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KEY MESSAGE
Longer living women or women with extremely long-living parents overall did not exhibit more favourable reproductive
characteristics, and parental longevity was not related to a polygenic risk score for age at menopause. Reproductive
success thus does not seem to be dependent on a genetic predisposition for DNA and soma maintenance.

ABSTRACT
Research question: Are age at last childbirth and number of children, as facets of female reproductive health, related to
individual lifespan or familial longevity?

Design: This observational study included 10,255 female participants from a multigenerational historical cohort, the
LINKing System for historical family reconstruction (LINKS), and 1258 female participants from 651 long-lived families in
the Leiden Longevity Study (LLS). Age at last childbirth and number of children, as outcomes of reproductive success,
were compared with individual and familial longevity using the LINKS dataset. In addition, the genetic predisposition in
the form of a polygenic risk score (PRS) for age at menopause was studied in relation to familial longevity using the LLS
dataset.

Results: For each year increase in the age of the birth of the last child, a woman’s lifespan increased by 0.06 years (22
days; P= 0.002). The yearly risk for having a last child was 9% lower in women who survived to the oldest 10% of their
birth cohort (hazard ratio 0.91, 95% CI 0.86�0.95). Women who came from long-living families did not have a higher
mean age of last childbirth. There was no significant association between familial longevity and genetic predisposition to
age at menopause.

Conclusions: Female reproductive health associates with a longer lifespan. Familial longevity does not associate to extended
reproductive health. Other factors in somatic maintenance that support a longer lifespan are likely to have an impact on
reproductive health.
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INTRODUCTION
emale reproductive health
encompasses the evolution from
being born with a complete set of
oocytes, to fertility and pregnancy,

then to the deterioration of ovarian quality
and quantity, and ultimately to post-
menopausal health. It is widely accepted
that these milestones and transitions do
not stand alone but may be subject to the
same processes that govern overall
somatic ageing and health (Laven et al.,
2016). This relationship has not yet been
fully clarified and it thus remains unknown
to what extent the maintenance of somatic
health is primarily essential to reproductive
health or vice versa, and whether there is a
genetic predisposition underlying both
healthier somatic and reproductive ageing.

Over the past decades a plethora of
studies have sought to determine and
explain the relationship between ovarian
and overall somatic ageing. Although there
remains some dispute, several studies have
observed that mothers who give birth to a
child at an advanced age have a longer
post-reproductive survival (Brandts et al.,
2019; Costanian et al., 2022;Gagnon,
2015;Gagnon et al., 2009; Jaspers et al.,
2017; Shadyab et al., 2017). Studies also
suggested a familial or genetic component
underlying both an increasing somatic
lifespan and a longer reproductive period
or reproductive lifespan (Li et al., 2022;
Perls et al., 1997; Shadyab et al., 2017;
Smith et al., 2009), while others have
proposed a trade-off mechanism for an
increasing lifespan and childbearing
(Westendorp and Kirkwood, 1998). The
latter results originate from studies with
varying sample sizes and potential biases in
the selection of their study population and
await confirmation from well-defined,
large-scale cohorts.

If longevity and late reproductive ageing
coincide in families, the study of both traits
in families with longevity may reveal shared
genetic loci predisposing to a better
maintenance of both somatic and
reproductive cell functions. Thus, it can be
postulated that long-living females or
female members of long-living families are
better at conserving their oocyte quality
and can therefore conceive more easily
and for a longer duration. Furthermore,
the end-point of the reproductive lifespan,
or age at menopause, has been found to
be related to a polygenic risk score (PRS)
involving loci of DNA repair processes,
known as one of the hallmark mechanisms
of ageing (Ruth et al., 2021). It is unknown
whether the genetic component of age at
menopause associates with that of familial
longevity.

The current study addresses the
relationship between somatic and
reproductive ageing and health in both a
large multigenerational historical cohort
and a cohort of long-living families. The aim
was to test whether individual and familial
female longevity is associated with
reproductive health and whether female
members of exceptionally long-living
families share genetic traits for menopause
occurrence.
MATERIALS AND METHODS

LINKS study population
The study used data from the LINKing
System for historical family reconstruction
(LINKS), which is a historical cohort of
inhabitants of the province of Zeeland, the
Netherlands, from the early 19th century.
The LINKS database contains
demographic and genealogical information
derived from the Netherlands linked vital
event registration. In the Netherlands,
birth, marriage and death certificates have
been registered from the year 1812
onward. Currently, LINKS Zeeland
contains 739,453 birth, 387,102 marriage
and 641,216 death certificates that have
been led together to reconstruct
intergenerational pedigrees and individual
life courses (van den Berg et al., 2021).

Two generations were identified in the
dataset (Supplementary Figure 1), F0 and
F1, of which the F1 generation is the index
generation comprising the study
participants. The F0 generation was
selected by identifying couples who were
married between 1812 and 1850 and had at
least two children, ensuring that the F1
individuals had at least one sibling. The
families were mutually exclusive, meaning
that a parent in the F0 generation could
only contribute data for a single family.
From the F1 generation, the LINKS
research persons were selected using the
following criteria: members of the female
sex, with an age of death above 50 years
and a single spouse who lived until the
research person was at least 50 years old,
and who delivered at least one child,
ensuring high data quality. This selection
made it possible to longitudinally study the
reproductive outcomes in the study
population throughout the entire fertile
lifespan.
In both generations, a distinction was
made between persons who belonged to
the top 10% of survivors of their birth
cohort, and those who did not. This
calculation was based on Dutch life tables,
nationally collected sex-specific and birth
cohort-specific survival data of the entire
Dutch population. These data are
collected by Statistics Netherlands (CBS)
and range from around 1800 until now,
with yearly updates (van den Berg et al.,
2021). The reproductive characteristics of
the research persons were derived using
information on their children (the F3
generation). The reproductive
characteristics that could reliably be
extracted from the historical data were age
at last childbirth and total number of
children.

Leiden Longevity Study population
The Leiden Longevity Study (LLS) was
initiated in 2002 to study the mechanisms
that lead to exceptional survival in good
health. The LLS currently consists of 651
three-generational families, defined by
siblings who have the same parents.
Inclusion took place between 2002 and
2006 and initially started with the
recruitment of living nonagenarian sibling
pairs of European descent (F2 generation).
Within a sibling pair, male individuals were
invited to participate if they were 89 years
or older and females if they were 91 years
or older (n= 944 individuals, mean age 93
years); these represented less than 0.5%
of the Dutch population in 2001
(Schoenmaker et al., 2006). Inclusion was
subsequently extended to the offspring of
the sibling pairs and the partners of these
offspring (F3 generation). This study
focuses on all F3 generation female
members, who are henceforth denoted as
LLS research persons (offspring and
partners combined). For this study, 1,258
F3 females with a mean age of 59 years
were investigated.

The LLS DNA samples were genotyped
using Illumina Infinium HD Human660W-
Quad and OmniExpress BeadChips
(Illumina, USA). DNA genotyping for the
LLS was performed at baseline as
described in detail by Beekman and
colleagues (Beekman et al., 2006) using
the Illumina Human660W and Illumina
OmniExpress arrays (Illumina, USA).
Genotype imputation was performed using
288,635 single-nucleotide polymorphisms
(SNP) with a SNP-wise call rate (>95%),
minor allele frequency (>1%) and no
derivation from Hardy�Weinberg
equilibrium (P-value >1 £ 10�4) on the
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Michigan Imputation Server (https://
imputationserver.sph.umich.edu/index.
html) with Haplotype Reference
Consortium reference panels (HRC1.1)
(McCarthy et al., 2016).

Mortality information was verified by birth
or marriage certificates and passports
whenever possible. Additionally,
verification took place via personal cards
that were obtained from the Dutch
Central Bureau of Genealogy. In January
2021 all mortality information was updated
through the Personal Records Database,
which is managed by the Dutch
governmental service for identity
information (https://www.government.nl/
topics/personal-data/personal-records-
database-brp). The combination of
officially documented information
provides very reliable and complete
ancestral as well as current mortality
information.

Ethical approval was granted by the ethical
committee of Leiden University Medical
Center in August 2002 (reference number
P01.113). In accordance with the
Declaration of Helsinki, the LLS obtained
informed consent from all participants
prior to their entering the study.
Construction of the Longevity Relatives
Count score in the LLS data
Familial longevity was quantified with the
Longevity Relatives Count (LRC) score.
The LRC score can be interpreted as a
weighted proportion (ranging between 0
and 10) (van den Berg et al., 2020). For
example, an LRC score of 5 for a research
person indicates 50% long-lived family
members, weighted by the genetic
distance between the research persons
and their family members. A long-living
parent could provide 50% weight, while a
grandparent could provide 25% weight,
and so on.
Construction of the PRS of age at
menopause in the LLS data
A recent large genome-wide association
analysis for age at menopause resulted in a
PRS (Ruth et al., 2021) that could be
constructed from 290 SNP. After all T/A
SNP, SNP with a minor allele frequency of
<0.01 and Hardy�Weinberg equilibrium
P-value of<10�4, and an imputation quality
<0.8 (Choi et al., 2020), were removed,
and 195 SNP were used to construct the
PRS for age at menopause in the LLS
dataset.
Statistical analysis
All analyses were performed with R version
4.0.2 (The R Foundation, Austria). In the
results 95% confidence intervals (95% CI)
were reported and two-sided P-values
were considered statistically significant at
the 5% level (a= 0.05). A list of used R-
packages and version numbers will be
made available on GitLab (see the Code
Availability Statement). Random effects
models were used to adjust for within-
family relations, assuming family-specific
random effects and defining research
persons who share the same parents.
The random effects models were designed
with mixed-model linear regression using
the lme4 and lmerTest packages.
Confidence intervals were calculated with
the confint function using the Wald
method.

First, the results of the LINKS cohort were
compared with the previous literature and
historical cohorts. To this end, age at last
childbirth and total number of offspring
were included as independent variables,
and individual lifespan as the dependent
variable. Lifespan (age at death) was
regressed on the following: (i) age at last
childbirth (continuous and categorical,
with a distinction between age at last
childbirth of less than 40 or over 45 years,
based on a distribution of age at childbirth
(Gottschalk et al., 2019); and (ii) the
number of children (continuous and
categorical, making a distinction between a
low and high number of children based on
the authors’ data); this involved using a
linear mixed model with a random effect
for the unique sibship ID to account for
within-sibship correlation.

Second, individual longevity and familial
longevity were included as independent
variables with age at last childbirth as the
dependent variable in a time-to-event
survival analysis. Individual longevity was
defined in terms of whether or not the
research person belonged to the top 10%
of survivors of her birth cohort. Familial
longevity was defined by the number of
long-lived parents (0, 1 or 2 parents who
belonged to the top 10% of survivors of
their birth cohort) (van den Berg et al.,
2019). Age at last childbirth was defined as
the event, with time in years as the time
variable. The model was adjusted for
maternal birth year and age at marriage, in
order to account for temporal changes
and exposure time for reproduction.

Third, individual longevity and familial
longevity were included as independent
variables, with the total number of
offspring as the dependent variable. A
Poisson mixed-model with a random effect
for the unique sibship ID to account for
within-sibship correlation was used, with
adjustment for maternal birth year and age
at marriage. Residuals were plotted in
order to confirm a normal distribution (van
den Berg et al., 2019).

Finally, the relationship of familial longevity
to the genetic risk score for (early)
menopause (the PRS) was studied in the
LLS dataset. The standardized PRS,
defined as the number of alleles
associated with menopause, of the study
participants was regressed on the number
of long-lived family members, indicated by
the LRC score. A linear mixed effects
model with a random effect was used for
family ID to account for within-family
correlations. The models were adjusted for
year of birth.
RESULTS

Study populations
In the LINKS data, 10,255 female research
persons (the F1 generation) were identified.
Collectively, they were registered to 7664
mothers and 7636 fathers (the F0
generation) and 72,895 children (the F2
generation). In total, there were 7721
unique families, taking into account that
the research person generation included
siblings. The mean age at death of the
research persons was 73.9 (SD §10.4)
years, and their mean number of children
was 7.1 (§3.9). Further descriptive
characteristics of the research persons
group are described in detail in TABLE 1.

The LLS cohort included 1258 female
participants with a mean age of 59 years.

Female participants giving birth to their
last child at a higher age lived longer
To confirm in the LINKS dataset that
mothers who give birth to a child at an
advanced age have a longer post-
reproductive survival, the relationship
between age at last child and lifespan was
investigated using linear mixed-model
regression analysis. It was observed that for
each year increase in the age at the birth of
the last child, a woman had a 0.06 years
(95% CI 0.02-0.10, 22 days) longer
lifespan. In a comparison of the lifespan of
female participants with a normal (�40
years) versus high (�45 years) age at last
childbirth, it was observed that those who
delivered their last child after the age of 45

https://imputationserver.sph.umich.edu/index.html
https://imputationserver.sph.umich.edu/index.html
https://imputationserver.sph.umich.edu/index.html
https://www.government.nl/topics/personal-data/personal-records-database-brp
https://www.government.nl/topics/personal-data/personal-records-database-brp
https://www.government.nl/topics/personal-data/personal-records-database-brp


TABLE 1 LINKING SYSTEM FOR HISTORICAL FAMILY RECONSTRUCTION STUDY
POPULATION SELECTED FOR FEMALE PARTICIPANTS WHO GAVE BIRTH TO AT
LEAST ONE CHILD

Parameter Total number Mean § SD Range

Number of F1 RP (n, % female) 10,255 (100) � �
Top 10% survivors of their birth cohort 2241 (21.9)

Number of unique sibships (n) 7721 � �
Birth year (mean) � 1839 1812�1873

Age at death in years (mean § SD) � 73.9 § 10.4 50�104

Number of children (mean § SD) 72,985 7.1 § 3.9 1�24

Number of children �4 (n, %) 2990 (29.2) 2.6 § 1.1 1�4

Number of children �10 (n, %) 2771 (27.0) 12.2 § 2.1 10�24

Age at first child in years (mean § SD) � 26.9 § 4.9 15�49

Age at last child in years (mean § SD) � 39.2 § 5.0 18�51

Last childbirth �40 years (n, %) 5190 (50.6) 35.5 § 4.4 18�40

Last childbirth �45 years (n, %) 981 (9.6) 45.8 § 1.0 45�51

Age at marriage in years (mean § SD)a � 25.9 § 4.6 16�46

Number of identified F0 parents (n, %) 15,300 (99.7)b � �
RP with 0 long-lived parents (n, %)c 8293 (80.9) � �
RP with 1 long-lived parent (n, %)c 1849 (18.0) � �
RP with 2 long-lived parents (n, %)c 113 (1.1) � �

a In the case of multiple marriages, age at first marriage was considered.
b The denominator is the total number of parents (n= 15,442) for 7721 sibships. Of the total possible number of

parents, 142 (0.3%) were not identified.
c Belonging to the top 10% survivors of their birth cohort; 15.3% (2344) of the identified parents have a missing age at

death.

RP, research person.

TABLE 2 AGE AT LAST CHILDBIRTH AND NUMBER OF OFFSPRING ASSOCIATES
WITH INDIVIDUAL LIFESPAN

Outcome and variable n (mean/proportion) b (95% CI) P-value

Age at last child (years, continuous) 10,255 (39.23) 0.06 (0.02 to 0.10) 2.16 £ 10�3

Age at last child

Group 0: �40 years 5190 (50.6) REF REF

Group 1: �45 years 981 (9.6) 1.41 (0.71 to 2.12) 9.07 £ 10�5

Number of children (continuous) 10,255 (7.12) 0.05 (�0.01 to 0.11) 7.63 £ 10�2

Number of children

Group 0: �4 2990 (29.2) REF REF

Group 1: �10 2771 (27.0) 0.61 (�0.03 to 1.25) 6.25 £ 10�2

All analyses were adjusted for the maternal birth year and the research person’s age at marriage. In addition, the

research design accounted for the survival of research persons and their partners up to the age of 50 years and the

number of marriages.

Analyses were carried out using mixed-model linear regression using the lme4 and lmerTest packages in R.

Confidence intervals were calculated in R with the confint function using the Wald method.

Four separate analyses were undertaken with age at death as outcome; (i) with the age at last childbirth (quantitative

definition) as the independent variable of interest; (ii) with the age at last childbirth (qualitative definition) as the

independent variable of interest; (iii) with the number of children (quantitative definition) as the independent variable

of interest; and (iv) with the number of children (qualitative definition) as the independent variable of interest.

REF, reference.
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lived 1.41 years (17 months) longer than
those who had their last child at less than
40 years of age (95% CI 0.71�2.12), after
adjusting for the age at marriage and the
mother’s birth year (TABLE 2).

Although it was not statistically significant,
it was observed that for each additional
child the lifespan of female participants
increased by 0.05 years (95% CI �0.01 to
0.11). Moreover, those who had 10 or more
children (n= 2771), in comparison to those
who had four or fewer children (n= 2990),
lived on average 0.61 years longer,
although again this effect did not reach
statistical significance (95% CI �0.03 to
1.25; TABLE 2).

Long-living female participants gave
birth to their last child at a later age
TABLE 3 displays the results of the survival
and Poisson analysis for individual
longevity. For each year, the top 10%
survivors (n= 2241, 21.9%) were 9% less
likely to have reached their ‘reproductive
stop’, or age at last childbirth, than the
remaining cohort (n= 8014, 78.1%)
(hazard ratio 0.91, 95% CI 0.86�0.95).
Of the long-lived research persons, 50%
gave birth to their last child at age 41 years,
in comparison to age 40 for the
remaining cohort (FIGURE 1). There was no
difference in the degree of familial
longevity and age at last childbirth
(TABLE 4).

Long-living females did not give birth to
more children
Although it was not statistically significant,
female research persons who survived to
the top 10% of their birth cohort delivered
on average 2% more children than other
female participants (incidence rate ratio
1.02, 95% CI 0.99�1.04; TABLE 3). The
number of offspring did not differ
significantly between participants with 0, 1
or 2 long-lived parents, as displayed in
TABLE 4.

Female participants with long-lived
parents had a similar genetic
predisposition to early menopause to
others
The authors further studied the genetic
component underlying both longevity and
reproductive health in 1258 F3 female
participants from the LLS (see the
Materials and Methods section for more
details on the study). No statistically
significant association was observed
between an increasing number of long-
lived family members (familial longevity; as
captured by the LRC score) and the



TABLE 3 ASSOCIATION OF INDIVIDUAL LONGEVITY WITH AGE AT LAST
CHILDBIRTH AND NUMBER OF OFFSPRING

Outcome and variable n (mean/proportion) HR/IRR (95% CI) P-value

Age at last child (years)

Top 10% survivor

No 8014 (78.1) REF REF

Yes 2241 (21.9) 0.91 (0.86�0.95)a 3.86 £ 10�5

Number of children

Top 10% survivor

No 8014 (78.1) REF REF

Yes 2241 (21.9) 1.02 (0.99�1.04)b 9.19 £ 10�2

All analyses were adjusted for the maternal birth year and the research person’s age at marriage. In addition, the

research design accounted for the survival of research persons and their partners up to the age of 50 years and the

number of marriages.

Analyses were carried out using mixed-model Poisson regression using the lme4 and lmerTest packages in R.

Confidence intervals were calculated in R with the confint function using the Wald method.
aHR.
b IRR.

HR, hazard ratio; IRR, incidence rate ratio; REF, reference.
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genetic score for age at menopause (PRS)
(b= 0.014, % CI �0.01 to 0.04). The effect
showed a trend towards the postulated
direction: with every 10% increase in the
FIGURE 1 Survival plot of age at last childbirth for l
at childbirth (41 versus 40 years).
LRC score, indicating greater familial
longevity, the number of alleles associating
with age at menopause was 0.014 SD
higher.
ong-living females (blue) and the remaining cohort (g
DISCUSSION

The study showed that female participants
who gave birth to their last child at a higher
age, and with an increasing number of
offspring, had a longer lifespan. Moreover,
those who were among the top 10%
survivors of their birth cohort delivered their
last child at a higher age and overall may
have had slightly more children. On the
familial level, there was no association
between the number of long-lived parents
and the reproductive outcomes.
Furthermore, no evidence was found for an
association between a genetic predisposition
to early or delayed menopause and familial
longevity. Hence, it was concluded that a
high age of last childbirth and the number
of offspring are markers of good
reproductive health and overall health
supporting longevity. In the current study
they were not, however, explained by the
genetic component in longevity.

This study affirms previous research that
supports a relationship between a later
age at last childbirth and increased post-
reproductive survival (Brandts et al., 2019;
Costanian et al., 2022;Gagnon, 2015;
reen). The dashed line indicates the median age



TABLE 4 ASSOCIATION OF FAMILIAL LONGEVITY WITH AGE AT LAST
CHILDBIRTH AND NUMBER OF OFFSPRING

Outcome and variable n (mean/proportion) HR/IRR (95% CI) P-value

Age at last child (years)

Number of long-lived parents

0 long-lived parents 8293 (80.9) REF REF

1 long-lived parent 1849 (18.0) 1.04 (0.99�1.09)a 1.30 £ 10�1

2 long-lived parents 113 (1.1) 1.15 (0.95�1.38)a 1.52 £ 10�1

Number of children

Number of long-lived parents

0 long-lived parents 8293 (80.9) REF REF

1 long-lived parent 1849 (18.0) 0.98 (0.96�1.01)b 1.62 £ 10�1

2 long-lived parents 113 (1.1) 0.98 (0.89�1.08)b 6.44 £ 10�1

All analyses were adjusted for the maternal birth year and the research person’s age at marriage. In addition, the

research design accounted for the survival of research persons and their partners up to the age of 50 years and the

number of marriages.

Analyses were carried out using mixed-model Poisson regression using the lme4 and lmerTest packages in R.

Confidence intervals were calculated in R with the confint function using the Wald method.

HR, hazard ratio; IRR, incidence rate ratio; REF, reference.
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Gagnon et al., 2009; Helle et al., 2005;
Jaffe et al., 2015; Jaspers et al., 2017;
McArdle et al., 2006;M€uller et al., 2002;
Shadyab et al., 2017; Sun et al., 2015). In
addition, the brothers of female
participants who gave birth to their
youngest child at a younger age lived
significantly longer (Smith et al., 2009).
Several underlying mechanisms have been
proposed for this relationship.

On the genetic level, several genes and
gene pathways have been identified that
could play a role in both somatic and
reproductive function (Wainer-Katsir et
al., 2015). Profiles of SNP or genome copy
number variant regions have furthermore
been associated with risk of mortality and
longevity and may be linked to
reproduction, although the latter is
predominantly assessed through proxy
measures such as age at menopause
(Wainer-Katsir et al., 2015). Gene variants
in the DNA repair pathways strongly relate
to age at menopause (Ruth et al., 2021),
suggesting that the latter could be the
result of overall somatic ageing (Laven,
2022). Although the genetic loci associated
with age at menopause have not yet been
directly correlated to human longevity or
familial longevity, a meta-analysis relating
SNP to exceptional human longevity (in
single cases) reported a correlation with
several of the same SNP that related to age
at menopause (Sebastiani et al., 2013).
Because the genetic predisposition for a
late onset of menopause is not significantly
associated with the familial component of
human longevity in the current study, the
health of female participants who
reproduced late might also be affected by
other factors that influence lifespan, such
as good environmental circumstances,
healthy lifestyles or favourable social
factors.

Besides oocyte quantity, oocyte quality is a
necessary factor for reproductive success
and is thought to be a causal factor in the
age-related decline of fertility (Silber et al.,
2017). As women age, oocyte competence
decreases, leading to an increased risk of
aneuploidy and miscarriage, leading in turn
to decreased fecundity. Suggested
pathways for the decline in oocyte quality
include a deterioration of the maintenance
of mitochondrial function (Chiang et al.,
2020) and the intrafollicular processes of
DNA translation (Llarena and Hine, 2021).
These processes are in turn thought to be
subject to oxidative stress, to which the
oocyte becomes more vulnerable with
increasing age, as shown in animal models
(Sasaki et al., 2019).

Fertility treatments such as IVF have
previously, although not consistently, been
linked to adverse cardiovascular outcomes
in both the short and long term (Bungum
et al., 2019; Henriksson, 2021; Yiallourou et
al., 2022), which could suggest an adverse
ageing profile for the subfertile population,
but it is not clear whether this can be
attributed to the effects of treatment or
population risk. While it is possible that the
influence of the DNA damage repair genes
associated with age at menopause
additionally extends to oocyte quality, this
remains to be further determined (Wainer-
Katsir et al., 2015). In oocytes, a group of
cells that spend most of their life in
senescence, it might be that the pathways
for cell maintenance are regulated
somewhat differently from those in
somatic cells. This could be another
explanation for the lack of association
between familial longevity and the PRS for
menopause as well as reproductive
outcomes in the current study. It is also
possible that fecundity, and thus oocyte
quality, cannot be adequately measured
through the proxies of age at childbirth
and number of offspring. In addition,
because this study involved a, by definition,
relatively healthy group of women who
lived to age 50 years and underwent at
least one successful pregnancy and
delivery, it precludes an in-depth enquiry
into the association between infertility or
involuntary childlessness and longevity.

It is challenging to put the effect sizes of
the current results into clinical
perspective. For the sake of comparison,
the total effects of obesity-related disease
in the USA are estimated to vary from 0.2
to 11.7 life�years lost (Chang et al., 2013).
Considering the magnitude of possible
morbidities in affecting the total lifespan,
an average lifespan increase of 1.41 years
for those with childbirth after 45 years may
in fact hold significance.

The method of linkage of families in the
historical cohort makes this study uniquely
suited to investigating the familial effects of
reproduction and longevity. The
methodological selection of the study
population, as well as the population size,
adds to its strengths. Due to the historical
nature of the data, the results are not
influenced by the use of hormonal
contraception or assisted reproductive
techniques, therefore allowing for a
reasonable assumption of unrestricted
natural fertility. For this reason, the results
cannot be directly applied to a
contemporary population with access to
family planning methods, but provide a
unique insight into the underlying biology.

The results are limited by the obligatory
use of a select number of proxy variables
for fertility and reproductive success, as
the study was limited to the data stored in
governmental registries. Furthermore, as
mentioned, it included a relatively healthy
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group of individuals who lived to be at least
50 years old. It is possible that this
selection excludes individuals with
accelerated ageing genotypes or
susceptibility to infectious or other
diseases, and therefore attenuates any
associations of reproduction with strong
somatic maintenance or longevity.

The historical data furthermore preclude
the correction for confounders such as
smoking, or societal and socioeconomic
effects. In a prior centenarian study of 197
female participants, a significant
relationship between the total number of
children and longevity was attenuated after
adjusting for smoking (Lockhart et al.,
2016). That being said, population studies
from multiple countries have shown that
the early 19th-century increase in lifespan
preceded improvements in public health
and diet (Mourits, 2017). It is therefore
possible that lifestyle factors, socioeconomic
status and societal class were less
prominently associated with health and
longevity than they are today. Finally,
although it was possible to identify the
associations between longevity and
reproduction from different perspectives, it
was not possible to remark on their causality.

In conclusion, it can be confirmed that a
late age at last childbirth is associated with
a longer lifespan and that traits of
reproductive success seem to be markers
of female health in middle age, probably
acquired by good environmental
circumstances. Furthermore, the authors
conclude that neither parental nor more
extended ancestral familial longevity is
characterized by reproductive success.

Attestation statement: Data regarding any
of the subjects in the study have not been
previously published unless specified.

Code availability statement: the scripts
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