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MOTIVATION B and T cell repertoires record past and current immune states. Therefore, themajority of im-
mune repertoire studies aim tomeasure the impact of the immune state on the immune repertoire because it
is widely assumed that repertoires change as a function of the immune state. So far, a method to measure
and immunologically interpret differences between immune repertoires has remained unavailable. We have
addressed the methodological challenge of immune repertoire comparison by implementing a reference-
based multidimensional repertoire similarity measure based on in silico and experimental immunologically
interpretable ground truth.
SUMMARY
B and T cell receptor (immune) repertoires can represent an individual’s immune history. While current reper-
toire analysis methods aim to discriminate between health and disease states, they are typically based on
only a limited number of parameters. Here, we introduce immuneREF: a quantitative multidimensional mea-
sure of adaptive immune repertoire (and transcriptome) similarity that allows interpretation of immune reper-
toire variation by relying on both repertoire features and cross-referencing of simulated and experimental da-
tasets. To quantify immune repertoire similarity landscapes across health and disease, we applied
immuneREF to >2,400 datasets from individuals with varying immune states (healthy, [autoimmune] disease,
and infection). We discovered, in contrast to the current paradigm, that blood-derived immune repertoires of
healthy and diseased individuals are highly similar for certain immune states, suggesting that repertoire
changes to immune perturbations are less pronounced than previously thought. In conclusion, immuneREF
enables the population-wide study of adaptive immune response similarity across immune states.
INTRODUCTION

B and T cell receptor (BCR, TCR) repertoires (also called adap-

tive immune receptor repertoires, AIRR) are continually shaped

throughout the lifetime of an individual in response to environ-
Cell Rep
This is an open access article und
mental and pathogenic exposure. As of yet, however, there ex-

ists only a limited quantitative conception of how immune recep-

tor repertoires differ across individuals and cell populations

(Brown et al., 2019; Miho et al., 2018; Raybould et al., 2021).

This is primarily because a method for measuring inter-individual
orts Methods 2, 100269, August 22, 2022 ª 2022 The Author(s). 1
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(inter-repertoire) similarity is lacking, thus greatly impeding the

understanding of how health and disease shape immune

repertoires and how disease contributes to the deviation of an in-

dividual’s baseline repertoire (Cobey et al., 2015). Although it is

generally thought that infection or disease induces measurable

repertoire changes (even on the antigen-specific agnostic level),

this belief remains unproven and, in fact, is counter to current

evidence finding, using statistical learning, that even in systemic

infections such as cytomegalovirus (CMV) only a comparatively

very small number of TCRs are infection associated (DeWitt

et al., 2018; Emerson et al., 2017; Pavlovi�c et al., 2021). As

opposed to machine learning approaches that aim to detect

the most differentiating factors (i.e., subsets of a repertoire) be-

tween, for example, two different immune states (Greiff et al.,

2020; Pavlovi�c et al., 2021; Pertseva et al., 2021; Shemesh

et al., 2021; Widrich et al., 2020a, 2020b), we investigate here

a method for quantitatively comparing any two repertoires in

an unsupervised fashion. We thus seek to understand to what

extent individuals differ with respect to their entire repertoire

and not just class-associated subsets.

The need for comparing immune repertoires using a quantita-

tive measure has recently been addressed by approaches based

on single sequence-dependent and sequence-independent fea-

tures, which vary in statistical dependency (mutual information)

and immunological interpretability (Chiffelle et al., 2020; Miho

et al., 2018;Olson et al., 2019). Sequence-dependent approaches

range from the measurement of clonal overlap (Bolen et al., 2017;

Greiff et al., 2015a; Miho et al., 2018; Rognes et al., 2022; Yaari

and Kleinstein, 2015) to more sophisticated algorithms that iden-

tify disease-specific enrichment of sequence clusters by testing

against VDJ recombinationmodels (Pogorelyy et al., 2019) or sim-

ilarity networks of control datasets (Pogorelyy and Shugay, 2019;

Shugay et al., 2015). Sequence-independent approaches are

mainly represented by entropy-based diversity indices (Alon

et al., 2021; Greiff et al., 2015a; Kaplinsky and Arnaout, 2016;

Strauli and Hernandez, 2016), which have lately been augmented

with a correction for sequence similarity (Arora et al., 2018;

Vujovi�c et al., 2021). None of the currently available comparative

methods, which are based on single repertoire features, however,

represent an integrated multi-feature measure of immune reper-

toire similarity that takes into account the complexity of informa-

tion encoded in the ensemble of the existing immune repertoire

features (Gupta et al., 2015; Heiden et al., 2014; Nazarov et al.,

2020; Shugay et al., 2015). Such an integratedmeasure, encoding

per-feature similarity in one common mathematical structure, is

needed to enable a representation of repertoire similarity.

Here, we introduce immuneREF: ameasure for quantifying im-

mune repertoire similarity acrossmultiple immune repertoire fea-

tures. Our framework, implemented in an R package, measures

immune repertoire similarity using a combination of features that

are immunologically interpretable (clonal expansion, sequence

composition, repertoire architecture, and clonal overlap) and

that cover largely distinct dimensions of the immune repertoire

spaces. Specifically, to interpret immune repertoire similarity

scores, immuneREF establishes a self-augmenting dictionary

of simulated and experimental datasets where each new dataset

analyzed may be used as a comparative reference for scoring

and biologically interpreting inter-individual variation (and thus
2 Cell Reports Methods 2, 100269, August 22, 2022
the deviation) of immune repertoire features (Figure 1). We

applied immuneREF to >2,400 immune repertoires from humans

with varying immune states (healthy, virus infection, autoimmune

disease) and found that the similarity of blood-derived immune

repertoires is not consistently a function of the immune state.

Overall, immuneREF enables the quantification of repertoire

similarity at population scale while still providing single-individual

resolution, and it enables answering fundamental questions

such as to what extent immune repertoires are robust to pertur-

bations introduced by immune events.

RESULTS

Reference-based comparison of immune repertoires
based on immunological features: Constructing a
similarity atlas of immune repertoires
To derive a similaritymeasure for immune repertoires, we devised

a framework that calculates a repertoire similarity score based on

six features that reflect immunerepertoirebiology (Figure1).These

features are (1) germline gene diversity (Greiff et al., 2015a; Yaari

and Kleinstein, 2015), (2) clonal diversity (Greiff et al., 2015a; Stern

et al., 2014), (3) clonal overlap (Greiff et al., 2015a; Yaari and Klein-

stein, 2015), (4) positional amino acid frequencies (Mason et al.,

2019), (5) repertoire similarity architecture (Bashford-Rogers

et al., 2013; Ben-Hamo and Efroni, 2011; Miho et al., 2019), and

(6) k-mer occurrence (Greiff et al., 2017b; Thomas et al., 2014)

(see the STAR Methods section for a detailed immunological

andmathematical description of these features). A similarity score

is calculated for each pair of repertoires and each feature (six n x n

symmetricmatrices,n= number of repertoires), creating a similar-

ity matrix for each feature. This matrix may be viewed as a

weighted network, in which the nodes correspond to repertoires

and the edges connecting the nodes are the similarity scores.

The resulting six single-feature similarity networks enable insight

into per-feature similarity. Finally, a composite network of the six

feature similarity networks represents an interpretable multidi-

mensional picture of the repertoire landscape. Briefly, the single

features are condensed into a multi-feature composite network

by taking the mean of all single-feature similarity values resulting

in a single repertoire similarity value (for alternative approaches

to computing composite networks, see STAR Methods section).

By virtue of representing a similarity matrix as a weighted network

repertoire, similarity may be computed on selected levels such as

one (repertoire) to many (repertoires), many to one, and many to

many (Figure 1). Interpretability stems from all repertoire features

being transformed intoasimilaritymeasureona0–1scaleallowing

for direct quantification of their individual contribution to multidi-

mensional immune repertoire similarity.

immuneREF measures immune repertoire similarity
with high sensitivity
We sought to quantify the sensitivity by which immuneREF can

detect differences between immune repertoires with respect to

the six repertoire features. The simulated repertoires, varying in

a controlled manner, represent a ground truth reference map

that enables a more precise assessment of immuneREF sensi-

tivity. For example, simulated repertoires may be used to guide

the evaluation of variation between experimental repertoires



Figure 1. | Reference-based comparison of adaptive immune receptor repertoires (AIRRs)

(A) The complexity of AIRRs spans the frequency, motif, and feature space to each, of which distinct repertoire features may be attributed: the immune informa-

tion stored in AIRRs is multidimensional. A longstanding question in the AIRR field is how to quantitatively measure inter-sample (sample, e.g., individual, immune

cell population) AIRR similarity by accounting for AIRR feature multidimensionality in the effort to understand the distribution of inter-sample AIRR similarity

across different immune events or immune cell populations.

(B) We set out to develop an AIRR similarity measure that is sensitive, captures maximal immune information, and is sufficiently flexible to allow future integration

of additional repertoire features (extensibility).

(C) Each AIRR is represented as a node in a similarity network. The edges connecting the nodes represent the similarity score between the AIRR based on the six

repertoire features. The immuneREF approach establishes interpretability on different levels: (1) from a single-feature perspective, the application of spider plots

allows for an interpretable comparative analysis between repertoires, enabling the user to interpret the result observed in the condensed network on a per feature

basis. (2) From the condensed feature network perspective, a major novelty introduced by the immuneREF workflow is the ability to combine established

repertoire features into a common coordinate system. This transformation allows the combination of trends across features into a single condensed network that

represents pairwise-cross-feature similarities. These pairwise similarities allow for the identification of subsets of more similar or aberrant repertoires. Inter-

pretability on both features means allowing comparison to other repertoires and to simulated ones (of which we know the repertoire structure as ground truth),

thus creating similarity equivalence classes. Equivalence classes create sets of reference repertoires, which enable interpreting the repertoire structures of other

repertoires solely based on the immuneREF similarity score.
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with respect to each repertoire feature as well as multi-feature

combinations. Simulations were performed using the immune-

SIM repertoire simulation suite (Weber et al., 2019), which was

used to create native-like repertoires that were varied across

eight parameters. Native-likeness was demonstrated in Weber

et al. (2019). The parameters that were varied across simulated

repertoires included clone count distribution, V-, (D-), J-gene fre-

quency noise, insertion, and deletion likelihoods, species (hu-

man and mouse), and receptor type (IgH, TRB). We constructed

additional simulated repertoires with spiked-in motifs (mimicking

antigen-binding motifs; Akbar et al., 2019), excluded hub se-

quences in the sequence similarity network (simulating network

architecture variation;Miho et al., 2019), and replaced nucleotide

codons with synonymous codons (simulating biases in the k-mer
occurrence that are relevant in detectable immunogenomic pat-

terns of public clones; Greiff et al., 2017b) (see STAR Methods;

Table S1 lists the parameter variations used for the simulations

and how each of the parameters is expected to influence the

six immuneREF features). The parameter combinations were

chosen so each simulated repertoire varied only along one

parameter dimension at a time, allowing us to determine the

sensitivity of each feature to each parameter change.

The mathematical structure of the single-feature similarity

matrices enables their merging into a composite network that

provides the opportunity for a condensed single-score represen-

tation of inter-sample repertoire similarity. The composite immu-

neREF network (which combines all six repertoire features) re-

covers major variation in the repertoires including noise
Cell Reports Methods 2, 100269, August 22, 2022 3
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Figure 2. immuneREF measures immune repertoire similarity with high sensitivity using features that capture immune repertoire biology

We simulated 200 immune repertoires using 40 different parameter combinations (in quintuplicate).

(A) Hierarchical clustering visualizes the sensitivity of immuneREF by the successful grouping of immune repertoires that were simulated with slightly different

parameters (composite network; see main text for details).

(B) Network visualization with simulated repertoires as nodes and weighted edges between repertoires of similarity values above the upper quartile.

(C) Quantification of mutual information among immune repertoire features.

(D) Change in mean similarity of composite networks of increasing number of features. t test significance values are defined as ns: pR 0.05, *: p < 0.05, **: p%

0.01, ***: p % 0.001, ****: p % 0.0001.
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introducing parameter changes (Figures 2A and 2B). immu-

neREF also clearly distinguishes repertoires from different re-

ceptors and species based on strongly distinguishing features

such as V-, (D-), and J-gene usage while allowing the identifica-

tion of commonalities in amino acid usage, clonal diversity, and

architecture across immune receptors and species. This sensi-

tivity analysis also underlines a major advantage of immuneREF,

namely its flexibility to accommodate both BCR and TCR reper-

toires from different species in one single analysis workflow.

We quantified the sensitivity of immuneREF by detecting sig-

nificant changes in similarity scores corresponding to the varia-

tion in simulation parameters across both the single feature

(Figures S1–S3) and composite network (Figure 2A) and found

that each feature had a unique sensitivity profile to changes in

the simulation parameters, underscoring the value of per-

feature similarity evaluation. For example, a change in the alpha

parameter of the Hill function (controlling clone count distribu-

tion) solely impacted the immuneREF diversity feature. As the
4 Cell Reports Methods 2, 100269, August 22, 2022
immuneSIM parameter controlling the distribution of clone

counts only affects the clone count simulation without impacting

simulated sequences, the fact that only the feature targeted by

the parameter change is impacted shows that immuneREF is

robust to random noise in the simulation that is not introduced

through parameter changes. An increase in the V(D)J noise

parameter, whichmodifies the frequencies of the germline genes

used in the simulation, led to detectable and significant changes

in similarities of the germline gene usage and k-mer occurrence

features. Modification of the insertion/deletion patterns (dropout

of deletions and or insertions) led to a consistent impact in

the amino acid frequency feature and, more importantly, the

architecture feature, where a lower diversity due to restricted in-

sertions and deletions led to significant changes in network

architecture. Implanting motifs at various frequencies led to a

significant similarity change in the k-mer occurrence feature.

The deletion of hub sequences led to an impact in the architec-

ture feature and also changed the repertoire overlap similarity,
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thus underlining the importance of public clones in the network

architecture as reported previously (Miho et al., 2019). Finally,

we modified the repertoires by introducing synonymous codons

at various percentages and found that the k-mer occurrence

feature was the only one impacted. Therefore, we conclude

that immuneREF features largely react as hypothesized to varia-

tion in simulation parameters (Table S1). Taken together, we

demonstrated that the immuneREF framework is sensitive to

even comparatively small repertoire variations.

Mutual information analysis demonstrates no inter-
dependence to limited inter-dependence of immuneREF
features
While the examined features were initially chosen based on

immunological criteria, we also wished to verify whether each

feature provides a sufficiently different measurement of the im-

mune repertoire information space (Figure 2C). Specifically, hav-

ing integrated all features into a common coordinate system, we

were able to compute cross-feature mutual information and

found that features show no dependence to limited dependence

(range = 0.01–0.57; Figure 2C) indicating largely non-overlapping

and distinct spaces of immune information captured. The high-

est mutual information was found between the positional and

sequential sequence-derived features (i.e., positional amino

acid frequency and gapped k-mer occurrence, respectively),

whereas the lowest mutual information value was found between

the diversity and convergence features (Figure 2C).

Complementarily, we sought to quantify to what extent the

addition of new repertoire features leads to diminishing returns

(sufficiency analysis). To this end, we computed the mean

change in repertoire similarity values when increasing the num-

ber of features from one through six. Thereby, we could show

that each additional feature added increasingly less information,

as shown by the diminishing change of the mean similarity value

with each added feature. The saturation of the mean similarity

change curve indicated information saturation independent of

the order in which features were arranged (Figures 2D and

S3G–S3J). As discussed below, mutual information values

behaved similarly for experimental repertoire data. Thus, we

demonstrated that the immuneREF framework creates informa-

tion-laden similarity networks, whose topologies capture the

immunological similarity landscape of immune repertoires.

The similarity landscape of simulated repertoires
defines reference repertoires
By calculating the similarity matrix for each of the six immune

repertoire features, we embedded the six different immunolog-

ical features into a common coordinate system, i.e., a network

structure. This network (with nodes representing repertoires

and weighted edges representing pairwise similarity) situates

each repertoire within a similarity landscape allowing quantifica-

tion of many-to-many repertoire similarity.

A more fine-grained image of the similarity landscape may be

gained by examining the similarity from the perspective of every

single repertoire (Figures 3C and 3D). We define the local similar-

ity of a repertoire to its neighboring repertoires as a scaled node

strength (see STARMethods). This local similarity represents the

position of the repertoire with respect to its direct neighbors in its
cohort (defined by an application-dependent label, e.g., same

species and disease) and allows us to distinguish between well

embedded and aberrant repertoires. The local similaritymeasure

further acts as amagnifying glass by elucidating finer differences

between repertoires, which are diluted by population averages

when examining repertoire similarity across the full similarity

network. Using this perspective, repertoires that are most

(locally) similar to other repertoires in their cohort can be identi-

fied, allowing the extraction of repertoires most representative

for a given immune state. Such detailed one-to-one feature com-

parisons highlight, in the most simple case, which features of the

simulated repertoires are receptor specific (amino acid fre-

quency, k-mer occurrence, VDJ usage, and convergence) and

which are more general to immune repertoire data showing

higher similarity across different species and receptors (diver-

sity, architecture) (Figures 3E and S4).

Having evaluated the similarity of simulated datasets, these

may serve as a reference to interpreting similarity score variation

of experimental repertoires (Figure 3C), thus enabling the crea-

tion of equivalence classes of immune repertoires not only as

previously performed based on clonal expansion (Greiff et al.,

2015b) but based on six repertoire features. Furthermore, any

evaluated repertoire, be it of experimental or simulation origin,

will become a new node in the similarity network and may serve

as a valid reference point (just as any other node in the network).

This network of self-augmenting repertoire similarity reference

points is another source of interpretability as it allows the linking

of the repertoire similarity of any number of repertoires with their

underlying features. In the next section, we provide such a reper-

toire similarity network on experimental datasets.

Validation of immuneREF on experimental data:
Detection of differences between cell populations in
mouse immunization and human COVID-19 datasets
To validate immuneREF sensitivity on experimental data, we

used antibody repertoire datasets generated from a mouse anti-

gen immunization study, where differences in the similarity be-

tween antigen immunization cohorts are expected (Greiff et al.,

2017a, 2017b; Miho et al., 2019). Notably, we were able to

recover clear differences between isotypes and cell populations

(both with higher within-cohort and lower across-cohort similar-

ity); additionally, we found that the antigen immunization cohorts

have more distinct similarity profiles in the plasma cell popula-

tions (IgG) compared with the antigen-inexperienced cell popu-

lations (Figure S5). The overall high similarity scores across the

full immunological feature range are in agreement with our previ-

ous studies where we observed high similarity between these

repertoires on a single feature basis (Greiff et al., 2017a).

Similarly, applying immuneREF to TCR repertoires of patients

recovered from mild cases of COVID-19 (Minervina et al., 2021)

revealed clusters of increased similarity within patients and cell

populations (Figure S5).

Application of immuneREF to >1,500 experimental blood
immune repertoires indicates only small similarity-based
differences between health and autoimmune disease
Having established the sensitivity of our approach in detecting

a wide range of differences between simulated repertoires
Cell Reports Methods 2, 100269, August 22, 2022 5
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Figure 3. The similarity landscape of simulated repertoires defines reference repertoires

(A) Baseline similarity between replicates for repertoires simulated using default immuneSIM parameters (see Table S1) isR0.96 for five of six features, with the

convergence feature being the exception by definition at %0.09. Bar graphs show mean SEM across replicates.

(B) Repertoire similarity distribution in a condensed network across the various evaluated parameter range. Across cohorts, similarity scores have a broad range,

whereas within cohorts the range is more restricted.

(C) Workflow to determine representative repertoires per cohort going from many-to-many to a one-to-one comparison.

(D) Local similarity distribution per species/receptor combination enables situating each repertoire based on its connectivity with respect to neighbors in the same

cohort.

(E) Comparing repertoires with maximal local similarity in their cohort visualizes the commonalities between receptor types; here the Murine IgH repertoire with

maximal local similarity serves as a reference repertoire. The plot visualizes the similarities of each non-reference repertoire to the Murine IgH reference.
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(Figures 2 and 3) and between experimental repertoires of

different B cell populations (Figure S5)with respect to immunolog-

ically relevant and interpretable repertoire features, we set out to

determine the similarity landscape of large-scale experimental

TCR repertoire datasets. We evaluated 1,522 human TCR reper-

toires derived from peripheral blood mononuclear cells (PBMCs)

of patients with varying and diverse immune states (PanImmune

Repertoire Database (PIRD) dataset containing samples from

healthy, rheumatoid arthritis (RA), and systemic lupus erythema-

tosus (SLE) patients; Table S2). We found an even similarity land-

scape of overall high similarity scores (Figure 4A). Similarity score

distribution was also even in single features, which despite

feature-specific differences, show overall high similarity scores

between repertoires. We examined networks at three different

similarity cutoffs (an edge is drawn between two repertoire nodes

if their similarity is in 25%, 50%, and 75% top weights, respec-

tively), and we found that in all three cases, no immune state-spe-

cific grouping could be observed (Figure 4B).

The range of general and local similarities across all samples

as well as within each disease cohort was evaluated using an
6 Cell Reports Methods 2, 100269, August 22, 2022
analogous approach to that used for the simulated datasets

(Figures 4C and 4D). While the similarity scores ranged between

�0.5 and 0.8 overall, the within-disease cohort spread varied,

with the healthy and RA cohorts showing amore restricted range

of similarity scores compared with a broader range for SLE

(Figures 4C and 4D).

To quantify per feature similarity and dissimilarity with respect

to a reference dataset, we compared the repertoires identified as

the ones best connected (highest local similarity) within their

cohort to an immuneSIM reference repertoire (human, TRB,

standard parameters; see STAR Methods) (Figure 4E). The sim-

ilarity scores of all tested immune states largely overlap with

respect to the healthy reference repertoire, with convergence

being the feature dimension with the largest dissimilarity, mean-

ing there is almost no convergence between the RA or SLE sam-

ples and the reference.

Following our observations of high repertoire similarity within

the PIRD dataset, we ran immuneREF on another large publicly

available dataset (human, TCR) (Emerson et al., 2017) with yet

another difference in immune state (CMV). The dataset contains
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Figure 4. Application of immuneREF to 1,522 experimental repertoires

(A) Similarity landscape of experimental (human, TCR) repertoires across three immune states (healthy, 439 repertoires; rheumatoid arthritis, 206 repertoires; and

systemic lupus erythematosus, 877 repertoires).

(B) Network visualization of the 1,721 nodes and weighted edges between repertoires of similarity scores (at three cutoff levels, 25%, 50%, and 75% top edge

weights).

(C) Distribution of similarity scores across the entire network and per immune state shows different degrees of within-cohort homogeneity.

(D) Distribution of local similarity values per repertoire, faceted by cohort.

(E) Comparison of the repertoires with the highest local similarity per immune state and an immuneSIM reference repertoire (default immuneSIM parameters; see

Table S1).
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666 PBMC samples of which 289 are from CMV-positive pa-

tients, 351 are from CMV-negative patients, and 26 are from pa-

tients with unknown CMV status. This dataset has previously

been used to showcase immune state classification with high ac-

curacy via the identification of CMV-associated public TCR se-

quences (sequences shared between individuals). In a similar

fashion, immune state-associated public sequences were used

to successfully classify RA and SLE samples from the PIRDdata-

set (Liu et al., 2019). As with the PIRD dataset, we observed high

within and across immune state repertoire similarity (Figure S5).

This is in line with the findings of Emerson and colleagues as they

found that only a small subset of clones (CMV-associated ones

in Emerson et al., 2017) significantly differed in abundance be-

tween immune states (CMV+, CMV–) and that that shared anti-

gen exposure to CMV led to a reduced number of shared

TCRb clones, even after controlling for individual human leuko-

cyte antigen (HLA) type, indicating a largely private response to

a major viral antigenic exposure (Johnson et al., 2021).

In summary, the results of our analysis of human TCR reper-

toires strongly support the argument that the signal-to-noise

ratios, where signal means repertoire features associated with

disease status, are unfavorably tilted toward noise, where noise
is defined as technological and immunological information,

which cannot yet be linked to a given disease state.

Extensibility of immuneREF: Integration of gene
expression with immune repertoire data
The mathematical structure of the composite network obtained

from immuneREF allows the extensibility of the immuneREF

framework to other features. As proof of principle of this immu-

neREF capability, we show here an integrative analysis of immune

repertoires and gene expression. This integration is of high interest

to RNA-seq experiments that include both receptor and global

transcript sequences, or even repertoire experiments paired

with transcriptomics (Rubio et al., 2022; Song et al., 2021). Inte-

gration of immune repertoire with gene expression is challenging

due to the multidimensional nature of both kinds of datasets and

the discrepancy in their data structure. Previous attempts of inte-

gration are still over-simplistic, such as the calculation of correla-

tion between the number of distinct CDR3 amino acid sequences

and gene expression of some marker genes such as CD3, CD4,

CD8, HLA class I, and class II genes (Brown et al., 2015).

immuneREF includes the option to evaluate similarity based

on a gene expression matrix and add it to the composite
Cell Reports Methods 2, 100269, August 22, 2022 7
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network. Briefly, immuneREF first filters all genes with low varia-

tion between experimental conditions and then calculates the

pairwise correlation between observations to construct a single

gene expression feature (similarity matrix). Once the seven fea-

tures (six from immune repertoires and one for gene expression)

are calculated, they may be condensed into a multi-feature

network as described above. Our solution for integrating recep-

tors with gene expression confers immuneREF the advantage of

overlaying dual biological information (Figure S6A).

As an example, we analyzed bulk RNA-seq gene expression of

pre-B cell line B3 from the published STATegra project (Gomez-

Cabrero et al., 2019). This is a time-course experiment that col-

lects samples at six time points using an inducible Ikaros system

where B cell progenitors undergo growth arrest and differentia-

tion (Figure S6B). Principal-component analysis (PCA) showed

clear differences at gene expression level when control and

Ikaros groups were compared but also within the Ikaros group

across time, being t0 the nearest to controls (Figure S6B). To

generate the single-feature similarity matrix of gene expression

that better collects these differences, we tested the three avail-

able correlation-based methods implemented in immuneREF

(Figures S6C–S6E). All of them perfectly separated control

(blue) and Ikaros (red) groups. Additionally, ‘‘Pearson correla-

tion’’ and ‘‘PCA scores’’ nearly recovered correctly the time se-

ries pattern (purple to yellow degradation), while mutual rank

matched perfectly.

DISCUSSION

Combining methods from both immune repertoire and network

analysis, we have provided a framework for flexible reference-

based quantification of immune repertoire similarity. Using

ground truth simulations, we show that immuneREF is sensitive

to inter-repertoire differences in all immunological features. Tak-

ing advantage of information theory, we showed using both

simulated and experimental data that the features selected for

immuneREF cover a large extent of immune repertoire biology.

We introduced the concepts of full-network repertoire similarity

and local similarity, which allow complementary quantification

of the impact of the differences in the repertoire similarity land-

scape. Specifically, while the more general repertoire similarity

evaluated on the entire network provides insight into the range

of similarity within and across conditions, local similarity shows

a particular advantage of the network approach, as the embed-

ding of a repertoire in its neighborhood can markedly differ from

what can be expected by its pairwise connections.

immuneREF not only provides a framework for measuring im-

mune repertoire similarity but also for interpreting it. Specifically,

it enables the creation of equivalence classes of immune reper-

toires lacking from existingmethods. For example, once the sim-

ilarity observed within a given set of experimentally obtained im-

mune repertoires has been computed, such repertoires may

function as reference points that in turn enable the interpretation

of relative similarity in other repertoires (Figures 1 and 3C). Of

note, the concept of diversity measures creating equivalence

classes has been noted previously for Hill diversity measures

(Greiff et al., 2015b) and is here extended to include additional

repertoire features immuneREF unifies as single and composite
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features, frequency-dependent, and sequence-dependent simi-

larity measures into one computational framework. Beyond

quantifying the repertoire similarity of experimental immune rep-

ertoires, immuneREF also enables the comparison of simulated

(Han et al., 2021; Marcou et al., 2017; Safonova et al., 2015;

Weber et al., 2020; Marcou et al., 2017; Safonova et al., 2015;

Weber et al., 2019) and in vitro synthetic immune repertoires

used for therapeutic antibody discovery (Mason et al., 2018).

Furthermore, immuneREF may be used for data curation pur-

poses in immune repertoire databases such as iReceptor (Corrie

et al., 2018), VDJserver (Cowell et al., 2015), PIRD (Zhang et al.,

2019), and Observed Antibody Space (Kovaltsuk et al., 2018).

Specifically, upon the integration of an immune repertoire into

a database, the similarity of the repertoire with all other stored

repertoires may be computed. Beyond immunological insight,

immuneREF may reveal unexpected technological variation,

thus motivating follow-up inspection (Barennes et al., 2021).

Since immuneREF has been built to work across species, cell

populations, and receptor types and experimental or simulated

data (all-in-one comparative framework), it enables rapid distinc-

tion of cohort-specific and cohort-unspecific features. This is

also important for comparative immunological approaches not

centered on health versus disease comparison but, for example,

the evolution of adaptive immunity (Pancer and Cooper, 2006).

The ease of use of the immuneREF approach opens new pos-

sibilities for large-scale comparative studies as shown on the

PIRD dataset, which may yield additional insight into the chal-

lenges of predicting immune state based on repertoire profiling.

Indeed, we found that the population average quantified by im-

muneREF may ’’conceal’’ relevant immunological phenotype

signals, despite the fact that the sensitivity of immuneREF was

shown to be high in simulated and experimental data (Figures 2

and S5). Given the lack of large-scale (antigen-specific) data, it

remains unclear how the information of the immune state is

distributed across immunological features. Specifically, our

finding—that repertoire similarity does not differ across immune

states—is strictly only valid for unsorted PBMC TCR repertoire

data as examined in this study. As known from previous studies

(Amoriello et al., 2020, 2021; Csepregi et al., 2021; Ghraichy

et al., 2021; Greiff et al., 2017b; Li et al., 2020; Ota et al., 2022;

Riedel et al., 2020; Rosati et al., 2021), different cell populations

(in different lymphoid organs) may behave in a highly different

manner (Figure S5). On the other hand, it did not escape our

attention that this broad similarity in human blood samples might

suggest themaintenance of lymphocyte homeostasis even in the

event of chronic disease.

Our results reinforce the notion that while some diseases may

introduce abnormalities into the immune repertoire, others result

in a comparatively normal one (Bashford-Rogers et al., 2019), a

result that suggests the absence of a signature unique to health.

If this is true, then blood-based immune repertoire diagnostics

will require evenmore advancedmethodologies to be developed

(Arnaout et al., 2021; Dahal-Koirala et al., 2022; Widrich et al.,

2020a). For example, for simulated repertoires, motif implants

in R10% of sequences were required to affect the amino acid

frequency and architecture features, suggesting that even in

the case of high clonal expansion, the impact on the repertoire

might not be sufficient to significantly change major repertoire
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features. This is reinforced by results showing that the disease-

driving response in multiple autoimmune diseases is only to a

small part antigen specific (Christophersen et al., 2019; Dahal-

Koirala et al., 2022). More generally, our paper advances the

state of the art of the immune repertoire field by changing the

null hypothesis. Specifically, currently, the predominant thinking

is that any immune state changesmeasurably the immune reper-

toire in a systematic fashion. Our paper challenges this view by

finding that, a priori, we should not expect to see differences

(Figures 4 and S10), and any substantial changemust be proven.

This change of perspective is highly valuable to the field as it

pushes it toward more sensitive and robust approaches to im-

mune repertoire and machine learning analysis (Arnaout et al.,

2021; Kanduri et al., 2021; Slabodkin et al., 2021). Specifically,

the usefulness of global features for diagnostics is severely

limited, and to detect single-sequence-level differences (Emer-

son et al., 2017; Kanduri et al., 2021; Widrich et al., 2020a), sin-

gle-sequence-level statistical and machine learning approaches

are needed (Greiff et al., 2020; Schattgen et al., 2021).

In the future, ultra-deep (Briney et al., 2019; Soto et al., 2019,

2020) and population-wide, large-scale immune repertoire pro-

jects such as Human Vaccines Project (Crowe and Koff, 2015)

may benefit from using immuneREF for identifying immune

event-driven aberrations from a baseline repertoire similarity.

Furthermore, large-scale database initiatives such as the

iReceptor gateway (Corrie et al., 2018) may benefit from immu-

neREF functionality for on-the-fly computation of inter-dataset

similarity.

Limitations of the study
Although we consider the usefulness of the six chosen features

to be established (Figures 2 and S3G–S3J), we concede that

the asymptotic nature of the sufficiency calculation leaves the

door open to the introduction of additional features. The

proposed set of immuneREF features denotes in this sense a

minimally sufficient set for the analysis of immune repertoire

datasets. It ensures sufficient coverage of the major variation-

introducing aspects. It is for that reason we devised immu-

neREF as inherently modular, allowing single- and multi-feature

analysis as well as encouraging the addition of new features

relevant for particular problems such as transcriptome analysis

(Schneider-Hohendorf et al., 2018; Figure S6), HLA typing for

TCR studies (DeWitt et al., 2018; Emerson et al., 2017; Francis

et al., 2021), single-cell omics information (Han et al., 2021;

Setliff et al., 2019; Sturm et al., 2020; Yermanos et al., 2021),

gene-specific substitution profiles for somatic hypermutation

analysis (Sheng et al., 2017), lineage-specific information

(Hoehn et al., 2016, 2021), and antigen-specific and antigen-

associated motifs identified by sequence clustering and ma-

chine learning (Akbar et al., 2019; Dash et al., 2017; Frieden-

sohn et al., 2020; Glanville et al., 2017; Greiff et al., 2017b;

Horst et al., 2021; Mason et al., 2019; Mayer-Blackwell et al.,

2021; Meysman et al., 2018; Quiniou et al., 2020; Sidhom

et al., 2019; Wong et al., 2020; Yohannes et al., 2021). In partic-

ular, a future extension of immuneREF may be a feature that

reliably identifies antigen-specific sequences, thus increasing

the amount of immune information recovered. More generally,

adult repertoires are very complex and contain hidden informa-
tion of many antigens at different time points that might have

been shared by different individuals. For instance, repertoire

fingerprints of influenza infection might be present on most

studied individuals and could explain the difficulty to distinguish

healthy and diseased individuals. New features including (sin-

gle-cell-based) antigen specificity patterns may help separate

shared infection marks on the immune repertoire.
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sources Table.

Code: The immuneREF analysis workflow ismade available via the immuneREF Rpackage hosted onGitHub (https://github.com/

GreiffLab/immuneREF). Documentation of the immuneREF package is provided on readthedocs (https://immuneref.
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request.
METHOD DETAILS

immuneREF features
For each dataset, we calculated six immune repertoire features and a per-feature similarity score.
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immuneREF feature: Evenness profiles (state of clonal expansion)
Evenness profiles were calculated as described previously (Greiff et al., 2015b) on the CDR3 nucleotide level. Briefly, we calculated

the Hill-diversity for alpha values 0–10 in steps of 0.1 with alpha = 1 being defined as the Shannon evenness. Each entry in the profile

varies between z0 and 1, where higher values indicate an increasingly uniform clonal frequency distribution. We determined even-

ness profiles for each repertoire and evaluated cross-repertoire evenness similarity by Pearson correlation of the repertoires’ even-

ness profiles as described previously (Amoriello et al., 2020; Greiff et al., 2015b, 2017a).

immuneREF feature: Positional amino acid frequencies
The positional amino acid frequencies were calculated separately for each CDR3 sequence length. To decrease bias by extraordi-

narily short or long CDR3 sequences, we limited this analysis to a range of the most common lengths (8–20 amino acids) (Greiff et al.,

2017a; Raybould et al., 2019). Briefly, per position amino acid frequencies were calculated for each length. Subsequently, the result-

ing per length frequency vectors of each repertoire were Pearson-correlated by length and the mean correlation was calculated. Un-

like in the case of k-mer occurrences, no positions are excluded, making AA frequency more sensitive to VDJ usage perturbations.

Relative frequencies were used for all positional amino acid frequency calculations.

immuneREF feature: Sequence similarity network architecture
As previously described (Miho et al., 2019), we constructed a sequence similarity network for each immune repertoire: nodes repre-

sent amino acid CDR3 sequences connected by similarity edges if they had a Levenshtein Distance of 1 (LD = 1). The igraph R pack-

age was used to calculate networks (v.1.2.4.1, Csardi and Nepusz, 2006), that were analyzed with respect to four measures repre-

senting different aspects of network architecture: (i) cumulative degree distribution, (ii) mean hub score (Kleinberg hub centrality

score), (iii) fraction of unconnected clusters and nodes and (iv) percent of sequences in the largest connected component. An

LD = 1 network was constructed for each repertoire and the similarity between the repertoires’ resulting network was evaluated

with respect to their differences in the cumulative degree distribution, mean hub-score, outlier sequence occurrence, and

largest network components; these metrics have been shown to be defining repertoire characteristics that are robust to

subsampling (Miho et al., 2019). The similarity of the architecture between two repertoires A and B was calculated as the

mean of four components: (i) the cumulative degree distribution (Pearson correlation between repertoires), (ii) mean hub scores

ð1 � jMeanHubScoreA � jMeanHubScoreBÞ, (iii) the fraction of unconnected components, and (iv) the fraction of sequences in

the largest component ð1 � jPercLargestComponentsA � PercLargestComponentsBjÞ. Unlike many of the other features, the

network feature combines multiple single measures, which rendered it difficult to perform Pearson correlation analysis involving

all four investigated network measures. Therefore, we adopted the network feature comparison approach described above.

immuneREF feature: Repertoire overlap (convergence)
The pairwise repertoire clonal overlap (clones defined based on 100% similarity of CDR3 amino acid sequence), was calculated

across repertoires, as previously described (Greiff et al., 2017b):

overlap ðX;YÞ =
jXXY j

minðjXj; jY jÞ3 100 where X = repertoire X;Y = Repertoire Y

This clonal sequence overlap measure represents the similarity value between repertoires with respect to clonal convergence.

immuneREF feature: Germline gene diversity
The relative frequency of germline genes (defined by the ImmunoGenetics Database, IMGT) (Giudicelli et al., 2004) across clones in

each repertoire was calculated for each repertoire depending on species and immune receptor class (Ig, TR). The germline gene us-

age allows insight into deviations from a baseline recombinational likelihood and thereby captures the potential impact of disease,

vaccine, or other events on the immune state (Avnir et al., 2016; Greiff et al., 2017a). To determine germline gene usage similarities,

we examined the V- and J-gene frequencies across clones for each individual. The Pearson correlation coefficient was determined

for each of the frequency vectors (V-, D-, J-gene) with entries of all IMGT variants in a pairwise fashion between samples as described

previously (Greiff et al., 2017a; Weber et al., 2019). Specifically, the correlations are calculated per germline gene, leading to

separate V_cor, D_cor, J_cor values (and additionally VJ_cor for each V_J combination). The resulting correlation values are com-

bined into a single value by calculating a weighted mean of these components. The weight vector used for the results in the manu-

script is c(V = 1,D = 1,J = 1,VJ = 0).

immuneREF feature: Gapped k-mer occurrence
For a given k-mer size k and maximal gap lengthm, the nucleotide-based gapped-pair-k-mer occurrences were counted for all gap

sizes%m (Palme et al., 2015). The parameters k andmwere chosen based on previous research (Greiff et al., 2017b), where defining

parameters k = 3, m% 3 was shown to lead to an encoding sufficient for sequence classification. The counts were normalized by the

total number of gapped k-mers found across all gap sizes such that short-gap gapped-k-mers were weighted higher than larger gap

sizes. While the amino acid frequency distribution contains positional information, the gapped k-mer occurrence represents short-

and long-range sequential information encoded in the repertoire. We counted the occurrence of gapped k-mers (k = 3, m% 3) across
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all CDR3 sequences of a repertoire and correlated the resulting distributions between repertoire pairs using Pearson correlation as

described previously (Weber et al., 2019).

immuneREF feature: Transcriptome integration
In order to keep the most informative genes from the genes obtained in a transcriptome experiment, immuneREF firstly applies a low

variation filter (Hackstadt and Hess, 2009). Specifically, the standard deviation (SD) is calculated per gene across samples, and all

genes above a certain threshold (default, SD > 1) are preserved for subsequent analysis.

To construct the gene expression feature similarity matrix, the Pearson correlation was calculated between samples. Additional

approaches for the calculation of the gene expression feature similarity matrix implemented in the immuneREF package (mutual

rank, PCA) are described in the package documentation.

Calculating repertoire similarities per feature
The calculation of the similarity values between a pair of repertoires was performed in a feature-specific manner as described in the

methods section of each feature.

Repertoire similarity – Condensing features into a composite network
The single features are condensed into a multi-feature network by taking the mean of all single-feature similarity values resulting in a

single repertoire similarity value. The resulting condensed network represents a weighted composite of the single-feature similarity

networks. Additional approaches to obtain a composite network (max similarity, min similarity, SNF (Wang et al., 2014)) are imple-

mented in the R-package as described in the package documentation.

Mutual information
Mutual information is a measure that quantifies to what extent one random variable explains another. Mutual information was

defined as

IðX;YÞ = HðXÞ � HðXjYÞ =
X

x;y

PXYðx; yÞlog PXYðx; yÞ
PxðxÞPyðyÞ

Where, H(X) is the marginal entropy, H(X|Y) the conditional entropy PXY the joint probability distribution of X and Y and PX and PY the

respective marginals. Mutual information was calculated using the R packages entropy (v.1.2.1, Hausser, 2014) and infotheo (v.1.2.0,

Meyer, 2014). The values were normalized to the range [0,1] by dividing themutual information by the sum of the entropies H(X)+H(Y).

This normalizedmutual information, also known as redundancy, is zero when both are independent andmaximal when knowledge of

one of the variables becomes redundant given the other.

Quantification of mutual information across ensembles of repertoire features
The mutual information between two features was calculated across all values in the similarity matrix, whereas the similarity matrix

represents all pairwise similarity values between repertoires for a given feature. For the V(D)J diversity feature, values were set to zero

by definition (i.e., the similarity between repertoires of different species/receptors) and were excluded from this calculation.

We ensembled immune information captured by the repertoire features (Figure 2) as the extent to which repertoire features collec-

tively cover immune repertoire complexity. Specifically, we evaluated the change in mutual information between subsequently

added features. Features were added one by one (1-feature network/ 2-feature network, 2-feature network/ 3-feature network,

and so forth, where n-feature means n features combined into a composite network), with the next feature to be chosen randomly

(500 permutations of feature combinations per ‘‘n-features / n+1-feature’’ step).

Local repertoire similarity
To determine a single value measure for how connected a repertoire is within a subgraph (e.g. the repertoires of healthy human IgH

repertoires and the similarity values between them), we defined the local similarity measure. It is calculated by dividing the node

strength of each repertoire within a subgraph (sum of all edge weights connecting it to the other nodes in the subgraph) by the

sum of all node strengths in the subgraph.

Local similarity gives the ratio of node strength that is connected to each repertoire in a subgraph and thus allows the identification

of the most and least representative node of any category (the one most and least strongly connected within that category, respec-

tively, see Figure 2C). The local similarity is dependent on the number of nodes within the subgraph and is therefore only used to

compare repertoires within the subgraph. To enable comparison of local similarity values across different subgraphs, local similarity

can be scaled by dividing by the number of nodes in the subgraph to correct for varying subgraph sizes in cases where the number of

repertoires per subgraph differs.
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Simulation of adaptive immune receptor repertoires representing ground truth data
We simulated 200 immune repertoire datasets where we controlled 40 parameter combinations over multiple replicates, thus allow-

ing us to generate datasets where there is ground truth. Simulated repertoires were generated by the immuneSIM framework (R

package) (v.0.8.7, Weber et al., 2019). Each simulated repertoire contained 120000 sequences and varied with respect to species

(mouse, human), receptor (BCR, TCR), germline gene distribution, clone count distribution, the occurrence of N1, N2 insertions

and deletions in V, D, and J genes. Additionally, a subset of repertoires was modified post-simulation: in order to simulate motif

occurrence, the motifs "YAY" ("tacgcctac") and "YVY" ("tacgtctac") were implanted with a probability of 2.5% each at a random po-

sition in the complementarity determining region (CDR3). To create repertoires with variation in sequence similarity network architec-

ture, the top 5% sequences with the highest hub scores in a given repertoire were removed. In order to evaluate the sensitivity of the

gapped k-mer occurrence feature, repertoires that differ in nucleotide composition, while retaining amino acid composition, were

generated by introducing synonymous codons (‘‘tat’’/ ’’tac’’ for Tyrosine, ‘‘agt’’/ "agc" for Serine and ’’gtt’’ / ‘‘gtg’’ for Valine)

in 50% of VDJ sequences. Finally, the simulated and modified repertoires were subsampled to 100000 sequences to ensure equal

dataset size. The simulation parameters and their expected impact on each feature are summarized in Table S1.

Immune repertoire sequencing datasets
We conducted our analysis on 20408 deep sequencing immune repertoires collected from four different studies: (i) a mouse immu-

nization study of BCRs (flow cytometry-sorted B cells from different tissues: naive B cells from spleen (IgM), pre B cells (IgM) and IgG

plasma cells from bone marrow, RNA-based high-throughput sequencing, preprocessed with MiXCR (Bolotin et al., 2015), for more

details, please see (Greiff et al., 2017a)), (ii) a study of human TCRb repertoires and signatures of cytomegalovirus, DNA-based high-

throughput sequencing (CMV+/�, unsorted PBMC) (Emerson et al., 2017), (iii) a study of TCR repertoires of patients recovered from

mild cases of Covid-19 (Minervina et al., 2021) and (iv) the PanImmune repertoire database (PIRD, unsorted PBMC, preprocessed

with iMonitor) (Zhang et al., 2019) (see Table S2). All sequences with stop codons were excluded and the naming of columns and

V,D,J calls was standardized according to AIRR-community standards (Rubelt et al., 2017). When larger, each dataset was sub-

sampled to 100000 sequences (top clones by descending clonal frequency). Quality and read statisticsmay be found in the respective

publications.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was performed using R 3.6.1 (R Core Team, 2013). Graphics were generated using the R packages ggplot2 v3.2.1

(Wickham, 2009), ggbeeswarm v0.6.0 (Clarke and Sherrill-Mix, 2017), RColorBrewer v1.1-2 (Neuwirth, 2014), ComplexHeatmap

v2.2.0 (heatmaps) (Gu, 2015), igraph v1.2.4.2 (network plots) (Csardi and Nepusz, 2006), ggiraphExtra v.0.2.9 (radar plots) (Moon,

2018), GGally v1.4.0 (parallel plots) (Schloerke et al., 2018). Parallel computing immuneREF analysis was performed using the R

packages foreach v1.4.7 (Folashade et al., 2019a) and doMC v1.3.6 (Folashade et al., 2019b). Figure 1 was created using

Biorender.com.
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