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DEVELOPMENT

The −KTS splice variant of WT1 is essential for
ovarian determination in mice
Elodie P. Gregoire1, Marie-Cécile De Cian1†, Roberta Migale2†, Aitana Perea-Gomez1,
Sébastien Schaub3, Natividad Bellido-Carreras1, Isabelle Stévant4,5, Chloé Mayère4,5,
Yasmine Neirijnck1, Agnès Loubat1, Paul Rivaud6, Miriam Llorian Sopena2, Simon Lachambre7,
Margot M. Linssen8, Peter Hohenstein8, Robin Lovell-Badge2, Serge Nef4,5, Frédéric Chalmel6,
Andreas Schedl1, Marie-Christine Chaboissier1*

Sex determination in mammals depends on the differentiation of the supporting lineage of the
gonads into Sertoli or pregranulosa cells that govern testis and ovary development, respectively.
Although the Y-linked testis-determining gene Sry has been identified, the ovarian-determining
factor remains unknown. In this study, we identified −KTS, a major, alternatively spliced isoform of
the Wilms tumor suppressor WT1, as a key determinant of female sex determination. Loss of
−KTS variants blocked gonadal differentiation in mice, whereas increased expression, as found in
Frasier syndrome, induced precocious differentiation of ovaries independently of their genetic
sex. In XY embryos, this antagonized Sry expression, resulting in male-to-female sex reversal. Our
results identify −KTS as an ovarian-determining factor and demonstrate that its time of activation is
critical in gonadal sex differentiation.

I
n mice, sex is genetically determined by
the constitution of the sex chromosomes.
This leads to testis or ovary development
inXY andXX embryos, respectively, which,
in turn, influences the sexual development

of the whole individual. Before sex determina-
tion, WNT/b-catenin signaling mediated by
R-spondin1 (RSPO1) contributes to the prolif-
eration of the gonadal progenitors in both
sexes (1). In XY gonads, at around embryonic
day (E) 11.5, RSPO1/WNT/b-catenin is down-
regulated and Sry and its direct target Sox9
are up-regulated in a subset of progenitors
derived from the overlying coelomic epithelium
(2–4). These transcription factors induce Sertoli
cell differentiation. Once differentiated, they
no longer express Sry but express other genes,
including Amh (5–7), and establish the fate
of the testis. In XX gonads, pregranulosa cell
differentiation occurs slightly later, around
E12.0 to 12.5, as shown by their loss of bipo-
tentiality (8–10), the de novo expression of
the transcription factor FOXL2 (11), and the
stabilization of RSPO1/WNT/b-catenin signal-
ing (12, 13). However, the gene(s) initiating

ovarian differentiation have remained un-
known (14).
One of the key factors in the early devel-

opment of the gonad is the Wilms tumor sup-
pressor WT1, a zinc-finger transcriptional
regulator (15). WT1 (human)/Wt1 (mouse)
encodes two major alternative spliced iso-
forms that do or do not include the three
amino acids KTS (lysine, threonine, and serine)
between the two last zinc fingers. These iso-
forms are named +KTS and −KTS, respective-
ly. Whereas −KTS acts as a transcriptional
activator or repressor depending on the cel-
lular context, the insertion of +KTS abrogates
DNA binding and promotes the subnuclear
localization ofWT1 in nuclear speckles (16, 17).
A simple imbalance of the ratio of both iso-
forms in favor of −KTS is the molecular basis
of Frasier syndrome, characterized bymale-to-
female sex reversal (18, 19) associated with the
down-regulation of Sry as evidenced in the
mouse model (20).

Results
Distribution of −KTS transcripts during
gonadal development

To determine the distribution of WT1 splice
variants in E11.5 XYmouse gonads, we carried
out BaseScope in situ hybridizations. Scoring
revealed cellular heterogeneity, with cells con-
taining variable amounts of +KTS or −KTS
transcripts (Fig. 1A and fig. S1A). This obser-
vation was confirmed with single-cell RNA
sequencing (scRNA-seq) analysis of the splice
junction reads obtained from sorted cells dis-
sected from E11.5 mouse gonads (Fig. 1B). Next,
we examined single-cell transcriptomic data of
the supporting cell lineage in both sexes from
E10.5 to E13.5 (8) (Fig. 1C and fig. S1B). Al-
though +KTS exhibited similar mRNA levels

betweenXY andXX gonads at E10.5 and E11.5,
−KTS transcripts were detected in greater
amounts inXY gonads at E11.5 before increasing
in XX gonads at E12.5, time points that coincide
respectively with Sertoli and pregranulosa cell
differentiation.

−KTS is required for the differentiation of the
supporting cells

To address the contribution of −KTS to sex
determination, we revisited the mouse model
of −KTS ablation (−KTS−/−KTS− is denoted as
−KTS KO) that results in gonadal dysgenesis
(20) (fig. S2, A and B).We performed single-cell
transcriptome profiling of wild-type andmutant
gonadal cells collected at around E12.0 (Fig. 1, D
to I, and table S1). Cells were projected in a
two-dimensional (2D) space by using uniform
manifold approximation and projection (UMAP)
and partitioned into 39 clusters (Fig. 1D). Cluster
annotation identified Sertoli and pregranulosa
cells in the controls determined from the ex-
pression of knownmarkers (Fig. 1, E to G, and
fig. S3, A and B); however, these clusters were
not present in −KTS KO gonads (Fig. 1, E to H,
and fig. S3B). Nevertheless, presupporting cells
were observed in −KTSmutants of both sexes,
as revealed by the expression ofRunx1 (mRNA)/
RUNX1 (protein) at E12.0 [fig. S3B, cluster 3
(c3)] and at E12.5 (Fig. 2A and fig. S4). XY−KTS-
deficient gonads exhibited a few scattered cells
expressing SOX9, contrasting with the wide-
spread SOX9-positive Sertoli cells that formed
nascent testis cords in XY controls (Fig. 2B).
Furthermore, XY −KTS-deficient gonads were
devoid of Amh/AMH expression (Fig. 2, C and
D, and fig. S5, A and B) and instead abnor-
mally maintained Rspo1 and SRY at E12.5 and
until birth (fig. S2, C and E, and fig. S5, C and
E). Together, our results indicate that the pre-
supporting cells did not differentiate as bona
fide Sertoli cells in the absence of −KTS. Despite
the significantly reduced expression of Sox9
(P value = 0.0035), the XY −KTS KO pre-
supporting cells failed to differentiate into
pregranulosa cells, as demonstrated by the
almost complete absence of Foxl2/FOXL2 ex-
pression at E12.5 (Fig. 2, B and D, and fig. S3).
Similarly, Foxl2/FOXL2 expression was strongly
reduced in XX −KTS KO gonads, further sup-
porting the importance of −KTS for the differ-
entiation of the pregranulosa lineage and the
activation of the female program (Fig. 2, B and
D, and fig. S3). At around birth, the expression
of Sox9/SOX9 and Foxl2/FOXL2 remained
low in −KTS-deficient gonads of both sexes,
and SOX9/FOXL2 double-positive cells were
detected (fig. S5, F to H), indicating poor dif-
ferentiation of the supporting lineage. Together,
these data demonstrate that −KTS is dispens-
able for the specification of presupporting
cells but is necessary to stabilize Sertoli cell
differentiation and essential to initiate pre-
granulosa cell differentiation.
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Fig. 1. Dynamic distribution of +KTS and −KTS transcripts and single-cell
transcriptomic analysis of −KTS KO and +KTS KO during early mouse-
gonad development. (A) Representative area distribution of −KTS (magenta)
and +KTS (cyan) transcripts from Basescope in situ hybridizations on XY gonad
sections at E11.5 [21 tail somites (ts)] in square micrometers per nucleus
measured with DicHysto protocol. Data from both gonads are representative
of biological and technical duplicates. (B) −KTS and +KTS mRNA ratio in E11.5

(21 ts) XY wild-type individual cells. (C) +KTS and −KTS transcript levels in
single-cell transcriptomic dataset of differentiating supporting cells. RPKM,
reads per kilobase million. (D) UMAP projection of the 75,360 cells colored by
clusters or (E) by associated cell types. (F) Association of cell clusters with
genotypes. (G to I) UMAP projection by genotypes with (G) XY (blue) and XX
wild type (pink); (H) XY (purple) and XX −KTS KO (−KTS−/−KTS−) (brown);
and (I) XY (green) and XX +KTS KO (+KTS−/+KTS−) gonads (orange).
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Absence of +KTS triggers an increase of
−KTS amounts
In patientswith Frasier syndrome, heterozygous
mutations in WT1 prevent the production of
+KTS, resulting in higher amounts of −KTS

variants (18, 19). Given the role of −KTS in
ovarian determination, we investigated the
contribution of this increase to sex reversal in
the +KTS KO (+KTS−/+KTS−) mouse model
(20). At E12.5, XY +KTSmutant gonads were

enriched for RUNX1- and FOXL2-positive pre-
granulosa cells and contained rare Sertoli cells,
as expected for male-to-female sex reversal
(Fig. 3A and fig. S6A). Next, we verified that
−KTS transcripts were twice as abundant in
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Fig. 2. −KTS is necessary for sex differentiation of the supporting cells.
Immunodetection of (A) the presupporting cell marker RUNX1 (magenta) and
the progenitor marker NR2F2 (green) at E12.5 (scale bars, 50 mm), (B) the
Sertoli cell marker SOX9 (green) and pregranulosa cell marker FOXL2 (magenta)
(scale bars, 100 mm and 10 mm, respectively), and (C) SOX9 (green) and

AMH (magenta) (scale bars, 50 mm) in the indicated genotypes. Data for (A) to
(C) are representative of triplicate biological replicates. Nuclei labeled with
4′,6-diamidino-2-phenylindole (DAPI) are shown in white. (D) Quantification of Foxl2,
Sox9, and Amh transcripts after normalization to Gapdh by RT-qPCR. Data are
shown as means ± SEM. −KTS KO denotes −KTS−/−KTS−.
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+KTS KO gonads as in controls (fig. S6B). In
addition, total WT1 protein levels were sim-
ilar in XY +KTS KO and control gonads, con-
firming that absence of +KTS is compensated
with an increase of −KTS isoforms (fig. S6C).

Precocious pregranulosa cell differentiation
prevents Sry activation in the mouse
Frasier model

Sex reversal in +KTS KO embryos is caused by
a failure of Sry activation (20, 21). To deter-

mine if this arises from the lack of +KTS or
from an increase in −KTS variants, we com-
pared the number of SRY-positive cells in +KTS
KO and +KTS KO/D compound embryos, both
ofwhich lack alleles encoding+KTS and contain
two and one allele encoding −KTS, respectively.
The number of SRY-expressing cells was higher
in +KTS KO/D than in XY +KTS KO gonads,
indicating that Sry expression does not require
+KTS but is antagonized by the higher level of
−KTS (Fig. 3B). Furthermore, Rspo1 was abun-

dant in XY +KTS KO gonads at E11.5, a stage
when it is down-regulated in XY gonads, and
Foxl2/FOXL2 expressionwasmarkedly elevated
in XY andXX +KTS KO gonads (Fig. 3, C andD,
and fig. S6E). This suggests precocious pregra-
nulosa cell differentiation irrespective of the
genetic sex.

−KTS is sufficient to induce ovarian development

Single-cell transcriptome profiling of XY and
XX +KTS KO gonads at E12.0 (Fig. 1, D to F,
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Fig. 3. Early pregranulosa cell differentiation occurs in XY and XX +KTS
KO gonads. (A) Immunofluorescence of the Sertoli cell marker SOX9 (green)
and the pregranulosa cell marker FOXL2 (magenta) in indicated genotypes
at E12.5 (n = 4 embryos). Scale bars, 100 mm. (B) Immunostaining of SRY
(green) at E11.5 (21 ± 1 ts) in XY, XY +KTS KO (+KTS−/+KTS−), and XY
compound heterozygotes (+KTS KO/D denotes +KTS−/Wt1−). Scale bars, 50 mm.

Quantification of SRY+ cells normalized to DAPI+ cells labeled in white in the
upper panel. n = 4 embryos, two sections per embryo. Data are shown as
means ± SEM. (C) Immunodetection of the pregranulosa cell marker FOXL2 in
indicated genotypes of triplicate biological replicates at 20 to 21 ts. Scale bars,
50 mm. (D) Relative mRNA expression of Foxl2 normalized to Gapdh at 20
to 21 ts. Data are shown as means ± SEM.
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and I, and fig. S3B) identified two pregranu-
losa cell clusters (c10 and c33) distinct from
those found in XX controls (c5 and c25) and
from XY Sertoli cells (c12). Further compari-
sonof transcriptomesof these clusters confirmed
that E12.0 +KTS KO cells are transcriptionally
related to pregranulosa cells (fig. S7). Next, we

used comparative analysis to identify genes
that are activated or repressed by −KTS in the
context of female sex determination (fig. S8).
In XX −KTS KO presupporting cells, the ex-
pression of 319 genes was significantly deregu-
lated [false discovery rate (FDR)–adjusted
P value ≤ 0.05, data S4]. Pdgfa and Tcf21, re-

ported to be targets of WT1 in other organs
(22, 23), were down-regulated, whereas Igf2—a
direct target of WT1 (24)—and genes highly
expressed in bipotent presupporting cells in-
cluding Sprr2d (25),Wnt6 (26), andNr0b1 (27),
were up-regulated in XX −KTS KO presupport-
ing cells and down-regulated in XX +KTS KO
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Fig. 4. −KTS induces pregranulosa cell differentiation in XY transgenic
gonads. (A) Immunofluorescence of the pregranulosa cell marker FOXL2
(magenta) and WT1 (green) in the indicated genotypes at E12.5. Scale bars,
50 mm. (B) Immunostaining of the Sertoli cell markers SOX9 (green) and
AMH (magenta) in indicated genotypes. Scale bars, 50 mm. (C) Model of

supporting cell differentiation in wild-type and KTS mutant gonads: Absence
of −KTS in −KTS KO gonads promotes the maintenance of Rspo1 transcripts
and impairs SOX9 and FOXL2 expression, leading to gonadal dysgenesis.
Increasing −KTS in +KTS KO gonads results in ovarian differentiation in both
genetic sexes.
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pregranulosa cells, suggesting that they are
repressed by −KTS during sex determination.
Altogether, our data suggested that increased
–KTS, rather than loss of +KTS, was responsi-
ble for XY sex reversal in the +KTS KOmodel.
To test whether −KTS was sufficient to induce
ovarian differentiation in aXYwild-type gonad,
we performed transient additive transgenesis
using a bacterial artificial chromosome (BAC)
construct covering theWt1 locus, in which we
introduced the classical Frasier mutation in in-
tron 9 (interference with +KTS production).
Three out of four XY transgenic animals
showed the presence of FOXL2-positive cells,
indicating that −KTS promotes differentiation
of pregranulosa cells in XY gonads (Fig. 4, A
and B, and fig. S9, A and B). Moreover, reverse
transcription quantitative polymerase chain
reaction (RT-qPCR) analysis of genotypes pro-
ducing different levels of –KTS suggested that
–KTS must reach a threshold to robustly ac-
tivate Foxl2 expression (fig. S9C).
We can conclude that the altered expression

of+KTS caused bymutations in the donor splice
site in intron 9 ofWt1 promotes an increase of
the amount of –KTS,which, in turn, prematurely
activates ovarian differentiation, prevents Sry
up-regulation, and impairs testis development
(Fig. 4C). –KTS thus represents a key actor in
gonad development that is required to initiate
ovarian development.

Discussion

Here, we provide evidence that sex determi-
nation depends not only on the up-regulation
of the sex-determining factors Sry and –KTS
for male and female fates, respectively, but also
on their timing (28–30). This is an important
concept because –KTS is an autosomal factor
expressed in both XY and XX gonads. In wild-
type mice, Sry acts before –KTS, thus securing
testis development in XY gonads. If Sry ex-
pression is impaired or delayed, or if –KTS is
up-regulated prematurely, such as in the Frasier
syndrome model (+KTS KO), the pregranulosa
cell differentiation is accelerated, resulting in
male-to-female sex reversal. After the peak
of SRY action (30), –KTS becomes necessary
to maintain Sertoli cell differentiation in XY
embryos and to initiate pregranulosa cell
differentiation in XX embryos (Fig. 4C). Al-
though differences in timing and dynamics
of sex determination make a direct compari-

son between mouse and human data difficult,
the sex-reversal phenotype in mice carrying
intron 9 mutations suggests that this is a good
mousemodel for the human Frasier syndrome.
Our data thus indicate that increased expres-
sion of –KTS, rather than loss (or reduction)
of +KTS, is the primary cause of sex reversal in
Frasier syndrome. Notably, a change of +KTS/
–KTS ratio in favor of –KTS operates when
the eggs of Chelydra serpentina, a turtle with
temperature-dependent sex determination,
are shifted from amale- to a female-producing
temperature (31). This outcome suggests that
the –KTS isoform of WT1 is also involved in
ovarian determination outside of the mam-
malian class.
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