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Metabolic dysfunction-associated steatotic liver disease
and the heart

Stan Driessen1 | Sven M. Francque2 | Stefan D. Anker3,4 |

Manuel Castro Cabezas5,6,7 | Diederick E. Grobbee5,8 |

Maarten E. Tushuizen9 | Adriaan G. Holleboom1

Abstract

The prevalence and severity of metabolic dysfunction–associated steatotic

liver disease (MASLD) are increasing. Physicians who treat patients with

MASLD may acknowledge the strong coincidence with cardiometabolic

disease, including atherosclerotic cardiovascular disease (asCVD). This

raises questions on co-occurrence, causality, and the need for screening

and multidisciplinary care for MASLD in patients with asCVD, and vice versa.

Here, we review the interrelations of MASLD and heart disease and

formulate answers to these matters. Epidemiological studies scoring proxies

for atherosclerosis and actual cardiovascular events indicate increased

atherosclerosis in patients with MASLD, yet no increased risk of asCVD

mortality. MASLD and asCVD share common drivers: obesity, insulin

resistance and type 2 diabetes mellitus (T2DM), smoking, hypertension,

and sleep apnea syndrome. In addition, Mendelian randomization studies

support that MASLD may cause atherosclerosis through mixed hyperlipide-

mia, while such evidence is lacking for liver-derived procoagulant factors. In

the more advanced fibrotic stages, MASLD may contribute to heart failure

with preserved ejection fraction by reduced filling of the right ventricle, which

may induce fatigue upon exertion, often mentioned by patients with MASLD.

Some evidence points to an association between MASLD and cardiac

arrhythmias. Regarding treatment and given the strong co-occurrence of

MASLD and asCVD, pharmacotherapy in development for advanced stages

of MASLD would ideally also reduce cardiovascular events, as has been

demonstrated for T2DM treatments. Given the common drivers, potential

causal factors and especially given the increased rate of cardiovascular
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events, comprehensive cardiometabolic risk management is warranted in

patients with MASLD, preferably in a multidisciplinary approach.

INTRODUCTION

Metabolic dysfunction–associated steatotic liver disease
(MASLD) shares its root cause of insulin resistance (IR)[1]

with increasing cardiometabolic health problems of
obesity,[2] metabolic syndrome,[3] type 2 diabetes mellitus
(T2DM),[4] hypertension,[5] and dyslipidemia.[6] These
cardiometabolic dysfunctions are highly prevalent and
steadily increasing,[7] and the increase in MASLD goes
hand in hand with these, including its severe stages.[8]

MASLD comprises a spectrum of liver disease stages,
ranging from isolated steatosis, characterized by hepa-
tocellular accumulation of lipid droplets, to metabolic
dysfunction–associated steatohepatitis (MASH), with
additional hepatic inflammation and hepatocyte damage,
including ballooning, which can progress into fibrotic
stages.[1] Fibrotic MASH, in turn, relates to liver-related
mortality and all-cause mortality, and it may lead to
cirrhosis and HCC.[1,9] The burgeoning problem of
MASLD is a major health issue for the forthcoming
decades, driving the incidence of HCC[10] and becoming
a major indication for liver transplantation.[11] The
average prevalence of MASLD is estimated at 31% of
the adult population, mostly in the early stage of isolated
steatosis, and with the highest prevalence in the Middle
East (43%) and Latin America (35%) and the lowest in
central-Africa and South Africa (13%).[12,13]

The link to cardiometabolic dysfunctions is reflected
in the new nomenclature and diagnostic criteria:
MASLD instead of NAFLD, changing the reliance on
exclusionary terms to positive diagnostic cardiometa-
bolic criteria.[14] A very high overlap is expected
between those classified as NAFLD in the studies
reviewed in this paper, and we therefore deem it
justified to use MASLD in reviewing the evidence in
this manuscript. Even the great majority of those
previously termed to have lean NAFLD (hepatic
steatosis yet body mass index < 25 kg/m2) have
cardiometabolic criteria, mostly in the form of insulin
resistance, thus also fitting the label MASLD. The new
nomenclature classifies patients with steatotic liver
disease (SLD) without any cardiometabolic criteria or
excessive alcohol use as cryptogenic SLD. These may
have been classified as NAFLD with the old nomencla-
ture, but these cases are so rare that they will not affect
our interpretation of the reviewed evidence.

Given the link between MASLD and cardiometabolic
disease, position statement papers,[15] think tanks,[16] and
awareness campaigns[17,18] are being setup to improve
multidisciplinary care for the involved patients. This new

interaction raises questions on co-occurrence of MASLD
and atherosclerotic cardiovascular disease (asCVD),
causality and the need for screening and multidisciplinary
care for MASLD in patients with asCVD, and vice versa.
MASLD constitutes a significant health care assignment,
requiring the collaboration of hepatologists with general
practitioners, diabetologists, and also cardiologists, who
see patients at risk for both asCVD and advanced stages
of MASLD. International guidelines increasingly advocate
multidisciplinary approaches for patients with MASLD
involving all these medical disciplines.[15,19] As part of the
AwareNASH campaign,[18] we here review the interrela-
tions of MASLD and heart disease and formulate answers
to these matters and the implications for multidisciplinary
care development.

Co-occurrence of MASLD and
atherosclerotic cardiovascular disease

The clinical observation of co-occurrence of MASLD and
asCVD by cardiologists and hepatologists actually finds
support in epidemiological studies, both with markers of
subclinical asCVD as well as asCVD events. Carotid
artery intima-media thickness (cIMT) and coronary artery
calcification (CAC) are both well-defined markers and
commonly used in epidemiological studies, although only
CAC has made it to clinical practice. A large systematic
review and meta-analysis by Wong et al evaluated the
association between MASLD and cIMT and CAC.[20]

MASLD was assessed by ultrasound (US), liver biopsy,
CT, magnetic resonance spectroscopy, or Fatty Liver
Index (FLI). Forty-four studies containing 41,189 subjects
showed that MASLD was associated with increased cIMT
(OR 2.00, 95% CI: 1.56, 2.56, see Table 1). Twenty-two
studies encompassing 136,294 subjects reported an
association between MASLD and the presence of any
coronary calcification, CAC score > 0 (OR 1.21, 95% CI:
1.12, 1.32) and significant coronary calcification, CAC
score > 100 (OR: 1.28, 95% CI: 1.01, 1.63), and in a
smaller sample of 4552 subjects, the development or
progression of CAC (OR 1.26, 95% CI: 1.04, 1.52,
Table 1). There were no significant differences between
Western and Asian subjects.[20] Another meta-analysis
including 10,060 subjects stated that MASLD, determined
by either US or CT, is associated with significant odds of
progression of CAC (OR 1.50, 95% CI: 1.34, 1.68, p <
0.001, Table 1).[21] Taken together, the above-mentioned
data suggest a clear association between MASLD and
subclinical asCVD.
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TABLE 1 Epidemiological evidence addressing the association between MASLD and incident or prevalent asCVD[20, 21, 22, 23, 24, 25, 26]

References Year Study population Design Outcomes Main results

Subclinical

Wong et al[20] 2021 cIMT: 41,189 subjects
CAC: 136,294 subjects
CAC progression: 4552

subjects

Systematic review and
meta-analysis

cIMT
CAC
CAC progression

Increased cIMT, CAC, and CAC progression associated with
MASLD, associations did not differ between Western and Asian
populations, 39 studies with ≥ 8 NOS stars, 25 studies with 5–7
NOS stars

Koulaouzidis et al[21] 2021 10,060 subjects Systematic review and
meta-analysis

CAC progression Increased baseline CAC and CAC progression associated with
MASLD, MASLD severity, and CAC progression was not
significantly associated, and the median NOS score was 7 (6–8)

Clinical

Wu et al[22] 2016 Prevalence: 44,279
subjects

Incidence: 120,215 subjects
CVD death: 23,839 subjects

Systematic review and
meta-analysis

Prevalent CVD
Incident CVD
CVD mortality

MASLD associated with increased risk of prevalent and incident
CVD, not associated with CVD mortality, median NOS score
was 4 (3–5) for cross-sectional studies and 8 (5–9) for
prospective studies

Hagström et al[23] 2017 646 well-defined biopsied
patients with MASLD

Retrospective cohort
study

Disease-specific mortality asCVD is the most common cause of death in patients with
MASLD.

MASLD activity score was not able to predict overall mortality.
Fibrosis stage predicted both overall and disease-specific
mortality, median follow-up 20 y

Stepanova et al[24] 2012 11,613 participants Prospective cohort study Incident CVD
CVD mortality

CVD is the most common cause of death in patients with MASLD
(34%). MASLD is independently associated with CVD. MASLD
was also associated with CVD mortality, but not when adjusted
for confounders.

Liu et al[25] 2019 471,849 participants Systematic review and
meta-analysis

All-cause mortality
CVD mortality
Cancer mortality
Liver mortality

MASLD associated with all-cause mortality and liver mortality, not
with CVD mortality, not with cancer mortality, adjusted for body
mass index, diabetes, smoking, hypertension, or
hyperlipidaemia/hypercholesterolemia, follow-up ranged from
1.9 to 26.4 y, average NOS score 6.5 (5–8)

Targher et al[26] 2016 34,043 subjects Systematic review and
meta-analysis

Incident CVD, CVD
mortality

Both in severe and overall
MASLD group

MASLD was associated with a higher risk of fatal and/or nonfatal
CVD events, more severe MASLD was associated with fatal and
nonfatal CVD events, median follow-up 6.9 y (range 3–26.4),
median NOS score 8 (5–9)

MASLD was diagnosed on the basis of US, CT, MRI, or biopsy findings in all the studies except Wong et al, which included 1 study with the FLI.
Abbreviations: CAC, coronary artery calcification; cIMT, carotid artery intima-media thickness; CVD, cardiovascular disease; FLI, fatty liver index; MASLD, metabolic dysfunction–associated steatotic liver disease; NOS,
Newcastle-Ottawa scale; US, ultrasound.
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The next question is whether the evidence for more
subclinical asCVD in patients with MASLD translates
into more clinically manifest asCVD events. A system-
atic review by Wu et al from 2016 evaluated the risk of
prevalent (n= 44,279) and incident (n= 120,215)
asCVD in patients with MASLD. MASLD was estab-
lished by either US, CT, or biopsy. MASLD was
associated with an increased risk of prevalent (OR
1.81, 95% CI: 1.23, 2.66) and incident (HR 1.37, 95%
CI: 1.10, 1.72) asCVD.[22] When evaluating MASLD and
asCVD mortality, several studies are of interest.
Hagström et al carried out a 20-year follow-up in a
well-characterized liver biopsy cohort of 646 patients
with MASLD and found that asCVD was the most
common cause of death in patients with MASLD (37%).
[23] In a large American cohort study, including 11,613
patients from the general population with a mean follow-
up of 14 years, cardiovascular death was the most
common cause of death in patients with MASLD
although MASLD was not independently associated
with cardiovascular mortality after adjustment for age,
male sex, ethnicity, obesity, diabetes, smoking, and
family history of myocardial infarction.[24]

The systematic review from Wu et al addressed
whether MASLD increased the risk of asCVD mortality
in a subset of 23,839 subjects. No significant associa-
tion between MASLD and the risk of asCVD mortality
was found (HR 1.10 95% CI: 0.86, 1.41).[22] The
relationship between MASLD and CVD mortality was
explored to a greater extent in a systematic review by
Liu et al in 2019. MASLD was defined as steatosis on
either imaging techniques (US or CT) or biopsy. From a
total of 7 studies, a pooled estimate from 471,849
subjects showed no significant association between
MASLD and CVD mortality (HR 1.13; 95% CI: 0.92,
1.38). Overall mortality was increased in subjects with
MASLD (HR 1.34; 95% CI: 1.17, 1.54).[25] Although the
study by Liu et al was much larger than the meta-
analysis by Wu et al, the average score on the
Newcastle-Ottawa scale (assessment of the quality of
nonrandomized studies in meta-analyses) of the in-
cluded studies was generally lower.

Taken together, strong evidence exists that MASLD
gives an increased risk of asCVD events and asCVD is
the main cause of death in patients with MASLD, not
liver-related causes. Yet this does not translate into
MASLD conveying an increased risk of asCVD death.
MASLD is a spectrum of liver disease, generally of a
slowly progressive nature and characterized by a range
of histological stages. Stratifying for the different
disease stages can further clarify the interrelations
between MASLD and asCVD.

In a meta-analysis from 2016 with a sample size of
34,043, Targher et al found that the more advanced
stages of MASLD, defined by elevated γ-GT levels, high
MASLD fibrosis score, high hepatic activity on PET-CT,
or histological fibrosis, were associated with both fatal

and combined fatal and nonfatal cardiovascular
events.[26] In contrast, a prospective cohort study with
1773 biopsy-delineated patients with MASLD, with a
mean follow-up of 4 years, did not show different rates
of cardiac events or mortality when comparing different
stages of fibrosis.[27] In this study, the presence of
MASH was not associated with a higher incidence of
asCVD events, although a trend was apparent.

Although current evidence does not support an
association between MASLD and cardiovascular mor-
tality risk, evidence for the association with asCVD
events is quite robust. Next, in deciphering the relation
of MASLD and asCVD, firstly, it is important to
investigate the evidence for common drivers of these
two diseases.

Common drivers of MASLD and asCVD

MASLD and asCVD are both multifactorial diseases.
The epidemiological relations between MASLD and
asCVD are in part explained by common pathophysio-
logical drivers, predominantly occurring in the setting of
obesity (Figure 1).

Insulin resistance

Systemic IR is one of the major drivers of MASLD.
White adipose tissue IR induces lipolysis, rendering a
flux of free fatty acids (FFA) to the liver, inducing hepatic
steatosis and lipotoxicity.[1] Particular lipid species, most
notably diacylglycerol, in turn induce reduced hepatic
expression of the insulin receptor and thereby induce
hepatic IR: the unresponsiveness of hepatic gluco-
neogenesis to insulin. Hepatic steatosis is further
compounded in this setting due to increased de novo
lipogenesis, driven by overnutrition and fructose con-
sumption, and uninhibited by insulin due to the hepatic
IR.[28] Furthermore, it has been demonstrated that IR at
the level of the sinusoidal endothelium is linked to
MASLD in multiple rat models.[29] Hepatic micro-
circulatory dysfunction preceded the stages of hepatic
inflammation and fibrosis.[30]

In turn, IR also drives asCVD. Systemic IR and
hepatic IR induce hyperglycemia, which decreases
nitric oxide (NO) release, promoting the activation of
platelets and adhesion to arterial endothelium.[31] Direct
effects of insulin on endothelial NO synthase and
activation of vascular smooth muscle cells have been
observed as well.[32,33] Hyperglycemia also induces
advanced glycation end products (AGEs), stimulating
nuclear factor κ-light-chain-enhancer of activated B
cells, and increases the expression of vascular cell
adhesion molecule-1.[34] Atheroma collagen glycation
stimulates LDL deposition in the arterial wall, leading to
the progression of atherosclerotic lesions, and LDL can
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also undergo glycation and subsequent oxidation.[35,36]

AGEs can induce crosslinking of collagen, leading to
vascular stiffening and further entrapment of LDL
particles.[31] Together, this promotes LDL accumulation
and foam cell formation in the process of atherogenesis.

Hypertension

MASLD may be aggravated in the state of hyper-
tension. Alterations in renin-angiotensin-aldosterone
system (RAAS), either renin, angiotensin-converting
enzyme (ACE), or angiotensin-II (ANG-II), induce both
hepatic steatosis and fibrosis in rat and mouse
models.[37–39] Steatosis may be induced by increased
adipose tissue IR through ANG-II, leading to an
increased hepatic FFA flux.[40–42] ANG-II also contrib-
utes to functional alterations through vascular hyper-
reactivity to vasoconstrictors, contributing to liver
damage.[43] ANG-II also induces reactive oxygen
species, which can lead to the activation of HSC, the
main hepatic cell type responsible for the induction of
fibrotic scarring.[44]

Epidemiologically, hypertension is closely linked to
asCVD; multiple mechanisms have been proposed.

Both the high pressure and accompanying endocrine
dysregulation may drive vascular wall restructuring and
intimal LDL accumulation.[45,46]

Obstructive sleep apnea syndrome

Obstructive sleep apnea syndrome (OSAS) is a
relatively common condition in obese individuals with
both MASLD and asCVD. A meta-analysis with 2183
participants corroborated an independent relation of
OSAS with MASLD, with ORs for various comparisons
ranging between 2.01 and 2.99.[47] Periodic hypoxia in
OSAS has even been suggested as a driver of MASLD.
The intermittent hypoxia caused by OSAS might directly
induce MASLD by altering the lipid metabolism in the
liver. Intermittent hypoxia induces a downregulation of
prolyl hydrolase domain, leading to the stabilization and
activation of multiple variants of hypoxia-inducible factor
(HIF)-α (alpha), and subsequently HIF-beta.[48] Absence
of HIF2-α protects against lipid accumulation, and HIF2-
α induces CD36 expression, which is the major driver of
FFA uptake.[49] Activation of CD36 through HIF2-α
instigates lipid accumulation in hepatocytes both
in vitro and in vivo.[50]

F IGURE 1 MASLD and asCVD are both multifactorial diseases. The epidemiological relations between MASLD and asCVD are in part
explained by common pathophysiological drivers occurring predominantly in the setting of obesity. Abbreviations: AGE, advanced glycation end
products; AMPKα, 5’ adenosine monophosphate-activated protein kinase α; asCVD, atherosclerotic cardiovascular disease; FFA, free fatty acid;
NO, nitric oxide; LPS, lipopolysaccharide; MASLD, metabolic dysfunction–associated steatotic liver disease; OSAS, obstructive sleep apnea
syndrome; RAAS, renin-angiotensin-aldosterone system.
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Epidemiologically, OSAS is independently associated
with an increased incidence of coronary heart disease,[51]

heart failure,[52] stroke,[53] and atrial fibrillation.[54] Periodic
hypoxia induces sympathetic activation, low-grade
inflammation, hypercoagulability, and arterial endothelial
dysfunction.[55] Hypoxia might also contribute to both
MASLD and asCVD by inducing IR. A mouse model
showed that periodic hypoxia leads to periodic IR,
disturbing diurnal blood glucose variation and promoting
compensatory pancreatic beta-cell replication.[56] A
randomized trial in 35 individuals with OSAS confirmed
this phenomenon of IR during hypoxemia and addition-
ally showed that participants had increased levels of
circulating FFAs.[57]

Smoking

The causal relation between smoking and asCVD has
been well established, most notably through prothrom-
botic actions and endothelial dysfunction.[58] Several
studies suggest a relation with MASLD. Two large
prospective cohort studies found that smoking was
significantly associated with the onset of MASLD, with
adjusted HRs ranging from 1.25 to 1.98.[59,60] A rat
model showed that smokeless tobacco initiated inflam-
mation of the liver.[61] A mouse model showed an
increased hepatic lipid peroxide production and
reduced hepatic vitamin E levels when mice were
exposed to smoke.[62] A recently published study
suggested an interesting role for gut microbiota in
protection against MASLD aggravated by intestinal
nicotine.[63] Several bacteria inhibited nicotine-induced
AMP-activated protein kinase α phosphorylation in the
ileum, which in turn reduced the progression of hepatic
steatosis, inflammation, and fibrosis in a mouse model.

Gut dysbiosis

Small intestine bacterial overgrowth is frequently
observed in patients with MASLD.[64,65] Through
increased gut permeability and alterations in tight
junctions, microbial products enter the portal circulation
and trigger hepatic inflammation.[66] Also, coronary artery
disease is linked to alterations in the gut microbiome;
small intestine bacterial overgrowth is independently
associated with poor outcomes in heart failure.[67,68]

Multiple bacterial components and metabolites may
mediate atherogenesis, from which trimethylamine
N-oxide has the most compelling evidence.[67,69]

Systemic inflammation

The link between pro-inflammatory cytokines and
atherogenesis is well-known. Patients with carotid

artery disease have a distinct cytokine profile compared
to healthy controls, suggesting that certain cytokines
may have a pivotal role in the development of
asCVD.[70] Multiple trials showed that treatment with
anti-inflammatory agents can improve cardiovascular
end points.[71,72] Some of these cytokines might derive
from the liver in the state of MASH.[73] Several knock-
out models suggested a role for cytokines in the
development of MASLD.[74–76] Cytokines as a mediator
of MASLD development and progression could also
explain the observed association between MASLD and
pro-inflammatory diseases such as psoriasis.[77] It
should be noted that systemic inflammation always
results from an underlying pathophysiological mecha-
nism and should not be viewed as a common driver
per se.

Altogether there is extensive pathophysiological
evidence explaining the strong co-occurrence between
MASLD and asCVD. Moreover, the prevalence of
several aforementioned risk factors (obesity, arterial
hypertension, and T2DM) increases concomitantly with
increasing MASLD fibrosis stages.[78] Determining
whether MASLD actually contributes to asCVD is the
next step.

Does MASLD causally contribute to
asCVD?

Amid the common drivers, evidence for causal links
between MASLD and asCVD is emerging. Factors
directly deriving from the liver are the most plausible
mediators along this liver-heart axis, that is, particular
lipoproteins and procoagulant factors. Mendelian
randomization can help distinguish causality from
epiphenomenon or common driver. Variation in partic-
ular genes predisposes to the development of MASLD,
among others, PNPLA3 and TM6SF2. PNPLA3
affects the remodeling of lipid droplets in hepatocytes,
and it has been associated with impaired very VLDL
secretion, suggesting a possible effect on plasma lipids
and asCVD risk.[79] TM6SF2 affects hepatic VLDL
secretion and therefore also plasma lipids and asCVD
risk.[80,81]

Brouwers et al tested 12 well-defined MASLD
predisposition genes for their association with coronary
artery disease and lipids in the Coronary Artery Disease
Genome-Wide Replication and Meta-Analysis and the
Coronary Artery Disease Genetics Consortium data
set.[82] The entire cluster of MASLD genes was not
associated with coronary artery disease, but when
excluding the genes relating to MASLD through
impaired VLDL secretion (PNPLA3, TM6SF2, MTTP,
and PEMT), a significant (but weak) association was
found (OR 1.01, 95% CI: 1.00, 1.02). Clustering the
four excluded genes showed a negative association
(OR 0.97, 95% CI: 0.96, 0.99). Of note, the effect of
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PNPLA3 on VLDL secretion has been debated.[79,81]

The heterogeneity in results in different genes is best
explained by pleiotropic effects. Several single nucleo-
tide polymorphisms and their pleiotropic effects are
delineated in Figure 2.

MASLD may also causally contribute to asCVD by
the release of procoagulant factors.[83] Small studies in
patients with MASLD have both higher prothrombotic
(eg, fibrinogen, Plasminogen activator inhibitor-1
(PAI-1), soluble intercellular adhesion molecule-1,
CC-chemokine ligand-2, monocyte chemoattractant
protein-1) and pro-inflammatory (eg, C-reactive protein,
IL-6, IL-8, TNF-α) parameters than healthy individuals
and these parameters were higher in patients with
MASH than in those with isolated steatosis. A larger
more recent study, which prospectively recruited and
biopsied patients at risk for MASLD, found MASLD and
its advanced stages only to be independently associ-
ated with PAI-1.[84] All other associations were due to
dysmetabolic context, most notably obesity. More
prospective studies are warranted to firmly determine
the potential causal role of procoagulant factors in
driving asCVD in patients with MASLD.

Several hepatokines (proteins exclusively/predomi-
nantly produced by liver tissue) are associated with both
MASLD and asCVD. Fetuin-A inhibits the hepatic
insulin receptor tyrosine kinase, possibly causing IR.
MASLD, and to a greater extend MASH, is related to

higher fetuin-A levels.[85,86] In turn, fetuin-A is related to
myocardial infarction and stroke.[87]

Patients with MASLD have increased serum levels
and hepatic expression of FGF21.[88] Although FGF21
has beneficial effects on insulin sensitivity and choles-
terol levels, increased levels are associated with
asCVD.[89] Selenoprotein p is increased in patients with
MASLD and is positively correlated with IR, HSC-
reactive protein, arterial stiffness, and cIMT.[90,91]

Taken together, some evidence exists for a causal
relationship between MASLD and asCVD, although a
firm conclusion cannot be drawn yet.

MASLD and heart failure

The bidirectional relationship between liver diseases
and heart failure is well established. Heart failure can
lead to congestive hepatopathy, and advanced liver
disease can cause cirrhotic cardiomyopathy. Increasing
evidence, however, points towards an association
between heart failure and early-stage liver disease, for
example, noncirrhotic MASLD. Evidence is also emerg-
ing that MASLD might be associated with heart failure
with preserved ejection fraction.[92]

A large meta-analysis of 11,242,231 subjects found
that MASLD was associated with a significantly higher
risk for new-onset heart failure, yielding an HR of 1.50

F IGURE 2 MASLD susceptibility genes can have different effects on coronary artery disease, depending on the different types of pleiotropy
that can occur. When gene variants affect two or more phenotypic traits, pleiotropy occurs. Vertical pleiotropy happens when traits are further
downstream in a physiological pathway and do not invalidate Mendelian randomization assumptions. SNPs that predispose to MASLD through
VLDL impairment, simultaneously might lower plasma lipids and create horizontal pleiotropy, therefore invalidating Mendelian randomization
assumptions. Abbreviations: FFA, free fatty acid; MASLD, metabolic dysfunction–associated steatotic liver disease; SNP, single nucleotide
polymorphism.
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(95%CI: 1.34, 1.67).[93] MASLD was most often defined
by the FLI, which is less accurate and specific than
imaging or histological assessment. The observed
association possibly exists because of the metabolic
factors included in the FLI and not the hepatic steatosis
per se. The single study from this meta-analysis that
based the diagnosis of MASLD on imaging did not find a
significant association between MASLD and HF.[94] By
contrast, Simon et al used the gold standard of liver
biopsy and matched 10,422 biopsy-proven patients with
MASLD with 46,517 controls without MASLD.[95] This
study did find MASLD to be significantly associated with
heart failure with an HR of 1.75 (95% CI: 1.63, 1.87).
This risk was independent of typical cardiometabolic
risk factors and increased progressively with liver
disease severity. Although the use of liver biopsy in a
fairly large cohort seems robust, the matched cohort
study design still poses a risk for unaddressed
confounding.

Underlying cardiac remodeling has recently been
described in association with MASLD and can consti-
tute structural changes contributing to the development
of heart failure (Figure 3). In a cross-sectional study,
liver fat was positively associated with left ventricular
mass, left ventricular wall thickness, mass volume ratio,
mitral peak velocity, and left ventricular filling pressure
and inversely associated with global systolic
longitudinal strain and diastolic annular velocity.[96,97]

The mechanisms explaining the relation of MASLD
and cardiac remodeling are partly overlapping with
those described in asCVD, but the data is less
exhaustive. Both metabolic and mechanical factors
have been implicated.

A putative mechanism in which MASLD per se
might cause heart failure with preserved ejection
fraction is through reducing the preload reserve.
Almost 25% of the circulatory blood volume passes
through the splanchnic compartment, correspondingly
playing a substantial role in venous return.[98] An
increased intrahepatic resistance (leading to an
increased pressure in the hepatic sinusoids) can
therefore lead to decreased preload reserve. Although
portal hypertension is most well recognized in patients
with cirrhosis, transhepatic blood flow changes have
been shown to start in the earliest stages of
MASLD.[99] Signs of portal hypertension were exam-
ined in a cohort of biopsy-delineated patients with
MASLD through ultrasound Doppler and splenic
elastography. Even steatosis grade is independently
associated with an increased HVPG in a biopsy-
proven cohort of patients with MASLD.[100] Both early-
stage functional alterations (endothelial dysfunction
and hyperreactivity to vasoconstrictors such as endo-
thelin-1, ANG-II, and thromboxane A2)[43,101] and
structural changes, including both early-stage fibrosis
and hepatocellular enlargement due to lipid accumu-
lation, are thought to cause a mechanical impediment

to the sinusoidal flow, although other possible mech-
anisms are still to be determined.[102]

AGEs resulting from IR lead to the activation
of cardiac fibrosis-inducing factors, like several
different mitogen-activated protein kinases.[103] More-
over, IR contributes to the formation of reactive oxygen
species, both through autoxidation of glucose resulting
in NAD(P)H oxidase and through the effects of
AGEs.[104,105]

RAAS activation promotes several cardiac changes,
both using intracrine, paracrine, and endocrine influ-
ences. Although ANG-II is mainly known as a vaso-
active peptide, it regulates many aspects of cellular
function unrelated to vasoconstriction in different
tissues. Binding to angiotensin-1 receptor initiates a
cascade that results in cardiomyocyte hypertrophy and
proliferation of cardiac fibroblasts.[106]

Upregulation of the sympathetic nervous system has
also been linked to both MASLD and cardiac remodel-
ing. A rat model utilizing sympathectomy showed that
the sympathetic nervous system is involved in the
development of cardiac remodeling through both α and
β-adrenergic receptors (α-receptors by inducing cardiac
fibrosis and β-receptors by inducing hypertrophy).[107]

The sympathetic nervous system crosstalk with RAAS
leads to cardiac fibrosis as well.[108]

MASLD and arrhythmias

Cardiac structural and functional alterations are well-
established risk factors for cardiac arrhythmias.[109–111] A
few recent meta-analyses reported an association be-
tween MASLD and atrial fibrillation (AF) with varying
strength (RR 1.65 (95%CI: 1.23, 2.20) in 614,673 patients,
OR 1.27 (95% CI: 1.18, 1.37) in 8,115,545).[112,113]

Both meta-analyses based their results largely on studies
that used the FLI instead of imaging. Another recent
meta-analysis selected only studies with imaging-based
MASLD diagnoses and did not find an association
between MASLD and AF in a pooled estimate of 9243
participants.[114] Interestingly, one of the studies from this
meta-analysis did not find an association between hepatic
steatosis and AF but did find an association between liver
stiffness as defined by transient elastography, a relatively
well-validated proxy for hepatic fibrosis, with AF. Of note,
transient elastography results are altered during conges-
tion, so this might be explanatory too. Overall, the
evidence concerning this topic is currently too limited
and conflicting to firmly establish a possible association.
More longitudinal studies will have to be conducted,
preferably with well-defined cohorts with an accurate
steatosis assessment.

Studies that evaluated a possible association
between MASLD and other cardiac arrhythmias are
even more limited. A meta-analysis with 3651 subjects
demonstrated that MASLD is associated with
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cardiac conduction defects based on three cross-
sectional studies which addressed right bundle branch
blocks, atrioventricular blocks, and fascicular blocks,
with an OR of 5.17 (95% CI: 1.34, 20.01, I2 96%).[115]

MASLD was defined as having steatosis on US or
CT scan.

The possible association between MASLD and
prolonged QT interval was assessed in two cross-
sectional studies. One study comprised a T2DM popu-
lation of 400 patients and yielded an OR of 2.26 (95% CI:
1.4, 3.7). The other study included 31,116 patients from a
health management program and showed ORs varying
between 1.11 and 1.87 (95% CI: 1.01, 1.21 and
1.16–2.24), depending on the severity of MASLD and
whether the subjects were male or female.[116,117] Both
studies based their MASLD diagnosis on US.

Finally, MASLD might be associated with ventricular
arrhythmias based on a retrospective cross-sectional
study that demonstrated an increased odds of ventric-
ular arrhythmias (OR 3.01, 95% CI: 1.26, 7.17).[118]

Furthermore, 1 prospective cohort study, including

1780 men without cardiovascular medical history,
showed that serum γ-GT was log-linearly associated
with the risk of incident ventricular arrhythmias, with an
HR 1.58 (95% CI: 1.06, 2.37).[119] This association
remained significant when adjusting for common risk
factors and by accounting for the development of
impaired renal function and incident coronary heart
disease.

Drugs potentially targeting both MASLD
and cardiovascular events

Currently, MASLD management is limited to lifestyle
modifications, or treatments licensed for other indica-
tions for which at least phase II histological efficacy data
exist and if within their current approved indications.[19]

Multiple agents are currently under evaluation for their
effectiveness to treat fibrotic MASLD. Given the strong
co-occurrence and shared etiology of MASLD and
asCVD, compounds able to target both MASLD and

F IGURE 3 Cardiac remodelling and MASLD have several common pathophysiological drivers and can both lead to HFpEF. Cardiac
remodelling occurs through structural changes, which lead to functional alterations and, subsequently, HFpEF. MASLD leads to hepatic flow
obstruction due to increased vascular resistance, resulting in preload reserve failure. Abbreviations: HFpEF, heart failurewith preserved ejection
fraction; LV, left ventricle; MASLD, metabolic dysfunction–associated steatotic liver disease; RAAS, renin-angiotensin-aldosterone system; SNS,
sympathetic nervous system.
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CVD would be highly valuable, analogous to glucagon-
like peptide-1 receptor agonists (GLP-1 RAs) and
sodium glucose co-transporter 2-inhibitors showing
efficacy for both T2DM and asCVD.[120,121] A liver-
specific drug for MASLD, which also reduces asCVD
events, would also shed light on the matter of causality
in the MASLD-asCVD axis. However, reducing the
hepatic steatosis and, subsequently its metabolic
effects, will probably alter several factors which can
contribute to asCVD as well. Determining if these
alterations occur as a result of MASLD resolution
(vertical pleiotropy) or concomitant with MASLD reso-
lution (horizontal pleiotropy) will be pivotal in establish-
ing possible causality.

Opportunities might lie in the repurposing of existing
agents. Statins have been suggested as potentially
beneficial in the treatment of MASLD with the notion that
their lipid-lowering effects might affect MASLD through
pleiotropic effects. Physicians are reluctant to prescribe
statins in patients with pre-existing liver disease or altered
liver enzymes, even though their safety has been proven
in multiple RCTs.[122,123] A mouse MASLD model showed
that simvastatin improved multiple microcirculatory pro-
cesses, restored oxidative and ALE-RAGE pathway
activation, decreased HSC activation, and reduced
steatosis, fibrosis, and inflammatory parameters.[124]

A recent meta-analysis encompassing 1,247,503
subjects found a reduced risk of MASLD development
in statin users, OR 0.69, 95% CI: 0.57, 0.84, I2= 36%.
The use of statins led to a reduction of steatosis grade,
SMD: −2.59, 95% CI: (−4.61, −0.56), I2=95%, MASLD
activity score, weighted mean difference: −1.03, 95%
CI: (−1.33, −0.74), I²= 33% and necro-inflammatory
score weighted mean difference: −0.19, 95% CI: (−0.26,
−0.13), I²=0%. No significant effects on the fibrosis
stage were found, however.[125]

Given the possible influence of RAAS on MASLD,
antihypertensive treatments might be beneficial for
MASLD as well. A rabbit model showed that both
ramipril and olmesartan diminished the development of
MASLD, MASH, and fibrosis.[126] A nested case-control
study did not show an overall association between the
use of RAAS inhibitors and less development or
progression of MASLD but did suggest a protective
effect of RAAS inhibitors in several subgroups, such as
obese individuals.[127] Currently, no trials with antihy-
pertensive treatment in human subjects with MASLD
have been conducted so far.

Sodium glucose co-transporter 2-inhibitors are
registered for T2DM treatment but have beneficial
effects on cardiovascular outcomes.[128] Several
studies have suggested that sodium glucose
co-transporter 2-inhibitors may decrease liver fat
content and improve liver function tests, although no
large RCTs have been conducted.[129] These effects
are most often attributed to weight loss and glucose-
regulating effects, although 1 study evaluating the

effects of empagliflozin on MASLD in a cohort of
patients with T2DM and with excellent glycemic
control, also saw a reduction in liver fat, as assessed
by MRI.[130]

Another promising subclass are those regulating
glucagon-inhibiting incretins. GLP-1 RAs are indicated
for diabetes and obesity, but given their ability to
improve weight loss and glycemic and lipid metabolism,
they are considered for other metabolism-associated
diseases as well. A meta-analysis concerning several
different GLP-1 RAs found that GLP-1 RAs effectuate a
significantly reduced HR (0.86, 95% CI: 0.80, 0.93) for
3-point major adverse cardiovascular events regardless
of the structural basis of the agent.[131] The effects of
GLP-1 RAs on MASLD have not been studied as
thoroughly as CVD, but two promising phase Ⅱ trials in
MASH have been completed.[132,133] Both trials showed
a significant reduction in inflammation grade but also a
lack of reduction in fibrosis grade, regardless of
substantial weight loss in the participants. A phase-Ⅲ
trial with semaglutide is currently underway (Clinical-
Trials.gov Identifier: NCT04822181). Interestingly, it has
major adverse cardiovascular events as a secondary
end point.

Several dual and triple incretin analogues have
shown even greater reductions in body weight than
GLP-1 RAs[134,135] and have also shown promising
results in reducing hepatic steatosis. In a substudy of
the phase Ⅲ SURPASS obesity trial, the glucose-
dependent insulinotropic polypeptide and GLP-1 RA
tirzepatide showed a significant reduction of liver fat
content compared to controls receiving insulin, with an
estimated treatment difference of –4.71%, (95% CI: –
6.72, –2.70).[136] In a substudy of a phase Ⅱ obesity trial,
the two highest dosages of the glucose-dependent
insulinotropic polypeptide/GLP-1/glucagon RA retatru-
tide showed a normalization of liver fat content in 90%
of the participants.[137] The dual GLP-1/glucagon RA
efinopegdutide was originally designed for obesity and
T2DM, but registration currently focuses on MASH. In a
phase Ⅱa trial, efinopegdutide showed a least squares
mean relative reduction from baseline in liver fat content
of 72.7% (90% CI: 66.8, 78.7).[138] Positive effects of
these dual and triple agents on cardiovascular end
points are anticipated, considering their significantly
beneficial metabolic effects.

Resmetirom is a highly selective thyroid hormone
receptor-β agonist designed to improve MASH by
increasing hepatic fat metabolism and reducing lip-
otoxicity. Thyroid hormone receptor-β is the predomi-
nant thyroid hormone receptor in the liver, and in animal
models, it has been shown to influence several
metabolic processes, such as the reduction of trigly-
cerides and cholesterol and the improvement of insulin
sensitivity.[139] Interim analysis of a phase Ⅲ trial in
patients with MASH recently finished, and resmetirom
met both primary histologic end points, and the key
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secondary end point (LDL cholesterol lowering) at both
doses, being the first agent to achieve this.[140]

Cardiovascular end points are of interest in future
studies, given the effects on lipid metabolism.

Peroxisome proliferator-activated receptors (PPARs)
are nuclear receptor proteins that function as transcrip-
tion factors regulating the expression of genes. They
have multiple effects on glucose-metabolism and fatty
acid metabolism, inflammation, and fibrogenesis.[141]

Three PPAR isotypes have been identified, α, γ, and
δ, all regulating a different panel of processes,
depending also on the organ and organ cell type in
which they are expressed. PPARα is the main target of
fibrate drugs that are used in hypertriglyceridemia, and
PPARγ is the primary target of thiazolidinediones, which
are used for treating IR in patients with T2DM. There are
currently no registered PPARδ agonist agents, but
Seladelpar is currently being tested for primary biliary
cholangitis and is studied for MASH as well.[142,143]

Despite the predominant role of PPARα in hepatocytes
and the inverse link between PPARα and disease
severity,[144] mono PPARα agonists have failed to
demonstrate an effect in patients with MASH while
pioglitazone, a mono PPARγ agonist (albeit with also
some PPARα activity), clearly induces MASH resolution
and improves the mean fibrosis stage without hitting the
end point of 1 stage fibrosis regression in several phase
Ⅱ trials of different duration.[145] It is important to note,
however, that no large phase Ⅲ trial is available
demonstrating the efficacy data of pioglitazone. Meta-
bolic side effects of pioglitazone, most notably fluid
retention, have tempered the eagerness to use thiazo-
lidinediones, although it has become clear from large
and long-term studies that pioglitazone significantly
improves cardiovascular outcomes.[146,147] Dual-PPAR
or pan-PPAR agonists might improve efficacy and/or
overcome the aforementioned adverse effects of drugs
with a PPARγ activity. Lanifibranor, a balanced pan-
PPAR agonist, was the first drug to show a significant
effect on both the resolution of MASH and improvement
of fibrosis in a phase Ⅱb trial,[148] and a phase Ⅲ trial
is currently underway (ClinicalTrials.gov Identifier:
NCT04849728). Weight gain was apparent in more
participants in the treatment group than in the placebo
group. However, no episodes of heart failure were
registered in the treatment group. Dual-PPAR agonists
demonstrated more mixed results with Saroglitazar, a
dual α/γ agonist, showing some promising results in
phase Ⅱ trials, while elafibranor failed in a phase Ⅲ
trial.[149,150]

Aramchol is a fatty acid/bile acid conjugate that is a
partial inhibitor of hepatic stearoyl-CoA desaturase-1,
which is an enzyme in the endoplasmic reticulum that
catalyzes the rate-limiting step of biosynthesis of
monounsaturated fatty acids. It is a regulator of
body adiposity, energy expenditure, hepatic fatty acid
β-oxidation, and insulin sensitivity,[151,152] and improved

inflammation, oxidative stress, and fibrosis in in vivo
models.[153,154] Even though stearoyl-CoA desaturase- 1
deficiency reduced IR, obesity, hepatic steatosis, and
fibrosis in multiple mouse models, it also stimulates
atherogenesis, which was hypothetically attributed to
increased ICAM-1 expression, IL-6 production, and
altered macrophage toll-like receptor 4 function.[155,156]

Despite its mode of action, in mice treated with Aramchol,
this atherogenic effect was not replicated.[157] Although it
did not hit the current regulatory end points, Aramchol
showed positive trends in MASH resolution and fibrosis
in phaseⅢ.[158,159] A phaseⅢ trial is planned to start soon
(ClinicalTrials.gov Identifier: NCT04104321). It would be
interesting to monitor the effects on CVD end points in
these trials.

Organization of care

With the rising prevalence and severity of MASLD
and its interconnected cardiometabolic comorbidities,
multidisciplinary management between hepatologists,
endocrinologist, cardiologists, general physicians, and
related practitioners is warranted. This means that
those experienced in cardiometabolic prevention should
expand their scope to MASLD and that hepatologists
should be aware of comorbid T2DM, dyslipidemia, and
increased asCVD risk affecting their patients with
metabolic liver as severely as their liver risk and adopt
preventive strategies rather than strategies focused
around end-stage organ damage.[15,19] Do we have
evidence that multidisciplinary cardiometabolic man-
agement of patients with MASLD is effective? Indeed, a
study from the United Kingdom showed that multi-
disciplinary management of MASLD can improve liver-
related and cardio-metabolic–related health parameters
while remaining cost-effective.[160] The clinic consisted
of hepatologists, diabetologists, and metabolic physi-
cians, but also allied health professionals, including diet
and lifestyle experts. Interventions that were offered
included lifestyle advice, signposting to weight loss
services, and pharmacological treatment of diabetes
and cardiovascular risk factors. After a mean
follow-up time of 13 months, significant reductions
were seen in weight, ALT, HbA1c, total cholesterol,
and liver stiffness. Despite its relatively modest
sample size, this study offers valuable real-world
data that can serve as a blueprint for future
clinical practices. Multidisciplinary management also
provides opportunities for the incorporation of lifestyle
counseling and guidance in everyday practice. Irre-
spective of potential emerging pharmacological thera-
pies, lifestyle guidance should remain the cornerstone
in preventing both MASLD and CVD. Although there
has been a gradual increase in the provision of lifestyle
counseling over the years, there remains room for
enhancement.[161]
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The intricate hepato-cardiovascular axis holds impli-
cations for treatment and management for either organ
system. Potential future therapeutic agents are highly
likely to have pleiotropic cardiometabolic effects (or, in
the case of GLP1RA, already have established protec-
tive cardiometabolic effects). Comprehensive scientific
and clinical collaboration is therefore warranted.

CONCLUSIONS

Epidemiological evidence strongly supports an asso-
ciation between MASLD and asCVD. MASLD and
asCVD are closely linked through several common
driving pathophysiological mechanisms. A causal
relation between MASLD and asCVD, independent
of common risk factors, exists by mixed hyperlipide-
mia, but more evidence is needed. The repurposing
of established pharmaca and development of
agents primarily targeting MASLD and potentially
also reducing asCVD events can provide major
breakthroughs in the future, both for causal proof
between MASLD and asCVD as well as for the
development of multidisciplinary liver/cardiometabolic
treatments and care.
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