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Abstract

Motivation: Gene co-expression measurements are widely used in computational biology to identify coordinated expression patterns across a
group of samples. Coordinated expression of genes may indicate that they are controlled by the same transcriptional regulatory program, or involved
in common biological processes. Gene co-expression is generally estimated from RNA-Sequencing data, which are commonly normalized to remove
technical variability. Here, we demonstrate that certain normalization methods, in particular quantile-based methods, can introduce false-positive
associations between genes. These false-positive associations can consequently hamper downstream co-expression network analysis.
Quantile-based normalization can, however, be extremely powerful. In particular, when preprocessing large-scale heterogeneous data,
quantile-based normalization methods such as smooth quantile normalization can be applied to remove technical variability while maintaining global
differences in expression for samples with different biological attributes.

Results: We developed SNAIL (Smooth-quantile Normalization Adaptation for the Inference of co-expression Links), a normalization method
based on smooth quantile normalization specifically designed for modeling of co-expression measurements. We show that SNAIL avoids forma-
tion of false-positive associations in co-expression as well as in downstream network analyses. Using SNAIL, one can avoid arbitrary gene filter-
ing and retain associations to genes that only express in small subgroups of samples. This highlights the method'’s potential future impact on net-
work modeling and other association-based approaches in large-scale heterogeneous data.

Availability and implementation: The implementation of the SNAIL algorithm and code to reproduce the analyses described in this work can be
found in the GitHub repository https://github.com/kuijjerlab/PySNAIL.

Most commonly, co-expressed genes are identified using
Pearson correlation, Spearman correlation (Langfelder and
Horvath 2008), or mutual information (Meyer et al. 2007,
Lachmann et al. 2016). Another popular approach is to con-
struct regression models that predict the expression of one
gene based on the expression of all other genes or potential
regulators, and then apply variable selection to identify de-
pendencies between genes (Irrthum ez al. 2010, Haury et al.
2012). Both types of approaches aim to identify associations

1 Introduction

Understanding the cell’s regulatory machinery can provide
relevant insights into healthy tissues as well as human diseases
(Boyle et al. 2017, Sonawane et al. 2017). While certain ex-
perimental techniques, including chromatin immunoprecipita-
tion sequencing (ChIP-Seq), can map interactions made by
regulatory elements, it is challenging to directly observe the
combined effect of multiple regulators in a systematic way.
Previous studies have shown that genes undergoing similar

regulatory processes tend to have coordinated expression,
also called “co-expression,” across samples (Marco et al.
2009, Gu et al. 2011, Guo et al. 2016). Therefore, estimates
of gene co-expression are commonly used to infer associations
between genes. Gene co-expression can also be used in combi-
nation with other molecular data to improve the detection of
regulatory interactions (Glass et al. 2013, Nicolle et al. 20135,
Petralia e al. 20135, Reiss et al. 2015, Kuijjer et al. 2020).

between genes based on their coordinated expression levels
across all samples in a dataset. Therefore, as with standard
gene expression analysis, it is essential to preprocess the ex-
pression data that is used as input for co-expression analysis
(Silverman et al. 2020).

To correct for technical variability across samples, various
RNA-Sequencing (RNA-Seq) normalization methods have
been developed (Anders and Huber 2010, Robinson and

Received: 1 November 2022; Revised: 5 August 2023; Editorial Decision: 23 September 2023; Accepted: 5 October 2023

© The Author(s) 2023. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

20z AINF 2| U0 Josn apunxjueld a.1ejnosjoly INNIsU| ¥eaulolqig Ag Z#GS62Z.2/0 L 9PEIG/0 L/6E/RI0IE/SOEULIOJUIOIC/WOS"dNO DlWapED.//:SA)Y WO PaPEojuMOQ


https://orcid.org/0000-0003-3054-1409
https://orcid.org/0000-0003-1317-7422
https://orcid.org/0000-0002-4959-1409
https://orcid.org/0000-0001-6280-3130
https://github.com/kuijjerlab/PySNAIL

Oshlack 2010). Since biological and technical variability can-
not be distinguished in RNA-Seq data, algorithmic modeling
is required to infer technical variability and correct the read
counts for the latter. Most normalization methods correct for
technical variability using global properties (statistics that
consider every sample). For instance, relative log
expression (RLE) normalization, as used in DESeq, computes
the median ratio of gene counts relative to the geometric
mean across all samples (Anders and Huber 2010). Without
providing information on what specific biological group a
sample belongs to, global shifts in gene expression caused by
biological differences may be removed during the normaliza-
tion process (Evans ez al. 2018). To address this issue, a quan-
tile normalization-based method was recently developed that
utilizes the information of the experimental design provided
by the user to categorize samples into one or more biologi-
cally meaningful groups. Both group-specific and global prop-
erties of the expression distribution are then used to correct
for technical variability. This method, called smooth quantile
normalization, or gsmooth, yields better preservation of
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global shifts in expression as well as adequate control over
the variability between distributions within groups (Hicks
et al. 2018). While gsmooth was only recently developed, it
has already been used in several analyses with large heteroge-
neous RNA-Seq datasets (Sonawane et al. 2017, Tosti et al.
2018, Anderson et al. 2019, Zhao et al. 2021).

Here, we show that quantile-based normalization methods,
and in particular smooth quantile normalization, can intro-
duce false-positive associations between genes. We found that
this can particularly occur in datasets that have large differen-
ces in the library size across samples. To correct for these
false-positives, we developed SNAIL, or Smooth-quantile
Normalization Adaptation for the Inference of co-expression
Links. SNAIL is a modified implementation of smooth quan-
tile normalization which uses a trimmed mean to determine
the quantile distribution and applies median aggregation for
genes with shared read counts (Fig. 1). We analyzed RNA-Seq
data from the Genotype-Tissue Expression (GTEx)
Consortium (Ardlie et al. 2015) to showcase the problem, and
data from the Mouse Encyclopedia of DNA Elements
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Figure 1. Schematic overview of (a) SNAIL and the analyses performed in this work. (b) SNAIL algorithm. SNAIL is based on smooth quantile
normalization but uses the trimmed mean to derive the quantile distribution for all samples as well as for every biological group of samples. In addition,
SNAIL uses the median of the quantiles to normalize the expression for genes with the same read count in one sample.
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(ENCODE) (Stamatoyannopoulos et al. 2012) to validate the
method. We found that SNAIL effectively removes false-
positive associations between genes, without the need to
select an arbitrary threshold or to exclude genes from the
analysis. We anticipate that our method will benefit future
co-expression and regulatory network analyses, in particular
those that involve the analyses of large-scale heterogeneous
RNA-Seq datasets.

2 Materials and methods
2.1 Preparation of GTEx data

We downloaded RNA-Seq count data from the GTEx
Consortium V8 release (Ardlie et al. 2015). We followed the
procedure conducted by Paulson ez al. (2017) to merge tissues
with similar expression profiles. We selected those tissues
previously reported to have the largest number of genes that
deviate the most when comparing the expression in the tissue-
of-interest with the median expression across all tissues—tes-
tis, kidney—cortex, brain—other, breast—mammary tissue,
and whole blood (Sonawane et al. 2017). Note that the
brain—other tissue consists of several merged brain regions,
as described in Paulson et al. (2017). The resulting datasets
consisted of 1575 samples and 55 878 genes. Combined with
the tissue information (biosample_name) in the meta data, we
then used the Bioconductor package gsmooth (version 1.4.0)
(Hicks et al. 2018) to perform smooth quantile normalization,
using tissue as the user-defined “sample group” for calculat-
ing the group reference distributions (see Section 3.1 for a
more detailed explanation of smooth quantile normalization).
Finally, we applied our SNAIL method to the same dataset,
again using tissue as the user-defined “sample group.”

2.2 Preparation of ENCODE data

For the validation datasets, we downloaded bulk polyA plus
RNA-seq count data consisting of twelve tissues (embryonic
facial prominence, forebrain, beart, hindbrain, intestine, kid-
ney, limb, liver, lung, midbrain, neural tube, stomach) from
the Mouse ENCODE database using the Bioconductor pack-
age ENCODExplorer (version 2.14.0, download date
September 11, 2020) (Beauparlant ez al. 2015). Among all the
available experiments, we extracted those for which External
RNA Controls Consortium (ERCC)-only spike-ins (accession:
ENCSR884LPM) information was available. The resulting
datasets consisted of 126 samples and 43 346 genes.

To establish the validation dataset, we normalized the read
counts by the expression of 96 spike-in genes (Supplementary
Section S4). Similar to the preparation of GTEx dataset
(Section 2.1), we used both gsmooth and SNAIL to perform
normalization on the original count data. The corresponding
tissue information of each sample (SMTSD) was then used as
the “sample group” for tissue-aware normalization.

2.3 Definition of tissue exclusive genes

For both the GTEx and ENCODE datasets, we extracted the
genes that were exclusively expressed in one tissue, denoted as
tissue-exclusive genes. We define tissue-exclusivity using the
following two criteria: (i) the median ground truth expression
of the gene is higher than or equal to 10 across all samples
from the tissue of interest, and (ii) the median ground truth
expression is lower than or equal to 1 across samples from all
other tissues. Note that we used these criteria to facilitate the

visualization of the problem. We did not look into the biologi-
cal role of these genes in this study.

To showcase the false-positive associations introduced by
smooth quantile normalization, we compared the Spearman’s
rank correlation coefficients for these tissue-exclusive genes
based on gsmooth-normalized and SNAIL-normalized expres-
sion levels. Since the number of tissue-exclusive genes varies
drastically across different tissues, when visualizing the issue
we only retained tissue-exclusive genes of tissues with 5-1000
tissue-exclusive genes; genes exclusively expressed in testis for
the GTEx dataset, and embryonic facial prominence, limb,
neural tube, and forebrain for the ENCODE dataset were
thus excluded from the visualization. Note that the exclusion
of these genes is not required when applying SNAIL. The
numbers of tissue-exclusive genes for the two datasets are
shown in Supplementary Section S5.

2.4 Evaluation of the SNAIL method

To evaluate the performance of SNAIL, we applied two differ-
ent strategies to the data obtained from GTEx and from
ENCODE. For the GTEx dataset, we defined two genes to be
associated if (i) the two genes were both expressed exclusively
in the same tissue or if (ii) the two genes shared the same func-
tional annotation. To extract the functional annotation of
each gene, we used the get functional annotation function
provided in the stringdb package (Szklarczyk et al. 2019).
Including this information allowed us to identify false-positive
associations between genes when no validation data is
present.

For the ENCODE dataset, we defined two genes to be asso-
ciated when the absolute value of their Spearman’s rank cor-
relation coefficient, based on the ground truth expression,
was higher than or equal to a specific value, ranging from 0.2
to 0.8. This allowed us to evaluate the performance of SNAIL
under different strengths of ground truth associations be-
tween genes.

2.5 Downstream network analyses

We performed three downstream co-expression network anal-
yses to evaluate whether the false-positive associations can
propagate through downstream network analysis.

First, we performed network comparisons on sample-
specific networks. We constructed sample-specific networks
using Bioconductor package lionessR (version 1.2.0-0)
(Kuijjer et al. 2019a) with Spearman’s rank correlation coeffi-
cients as the network reconstruction function. lionessR is
based on the LIONESS algorithm (Kuijjer et al. 2019b), which
assumes that edges estimated in an “aggregate” network
model are a linear combination of edges specific to each of the
input samples. This allows for the estimation of individual
sample edge weights using a linear equation. These edge
weights can then be used for sample-specific network analysis,
as done previously (Lopes-Ramos ez al. 2018, 2020, 2021).
We modeled these networks with the gsmooth-normalized ex-
pression data as input, as well as based on the SNAIL-
normalized expression data, so that we had two collections
of networks that we could compare. We then used the
Bioconductor package limma (version 3.44.1) (Ritchie et al.
2015) to identify significant differences in the distributions of
edge weights across the constructed sample-specific networks
versus the ground truth co-expression networks. Note that,
although the standard application of limma is to test for
differential expression, the authors of the method suggest
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that limma’s linear modeling strategy can be used for other
applications beyond gene expression. Here, we performed dif-
ferential edge analysis and posterior variance estimation
based on the sample groups using the function Imfir and
eBayes from the limma package.

Next, we performed hub gene identification on networks
representing each tissue. To explore this, we followed the pro-
cedure described in Lopes-Ramos et al. (2021) to aggregate
sample-specific networks inferred with the LIONESS algo-
rithm into tissue-specific networks. The hub score of each
gene in these networks was then computed using the HITS
algorithm (Kleinberg 1999) using the hits function provided
in networkx package (Hagberg et al. 2008).

Lastly, we performed gene function prediction based on the
co-expression values, following the procedure presented in
Hew et al. (2020). To evaluate whether multiple functions of
genes can be correctly predicted, we made an adaptation that
uses the Jaccard Index instead of the F1 score. We predicted
two genes to be associated if the Spearman’s rank correlation
coefficient between them was higher than or equal to a spe-
cific value, ranging from 0.1 to 0.8. Thereafter, we predicted
the function of tissue-exclusive genes if more than a specific
proportion (ranging from 0.01 to 0.4) of the co-expressed
genes shared the same functional annotation obtained from
KEGG pathways (Kanehisa et al. 2016).

Note that for the above-mentioned analyses, we excluded
1848 tissue-exclusive genes for GTEx and one tissue-exclusive
gene for ENCODE that had either zero or multiple gene sym-
bol annotations, based on the annotation obtained with the
Biomart.query function provided by GSEApy package (ver-
sion 1.0.4) (Durinck et al. 2009).

2.6 Code availability

The implementation of the SNAIL algorithm and all of the
analyses conducted in this study can be reproduced using the
Snakemake workflow management system (Molder et al.
2021) from the GitHub repository https://github.com/kuijjer
lab/PySNALL.

3 Results

3.1 Quantile-based normalization methods can
introduce false-positive associations in large-scale
heterogeneous datasets

In this section, we demonstrate how quantile-based normali-
zation—and in particular smooth quantile normalization can
introduce false-positive associations between genes. To do so,
we will present a case study on co-expression analysis for
genes that are exclusively expressed in a specific tissue. We
used RNA-Seq data from the Genotype Tissue Expression
(GTEx) project (Ardlie et al. 2015) and selected the tissues
with high levels of tissue-specific gene expression (see Section
2.3). We performed smooth quantile normalization to remove
the technical variability presented in the dataset, while pre-
serving the global expression differences between the different
tissues. Next, we extracted the tissue-exclusive genes for each
tissue (see Section 2.3) and performed co-expression analysis
using Spearman’s rank correlation coefficient (p).

We expect to observe co-expression between pairs of genes
that are both expressed in the same tissue, but not between
pairs of genes, each of which is exclusively expressed in
a different tissue. However, while we do observe high
co-expression levels between tissue-exclusive genes in the
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same tissue, we also observe relatively high levels of
co-expression between pairs of genes that are exclusively
expressed in different tissues. In particular, we observe such
associations between whole blood, lymphoblastoid cell lines
(LCL) and liver (Fig. 2a).

To understand how these false-positive associations arise,
we dissected both quantile normalization (Supplementary
Sections S1 and S2) and the smooth quantile normalization al-
gorithm as it is implemented in the Bioconductor package
gsmooth (Hicks et al. 2018). We found that this problem is
more prone to arise with smooth quantile normalization.
Therefore, we focus on this methodology in the remainder of
this manuscript.

Qsmooth computes the average expression level in each
quantile, considering only the samples within a given user-
defined group—the group reference distribution—as well as
the average expression level in each quantile, considering all
samples—the background reference distribution. The method
then estimates the empirical reference distribution to be the
weighted average of the background reference distribution
and the group reference distribution, where the weight coeffi-
cient is computed based on the proportion of explained vari-
ability in the group quantile distribution. Since gsmooth uses
the average to derive the quantile distributions, the values cor-
responding to small quantiles can be nonzero, despite the fact
that most of the values that those quantiles are based on are
zeros (see also Supplementary Sections S1 and S2).

Another important detail of gsmooth is the ranking method
used to process genes that have the same read count (tied
counts) in each sample. The quantiles corresponding to these
genes are dependent on the number of genes that have the
same read count in that specific sample (Supplementary
Sections S1 and S2). Therefore, even if a gene would have the
exact same read count in two different samples, the corre-
sponding quantiles can be drastically different. Especially for
zero-inflated RNA-Seq data in heterogeneous datasets that
have large differences between the smallest and the largest
number of nonexpressed genes across samples, lowly
expressed genes could share the same quantile with nonex-
pressed genes in different samples. As the normalized values
are dependent on the quantiles of the expression distribution
in each sample, this can introduce small technical variability
across samples, which consequently can lead to false-positive
correlation coefficients. This issue is more prevalent between,
for example, genes that are only expressed in a subset of sam-
ples (Supplementary Sections S1 and S2).

3.2 Smooth quantile Normalization Adaptation for
the Inference of co-expression Links

It is important to be able to take advantage of smooth quan-
tile normalization, so that one can explicitly model the biolog-
ical variability and retain global expression differences in
heterogeneous data. However, we also need to ensure the
identified co-expression signals are reliable. This motivated us
to develop SNAIL (Fig. 1), an adaptation of smooth quantile
normalization. Instead of using the average of the observed
quantile distributions, SNAIL uses the trimmed mean (cus-
tomizable; by default SNAIL trims the 15% largest and small-
est values) to infer the heuristic reference quantile
distribution. In addition, when normalizing genes with the
same read count, SNAIL uses median aggregation of the cor-
responding quantiles to substitute the original data with the
normalized values (Supplementary Section S3). As we show
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Figure 2. Spearman’s rank correlation coefficients between tissue-exclusive gene pairs, based on smooth quantile normalized data from GTEx. (a) False-
positive associations are detected in gsmooth-normalized data between tissue-exclusive genes from different tissues, as can be seen in off-diagonal
blocks of expression. (b) SNAIL removes most of these false-positive associations. (c) The receiver operator curve and (d) precision-recall curve, where
the ground truth association between genes is defined by whether the genes share the same functional annotation in the STRING database.

below, these adaptations drastically reduce the formation of
false-positive associations.

Aside from the above-mentioned adaptation, we imple-
mented a diagnostic function that computes the proportion of
affected genes for each sample. This utility can help detect
whether regular smooth quantile normalization would intro-
duce false-positive associations between genes in a specific
dataset (Supplementary Section S1).

3.3 SNAIL reduces false-positive associations

We applied SNAIL to normalize gene expression levels in the
GTEx data and repeated the co-expression analysis described
above using the same set of genes and tissues (see also Section
2.4). Comparing the Spearman’s rank correlation coefficients
obtained in the gsmooth- and SNAIL-normalized data, we
found that SNAIL is capable of removing false-positive associa-
tions, while modeling tissue-exclusive biological variability

similarly to smooth quantile normalization (Fig. 2a and b).
With the above-mentioned threshold of p= 0.3 to define
co-expression, SNAIL reduces the number of such false-positive
associations from 3442 (8.6%) to 231 (0.58%). Note that the
threshold to define co-expression based on the Bonferroni-
adjusted P-value is 0.117 in this case (the adjusted P-value for
each gene pair is shown in Supplementary Section S6).

After normalizing the data with SNAIL, we found that
some associations remained between genes that were exclu-
sively expressed in different tissues, including genes exclu-
sively expressed in LCL and whole blood, LCL and liver, and
LCL and cerebellum. We cautiously conclude that these asso-
ciations are not introduced by smooth quantile-based normal-
ization, but are present because of our definition of tissue
exclusivity, as we observed similar results for the nonnormal-
ized count data. Next, we defined ground truth association
between genes if two genes shared the same functional
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annotation in the STRING database. This allowed us to iden-
tify false-positive associations without the spike-in validation
dataset. This experiment shows that SNAIL normalization
yields higher precision compared to normalization with
gsmooth (Fig. 2c and d).

To better quantify the capability of SNAIL to reduce these
false-positive associations under different strengths of ground
truth associations, we applied the normalization method to
RNA-Seq data from the Mouse ENCODE database, which
includes spike-ins (Section 2.2). We used the expression of
spike-in genes to normalize the read count (Supplementary
Section S4), creating the ground truth expression dataset.
Comparing Spearman’s rank correlation coefficients obtained
with gsmooth and SNAIL with those derived from the ground
truth expression dataset for each gene pair, we observed that
the root mean square error (RMSE) between the correlation
coefficients decreases from 0.03856 to 0.01516 after applying
SNAIL.

We next conducted receiver—operator curve and precision—
recall curve analyses and reported the area under the two
curves. We found that SNAIL can reduce the false-discovery
rate in co-expression analysis, regardless of the strength of the
correlation signal (Fig. 3). Note that when the true association
is more strictly defined (correlation coefficient above 0.7), the
small number of positive associations (<30 positive associa-
tions) causes a fluctuation in the AUPRC. In addition, we
evaluated different cutoffs for the trimmed mean used in
SNAIL, and found that its performance is consistent across
different cutoff values (Supplementary Section S7).

In addition to these analyses, we compared SNAIL’s perfor-
mance to that of other commonly used normalization meth-
ods, such as RLE and transcripts per million (TMM)
(Supplementary Section S8). Compared to gsmooth, SNAIL
effectively removes false-positive associations while reaching
a similar performance in detecting correct associations be-
tween genes as RLE and TMM (Supplementary Fig. S8). Note
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however that the performance of these methods cannot be
directly compared since SNAIL and smooth quantile normali-
zation explicitly model the global differences across different
biological groups and show better control for the variability
between distributions within groups (Supplementary Fig. S9).
The comparisons we made here aim to showcase the limita-
tion of the original implementation of smooth quantile nor-
malization when normalizing data to be used in correlation
analyses.

3.4 SNAIL improves downstream network analyses

We next wanted to evaluate whether the false-positive associ-
ations introduced by quantile-normalized methods also affect
downstream network analysis. We first built sample-specific
networks using the LIONESS algorithm (Section 2.5). Then,
we compared the distribution of edge weights across all
sample-specific networks constructed on ground truth
co-expression to the distribution of edge weights from the
co-expression networks constructed on (i) gsmooth- and on
(ii) SNAIL-normalized expression, using a #-test for each gene
pair independently. Figure 4 shows that the false-positive
associations propagate through downstream network analy-
sis, creating 1871 false-positive edges from a total of 3828 po-
tential edges between genes exclusively expressed in different
tissues. In SNAIL-normalized data, no edge weight signifi-
cantly differs from the network built on the ground truth ex-
pression (FDRadjusted P-value < 0.03, Fig. 4a and 4b).

Since the LIONESS algorithm applied to Spearman’s rank
correlation coefficient computes the contribution of the associa-
tion of each gene pair to the background network model, we
expect the tissue-exclusive genes would be the main contribut-
ing factor to the network modeled for a specific tissue. This
can be confirmed by the validation dataset from ENCODE
(Fig. 4c). The majority of hub scores for tissue-exclusive genes
from the networks constructed on SNAIL-normalized data are
higher than the ones constructed on gsmooth-normalized data
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Figure 3. SNAIL can effectively reduce the number of false-positive associations in co-expression analysis. The x-axis denotes the threshold of absolute
Spearman’s rank correlation coefficient based on ground truth expression that defines true associations between genes, while the y-axis corresponds to
the area under the receiver operator curve (AUROC, panel a) and precision—-recall curve (AUPRC, panel b). The vertical dashed line indicates the threshold
of a significant association based on the Bonferroni adjusted P-value (0.379). AUC* specified in the legend indicates the area under the curve using that

threshold of significant association.
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Figure 4. Evaluation of downstream network analyses of ENCODE dataset. (a) The proportion of incorrect edges of each gene in the sample-specific
networks. (b) Log-transformed fold changes on the mean value (computed across sample-specific networks) of the edge weights comparing the network
constructed on ground truth expression with the networks. (c) Hub scores of tissue-exclusive genes in the tissue-specific networks, where each point
represents a gene, and the genes exclusively expressed in the corresponding tissue are colored.

(Fig. 4c, Supplementary Section S9). The scores obtained
with SNAIL are close to those obtained from the networks con-
structed on the validation dataset (RMSE: 0.018). These results
show that SNAIL-normalized gene expression can preserve bio-
logical signals in downstream network analysis.

Lastly, we performed gene function prediction based on
gene co-expression, following a previously published proce-
dure [Hew et al. (2020), see Section 2.5]. We found that
SNAIL outperforms gsmooth, resulting in a higher average
Jaccard index between the ground truth and the predicted
gene function (Fig. 5). Note that function prediction of tissue-
exclusive genes based on gsmooth improves when a stricter
threshold is applied to define the association between genes
(Spearman’s correlation coefficients > 0.8). This indicates
that the false-positive associations introduced by gsmooth are
detrimental to gene function prediction. However, some asso-
ciations between genes that share similar functions are pre-
served if there is a strong association.

4 Discussion

Here, we showed that the application of quantile-based nor-
malization approaches, and specifically, smooth quantile nor-
malization, to RNA-Seq data can introduce false-positive
associations between genes, and that this can propagate to
and affect downstream network analyses. We found that

false-positive associations particularly arise when there is a
large difference between the smallest and the largest number
of nonexpressed genes across the samples in the dataset. This
can, for example, occur when dealing with RNA-Seq datasets
collected from large-scale projects that include heterogeneous
data. For instance, data from The Cancer Genome Atlas
(Weinstein et al. 2013), ENCODE, and GTEx, which have
previously been used by various groups to conduct co-
expression, or co-expression-based, network analysis (Ardlie
et al. 2015, Pierson et al. 2015, Saha et al. 2017, Sonawane
et al. 2017, Lopes-Ramos et al. 2020).

A frequently applied strategy that attempts to remove po-
tential false-positive associations is filtering out genes with
low read counts across a certain number of samples.
However, thresholds used for filtering are often chosen arbi-
trarily, and can remove genes that are specifically expressed in
a subset of samples, such as the tissue-exclusive genes that we
described in our example network analysis in GTEx data.
Therefore, arbitrary filtering is not ideal if one aims to com-
pare gene associations or networks derived from different
subgroups of samples. Moreover, it would be ideal to include
all genes in large-scale network analysis, as certain network
reconstruction algorithms make use of the entire distribution
of gene expression and thus filtering out genes may remove
some signal from the input dataset (Glass ez al. 2013).
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Figure 5. Evaluation of gene prediction using co-expression on (a) GTEx Qsmooth, (b) GTEx SNAIL, (c) ENCODE Qsmooth, and (d) ENCODE SNAIL
normalized expression. The heatmaps indicate the Jaccard index of the predicted gene function based on different Spearman’s correlation thresholds and
proportions of co-expressed genes that shared the same functional annotation.

SNAIL retains global expression differences in heteroge-
neous datasets through the use of both group-specific and
global properties. This allows direct comparison of networks
modeled on heterogeneous datasets. Note that SNAIL
requires information on the biological group samples belong
to, and therefore is not applicable to samples without annota-
tion. In addition, as SNAIL uses the trimmed mean to infer
the quantile distribution, the latter may not be inferred cor-
rectly if the number of samples in biological groups is limited.
We therefore recommend applying SNAIL to large heteroge-
neous datasets with a sufficient amount of samples to estimate
the reference quantile distributions for each group based on
the trimmed mean.

We show that SNAIL avoids the formation of false-positive
associations introduced by smooth quantile normalization. By
using the trimmed mean to infer the reference quantile distri-
bution as well as median aggregation for genes with the same
read count, SNAIL avoids the formation of false-positive
associations. Importantly, as the method does not require
gene filtering, it allows for direct comparison of networks
modeled on heterogeneous datasets.

While we specifically focused our examples on modeling
co-expression across different tissues, false-positive

associations can also arise when comparing other biological
conditions that show large differences in expression profiles
under certain experimental settings, such as when comparing
networks for males and females Lopes-Ramos et al. (2020).
We also envision that other methods that are based on corre-
lations, such as eQTL studies, could potentially include
quantile-based normalization-introduced false-positives, and
could benefit from normalization with SNAIL. In general, we
would like to raise awareness of implementing tools designed
for gene expression data in existing correlation-based
approaches or pipelines. Most of the published evaluations of
normalization methods are based on comparing differences
between ground truth and normalized expression levels.
However, the impact of normalization on correlation-based
measures is often neglected.

Heterogeneous datasets with increasing numbers of sam-
ples and conditions will likely be published in the near future,
and new methods for combining data from different studies
(Collado-Torres et al. 2017) will result in the emergence of
even larger and more heterogeneous datasets. As these data-
sets will become available for analysis, we expect SNAIL to
become an important tool that will allow for more precise
analyses of large-scale data with network-based approaches.
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