 
brain extracellular or total concentrations, owing to the sim-
plification of the brain structure within these models.

However, we need a model that explicitly distinguishes 
the extracellular and intracellular space, as different mech-
anisms are responsible for the pharmacokinetics in these 
physiological CNS compartments. To achieve this, more 
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sophisticated CNS models were built to better tell apart the 
brain parenchyma and its surrounding environment.

An example of such a model is the Leiden CNS PBPK 
model (LeiCNS-PK3.0), which is capable of distinguishing 
extracellular and intracellular concentrations. This model 
is constructed by utilizing the data on CNS physiological 
characteristics, drug properties, and plasma pharmacoki-
netics. With such information available, it can adequately 
predict drug concentrations in brain ECF, brain ICF, subcel-
lular lysosomes, and CSF in lateral ventricles, the third and 
fourth ventricle, cisterna magma, and subarachnoid space 
that includes the lumbar CSF [226]. In this model, drug 
transport across the brain barriers and brain cell membrane 
is mechanistically divided into passive diffusion and active 
transport, and includes the pH partition theory on the basis 
of actual pH in the different physiological compartments, 
and non-specific binding to brain cell lipid bilayers. Using 
brain ICF pharmacokinetic predictions, and information on 
metabolic conversion where needed, active metabolite con-
centrations can be predicted and then related to PD indica-
tors (IC50, half maximal effective concentration, or Km) for 
the evaluation of antiviral efficacy. In a recent application 
of the LeiCNS-PK3.0 model [227], CNS antiviral efficacy 
was evaluated for coronavirus disease 2019 drug candidates 
including nirmatrelvir, molnupiravir, and remdesivir. By 
incorporating the information on the conversion of parent 
drug to metabolites in in vitro studies, the model further pre-
dicted the intracellular concentrations of active metabolites. 
The ICF PK predictions were subsequently used to assess 
antiviral drug activity by comparing them to reported EC90 
values of nirmatrelvir, molnupiravir, and remdesivir against 
coronavirus variants. Based on these LeiCNS-PK3.0 pre-
dictions, it was shown that only nirmatrelvir could reach an 
effective PK exposure based on the current dosing regimen 
(above the variants’ EC90).

Heitman et al. [228] used the LeiCNS PBPK model struc-
ture and divided the brain tissue over different regions—the 
thalamus, cortex, basal ganglia, and the rest of the brain—
and added different lipid compositions for these regions to 
predict how drugs distribute intracellularly among various 
brain locations. It holds the potential to assess variations in 
the efficacy of antiviral drugs based on their exposure within 
different brain regions. Such predictive capabilities enable 
a more nuanced understanding of drug performance within 
specific anatomical zones of the CNS, offering insights cru-
cial for optimizing therapeutic regimens targeting CNS viral 
infections.

7.2.3 � Application of CNS PBPK Model 
with the Consideration of a Sex Difference

A sex difference may play a role in both the pharmacokinet-
ics (drug distribution) and pharmacodynamics (severity of 

CNS viral infection) of antiviral agents. Regarding PK dif-
ferences between men and women, several studies [229–231] 
suggest that these variations might arise from physiological 
factors such as the plasma protein level, renal clearance, and 
hepatic metabolism. Zooming in on the CNS, sex-specific 
differences have been observed in human physiological 
parameters such as the cerebral blood flow rate and the total 
brain volume [232], and the CYP enzyme expression at least 
in rat models [233].

Concerning sex-related pharmacodynamics, differences 
in the severity and incidence of CNS viral infections have 
been reported [234–236]. The differential outcomes and 
pathogenesis of viral infections between sexes are associated 
with an immunity to viruses [237]. Multiple factors con-
tribute to this, including variations in the expression of sex 
chromosome-encoded viral-sensing receptors, virus entry 
receptors, as well as the quantity and quality of immune 
cells. However, the variation in immunity due to sex mainly 
affects viral dynamics.

To address these PK/PD differences in the whole popula-
tion, the first step is to identify the factors that potentially 
affect the antiviral drug pharmacokinetics at the CNS cel-
lular target site. After incorporating such information into 
the PBPK model, the subsequent step should be the devel-
opment of a mechanistic model linking viral dynamics to 
pharmacokinetics (PK-PD model). For this, information on 
the impact of sex on immunity is crucial. However, con-
structing an accurate PD model faces challenges because of 
the unclear underlying mechanisms governing the interac-
tion between the virus and cell receptors, and the scarcity 
of quantitative data. Hence, experimental data are required.

In summary, CNS PBPK models stand out for their 
effectiveness in predicting brain ICF drug concentrations. 
To account for the distinctive PK profiles between ECF and 
ICF, it is imperative to mechanistically divide the PBPK 
model into two segments corresponding to ECF and ICF, for 
the sake of enhancing the precision of predicting drug intra-
cellular distribution. For those interested in exploring the 
brain’s regional distribution of antiviral drugs, it is advisable 
to include regions of interest within the model. To explore 
even further, it becomes intriguing to distinct drug intracel-
lular distributions among neurons, microglia, and astrocytes 
based on the PBPK model approach. Understanding cellu-
lar membrane transporter expression and functionality also 
adds valuable information, which can be integrated into the 
PBPK model to account for active transport mechanisms on 
the brain cell membrane. With the consideration of PK/PD 
differences related to sex, the model can be used to optimize 
the existing and novel therapies for the entire population.
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8 � Concluding Remarks

Neurotropic viruses have multiple pathways to enter the 
CNS and then target the interior of the brain cells where they 
reside, replicate, and cause disease conditions. Although 
the use of vaccines has effectively reduced the occurrence 
of CNS viral infection, people still suffer or even die from 
viral infections of the CNS. While for certain types of 
viruses such as HIV or HSV, efficacious vaccines are under 
development, adequate drug treatments are still necessary 
and important if vaccines do not work properly or are not 
taken. One reason for why antiviral drugs may lack effi-
cacy for the treatment of CNS infections is that they may 
reach inadequate intracellular concentrations in the CNS 
to block viral replication. Intracellular exposure-response 
relationships should be further investigated to understand 
which dosing regimens can provide the desired intracellular 
concentrations that are necessary to block viral replication. 
Such information can be difficult to obtain from humans and 
requires therefore alternative strategies. The use of compre-
hensive CNS PBPK models, that incorporate predictions of 
the brain ICF, can therefore be an important approach to 
explore intracellular drug PK profiles and its relationship to 
antiviral drug effects in the CNS.
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