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Abstract 

Background: We investigated whether we could use influenza data to develop prediction models for COVID‑19 
to increase the speed at which prediction models can reliably be developed and validated early in a pandemic. We 
developed COVID‑19 Estimated Risk (COVER) scores that quantify a patient’s risk of hospital admission with pneumo‑
nia (COVER‑H), hospitalization with pneumonia requiring intensive services or death (COVER‑I), or fatality (COVER‑F) in 
the 30‑days following COVID‑19 diagnosis using historical data from patients with influenza or flu‑like symptoms and 
tested this in COVID‑19 patients.

Methods: We analyzed a federated network of electronic medical records and administrative claims data from 14 
data sources and 6 countries containing data collected on or before 4/27/2020. We used a 2‑step process to develop 
3 scores using historical data from patients with influenza or flu‑like symptoms any time prior to 2020. The first step 
was to create a data‑driven model using LASSO regularized logistic regression, the covariates of which were used to 
develop aggregate covariates for the second step where the COVER scores were developed using a smaller set of 
features. These 3 COVER scores were then externally validated on patients with 1) influenza or flu‑like symptoms and 
2) confirmed or suspected COVID‑19 diagnosis across 5 databases from South Korea, Spain, and the United States. 
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Background
In early 2020 the growing number of infections due to 
the coronavirus disease 2019 (COVID-19) resulted in 
unprecedented pressure on healthcare systems world-
wide and caused many casualties at a global scale. 
Although the majority of people had uncomplicated 
or mild illness (81%), some developed severe disease 
leading to hospitalization and oxygen support (15%) 
or fatality (4%) [1, 2]. This presented a challenge both 
in finding effective treatments as well as in identify-
ing which patients were at high risk and as such would 
benefit from protective measures. The most common 
diagnosis in severe COVID-19 patients was pneumo-
nia, other known complications included acute respira-
tory distress syndrome (ARDS), sepsis, or acute kidney 
injury (AKI) [1].

The WHO Risk Communication Guidance distin-
guished two categories of patients at high risk of severe 
disease: those older than 60 years and those with “under-
lying medical conditions”, which is non-specific [3]. Using 
general criteria to assess the risk of poor outcomes is a 
crude risk discrimination mechanism as entire patient 
groupings are treated homogeneously ignoring individual 
differences. Prediction models can quantify a patient’s 
individual risk and data-driven methods could help to 
identify risk factors that have been previously overlooked. 
However, a systematic review evaluating all available pre-
diction models for COVID-19 [4] concluded that despite 
the large number of prediction models being developed 
for COVID-19, none were considered ready for clinical 
practice. These COVID-19 prediction models were criti-
cized for i) being developed using small data samples, ii) 
lacking external validation, and iii) being poorly reported.

In this article, we describe a process of using a proxy 
disease to develop a prediction model for another 

disease. This can be used in  situations where there is a 
data scarcity for the disease of interest. In this process a 
model is developed using big data from a proxy disease 
and then assessed in the target disease. This preserves all 
the target disease data for validation to provide a more 
robust and reliable assessment of model performance in 
the intended setting. This increases the evidence of the 
performance of a model in the target disease compared 
to if the same data had been used for development. We 
describe a use-case for this process using influenza data 
to develop a model in the early stages of the COVID-19 
pandemic. It has been well documented that influenza 
and COVID-19 have significant differences [5, 6]. How-
ever, we aim to show that influenza data can be used to 
develop a well performing model that could have been 
transported and used in early COVID-19 cases. The 
extensive external validation of the influenza developed 
model in early COVID-19 cases will robustly demon-
strate the performance in COVID-19 patients and show 
areas that need adjustment and the model’s limitations. 
The lessons learned from this study could be used to 
inform the development of early prediction models in 
future pandemics.

Methods
We performed a retrospective cohort study to develop 
COVID-19 prediction models for severe and critical ill-
ness. This study is reported according to the Transparent 
Reporting of a multivariate prediction model for Individ-
ual Prediction or Diagnosis (TRIPOD) guidelines [7].

At the start of the pandemic, there was very limited 
data available to develop prediction models due to the 
novel nature of the disease. To overcome the shortcom-
ing of small data, we investigated whether we could use a 
proxy disease to develop a prediction model. This allowed 

Outcomes included i) hospitalization with pneumonia, ii) hospitalization with pneumonia requiring intensive services 
or death, and iii) death in the 30 days after index date.

Results: Overall, 44,507 COVID‑19 patients were included for model validation. We identified 7 predictors (history of 
cancer, chronic obstructive pulmonary disease, diabetes, heart disease, hypertension, hyperlipidemia, kidney disease) 
which combined with age and sex discriminated which patients would experience any of our three outcomes. The 
models achieved good performance in influenza and COVID‑19 cohorts. For COVID‑19 the AUC ranges were, COVER‑
H: 0.69–0.81, COVER‑I: 0.73–0.91, and COVER‑F: 0.72–0.90. Calibration varied across the validations with some of the 
COVID‑19 validations being less well calibrated than the influenza validations.

Conclusions: This research demonstrated the utility of using a proxy disease to develop a prediction model. The 3 
COVER models with 9‑predictors that were developed using influenza data perform well for COVID‑19 patients for 
predicting hospitalization, intensive services, and fatality. The scores showed good discriminatory performance which 
transferred well to the COVID‑19 population. There was some miscalibration in the COVID‑19 validations, which is 
potentially due to the difference in symptom severity between the two diseases. A possible solution for this is to 
recalibrate the models in each location before use.

Keywords: Patient‑level prediction modelling, COVID‑19, Risk score
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us to utilise all available COVID-19 data for model vali-
dation. We developed models using historical data from 
patients with influenza or flu-like symptoms to assess a 
patient’s individual risk of developing severe or critical 
illness following infection using readily available infor-
mation (i.e. socio-demographics and medical history). 
The developed models were validated against COVID-
19 patients to test whether the performance transferred 
between the two settings.

We developed COVID-19 Estimated Risk (COVER) 
scores to quantify a patient’s risk of hospital admission 
with pneumonia (COVER-H), hospitalization with pneu-
monia requiring intensive services or death (COVER-
I), or fatality (COVER-F) due to COVID-19 using the 
Observational Health Data Sciences and Informatics 
(OHDSI) Patient-Level Prediction framework [8]. The 
research collaboration known as OHDSI has developed 
standards and tools that allow patient-level predic-
tion models to be rapidly developed and externally vali-
dated following accepted best practices [9]. This allows 
us to overcome two shortcomings of previous COVID-
19 prediction papers by reporting according to open 

science standards and implementing widespread external 
validation.

Source of data
This study used observational healthcare databases from 
six different countries. All datasets used in this paper 
were mapped into the Observational Medical Outcomes 
Partnership Common Data Model (OMOP-CDM) [10]. 
The OMOP-CDM was developed for researchers to have 
diverse datasets in a consistent structure and vocabu-
lary. This enables analysis code and software to be shared 
among researchers, which facilitates replication and 
external validation of the prediction models.

The OMOP-CDM datasets used in this paper are listed 
in Table  1. All COVID-19 data was collected prior to 
4/27/2020.

Participants
For model development, we identified patients aged 18 
or older with a general practice (GP), emergency room 
(ER), or outpatient (OP) visit with influenza or flu-like 
symptoms (fever and either cough, shortness of breath, 

Table 1 Data sources formatted to the Observational Medical Outcomes Partnership Common Data Model (OMOP‑CDM) used in this 
research (data type: claims, electronic health/medical records (EHR/EMR), general practitioner (GP))

a Development database

Database Database
Acronym

Country Data type Contains 
COVID-19 
data?

Time period

Columbia University Irving Medical Center Data Warehouse CUIMC United States EMR Yes Influenza: 1990‑2020
COVID‑19: March‑April 2020

Health Insurance and Review Assessment HIRA South Korea Claims Yes COVID‑19:  1st January‑
4th April 2020

The Information System for Research in Primary Care SIDIAP Spain GP and 
hospital 
admission 
EHRs linked

Yes Influenza: 2006‑2017
COVID‑19: March 2020

Tufts Research Data Warehouse TRDW United States EMR Yes Influenza: 2006‑2020
COVID‑19: March 2020

Department of Veterans Affairs VA United States EMR Yes Influenza: 2009‑2010,
2014‑2019
COVID‑19:  1st March‑
20th April

Optum© De‑Identified ClinFormatics® Data Mart  Databasea ClinFormatics United States Claims No 2000‑2018

Ajou University School of Medicine Database AUSOM South Korea EHR No 1996 ‑ 2018

Australian Electronic Practice based Research Network AU‑ePBRN Australia GP and 
hospital 
admission 
EHRs linked

No 2012‑2019

IBM MarketScan® Commercial Database CCAE United States Claims No 2000‑2018

Integrated Primary Care Information IPCI Netherlands GP Yes 2006‑2020

Japan Medical Data Center JMDC Japan Claims No 2005‑2018

IBM MarketScan® Multi‑State Medicaid Database MDCD United States Claims No 2006‑2017

IBM MarketScan® Medicare Supplemental Database MDCR United States Claims No 2000‑2018

Optum© de‑identified Electronic Health Record Dataset Optum EHR United States EHR No 2006‑2018
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myalgia, malaise, or fatigue), at least 365 days of prior 
observation time, and no symptoms in the preceding 
60 days. The initial healthcare provider interaction was 
used as index date, which is the point in time a patient 
enters the cohort.

For validation in COVID-19 we used a cohort of patients 
presenting at an initial healthcare provider interac-
tion with a GP, ER, or OP visit with COVID-19 disease. 
COVID-19 disease was identified by a diagnosis code for 
COVID-19 or a positive test for the SARS-COV-2 virus 
that was recorded after 1/1/2020. We required patients to 
be aged 18 or over, have at least 365 days of observation 
time prior to the index date and no diagnosis of influenza, 
flu-like symptoms, or pneumonia in the preceding 60 days.

Outcome
We investigated three outcomes: 1) hospitalization with 
pneumonia from index up to 30 days after index, 2) hos-
pitalization with pneumonia that required intensive 
services (ventilation, intubation, tracheotomy, or extra-
corporeal membrane oxygenation) or death after hospi-
talization with pneumonia from index up to 30 days after 

index, and 3) death from index up to 30 days after index. 
Note that death is included in the second outcome to 
avoid incorrectly classifying patients who died without 
receiving intensive services as “low risk”.

The analysis code used to construct the participant 
cohorts and outcomes used for development and valida-
tion can be found in the R packages located at: https:// 
github. com/ ohdsi- studi es/ Covid 19Pre dicti onStu dies

Sensitivity analyses
We performed sensitivity analyses which involved using 
different versions of the COVID-19 cohort with vary-
ing sensitivities and specificities. At the beginning of the 
pandemic less testing capacity was available and as such 
we wanted to try broader definitions. Hence, we inves-
tigated three additional definitions where we included 
patients with symptoms, influenza, and visits any time 
prior to 2020. We then performed identical analysis with 
these changed cohorts.

Predictors
We developed a data-driven model using age in groups 
(18–19, 20–25, 26–30, …, 95+), sex, and binary variables 
indicating the presence or absence of recorded conditions 
and drugs any time prior to the index date. Missing records 

are thus effectively imputed as zero, exceptions are age 
and sex, which are always recorded in the OMOP-CDM. 
In total, we derived 31,917 candidate predictors indicating 
the presence of unique conditions/drugs recorded prior to 
the index date (GP, ER, or OP visit) for each patient. When 
using a data-driven approach to model development, gen-
erally the resulting models contain many predictors. This 
may optimise performance, but can be a barrier to clini-
cal implementation. The utility of models for COVID-
19 requires that they can be widely implemented across 
worldwide healthcare settings. Therefore, in addition to 
a data-driven model, we investigated two models that 
include fewer candidate predictors.

The age/sex model used only age groups and sex as can-
didate predictors. The COVER scores used a reduced set of 
variables, which were obtained by the following process:

1. Multiple clinicians inspected the data-driven model 
to identify variables that had a high standardized 
mean difference between patients with and without 
the outcome calculated using the following equation

There are often multiple predictors which are related 
and correlated selected by the model, for example a 
model might select a condition occurrence in different 
time periods predating the index date. This could be 
simplified to one predictor saying only “Patient had con-
dition X in history”, instead of having multiple predictors 
specifying in which time period the condition occurred. 
Likewise, multiple codes that are probably related to a 
specific condition could be simplified in one predic-
tor. We identified general categories from these such as 
‘heart disease’ and ‘diabetes’.

2. Phenotype definitions for each category were created. 
This was performed to make the definitions clinically 
meaningful.

3. We trained a LASSO logistic regression model on 
the original data using age groups, sex and the newly 
created predictors indicating whether the patient had 
any of the category predictors.

4. The coefficients of this reduced variable model were 
then multiplied by 10 and rounded to the nearest 
integer. This was done to make the model simpler to 
calculate.

5. This gave us the simple score-based model.

(

standardisedMeanDifference =
mean with outcome −mean without outcome

√
variance with outcome + variance without outcome

)

.

https://github.com/ohdsi-studies/Covid19PredictionStudies
https://github.com/ohdsi-studies/Covid19PredictionStudies
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Sample size
The models were developed using the Optum© De-
Identified ClinFormatics® Data Mart Database. We 
identified 7,344,117 valid visits with influenza or flu-like 
symptoms, of which 4,431,867 were for patients aged 
18 or older, 2,977,969 of these had at least 365 days of 
prior observation time, and 2,082,277 of these had no 
influenza/symptoms/pneumonia in the 60 days prior to 
index. We selected a random sample of 150,000 patients 
from the total population, as research showed it is pos-
sible to efficiently develop models with near optimal 
performance, while reducing model complexity and 
computational requirements by using a sample of this 
size [11]. Riley et al. provide a calculator for minimum 
sample size, which for number of predictors = 20, event 
rate = 0.05 and  R2  = 0.1 would require a minimum of 
1698 patients [12]. This subset was used to develop the 
data-driven model. The full set of 2,082,077 patients 
was then used for the development and validation of 

the simple model. A small subset of this data was used 
to develop the data-driven model and so the presented 
internal performance could be optimistic. In theory this 
is a limitation, but it has no effect on the evidence of the 
external validation. Fig. 1 is a flow chart demonstrating 
the above exclusions and flow of data through the study.

Missing data
Age and sex are required by the OMOP-CDM used 
by OHDSI and will never be missing. For each condi-
tion or drug we considered no records in the database 
to mean the patient does not have the condition or does 
not receive the drug. This could lead to misclassifica-
tion of patients if a patient’s illness is not recorded in the 
database.

Statistical analysis methods
Model development followed a previously validated and 
published framework for the creation and validation 

External validation
(COVID-19)

total n=44,507

External validation
(Influenza)

n=6,898,259

AU-ePBRN

AUSOM

CCAE

IPCI

JMDC

MDCD

MDCR

Optum EHR

Development data
Optum De-Identified Clinformatics Data Mart

Database

7,344,117 visits with influenza
or flu-like symnptoms

4,431,867 aged 18 or older

2,977,969 >= 365 days
observation prior to the visit

2,082,277 no prior influenza/
symptoms/pneumonia in the

60 days prior to index

Training sample
 n=112,500

Internal validation 
n=37,500

Data-driven
influenza model

Age/sex models

Influenza data COVID-19 data

HIRA

CUIMC

SIDIAP

TRDW

VA

Trained models

Performance evaluation
(AUC, AUPRC, model

calibration)

COVER scores

Score derivation
clinical expert

Training sample/Internal
validation 

n=2,082,277

Fig. 1 A Flow chart representing the path of data in the study. This details the splits used internally for model development, the steps taken for 
model parsimonisation and validation and external validation
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of patient-level prediction models [8]. We used a per-
son ‘train-test split’ method to perform internal valida-
tion. In the development cohort, a random split sample 
(`training sample’) containing 75% of patients was used 
to develop the prediction models and the remaining 
25% of patients (`test sample’) was used to internally 
validate the models. We trained models using LASSO 
regularized logistic regression, using a 3-fold cross 
validation technique in the train-set to learn the opti-
mal regularization hyperparameter through an adaptive 
search [13]. We used R (version 3.6.3) and the OHDSI 
Patient-Level Prediction package (version 3.0.16) for all 
statistical analyses [8].

To evaluate the performance of the developed mod-
els, we calculate the overall discrimination of the 
model using the area under the receiver operating 
characteristic curve (AUC), the area under the preci-
sion recall-curve (AUPRC), and the model calibration. 
The AUC indicates the probability that for two ran-
domly selected patients, the patient who gets the out-
come will be assigned a higher risk. The AUPRC shows 
the trade-off between identifying all patients who get 
the outcome (recall) versus incorrectly identifying 
patients without outcome (precision) across different 
risk thresholds. The model calibration is presented in 
a plot to examine agreement between predicted and 
observed risks across deciles of predicted risk. Cali-
bration assessment is then performed visually rather 
than using a statistic or numeric value as this provides 
a better impression of the direction and scale of mis-
calibration [14]. Summary statistics are reported from 
the test samples.

We performed external validation in databases contain-
ing COVID-19 data. To do this we assessed patients with 
confirmed COVID-19. In addition, we performed a clas-
sical external validation in which we applied the models 
to identical settings across diverse patient populations 
with influenza or flu-like symptoms prior to 2020. We 
examined the external validation using AUC, AUPRC 
and model calibration in the same way as internally. We 
provide confidence intervals when the number of events 
is below 1000. Once the number of events increases, con-
fidence intervals become too narrow to provide a good 
estimate of error.

This study adheres to open science principles for pub-
licly prespecifying and tracking changes to study objec-
tives, protocol, and code as described in the Book of 
OHDSI [15]. For transparency, the R packages for the 
development and external validation of the models in any 
database mapped to the OMOP-CDM are available on 
GitHub at:

https:// github. com/ ohdsi- studi es/ Covid 19Pre dicti 
onStu dies

Results
Online results
The complete results are available as an interactive app 
at: http:// evide nce. ohdsi. org/ Covid 19Cov erPre dicti on

This application will continue to be updated as the 
models are validated, an archived version of the app that 
was released to accompany this article is available here: 
https:// zenodo. org/ record/ 46974 17

Participants
Table  2 describes the characteristics at baseline of the 
patients across the databases used for development and 
external validation. Out of the 150,000 patients sam-
pled with influenza or flu-like symptoms in the devel-
opment database (ClinFormatics), there were 6712 
patients requiring hospitalization with pneumonia, 1828 
patients requiring hospitalization and intensive ser-
vices with pneumonia or death, and 748 patients died 
within 30 days. See Table 2 for the full outcome propor-
tions across the databases included in this study. A total 
of 44,507 participants with COVID-19 disease were 
included for external validation.

In the databases used for external validation, the 
patient numbers ranged from 395 (TRDW) to 3,146,743 
(CCAE). The datasets had varied outcome proportions 
ranging from 0.06–12.47 for hospital admission, 0.01–
4.91 for intensive services, and 0.01–12.27 for fatality. 
Characteristics at baseline differed substantially between 
databases as can be seen in Table 2, with MDCR (a data-
base representing retirees) containing a relatively old 
population of patients and a high number of comorbidi-
ties, and IPCI (a database representing general practice) 
showing a relatively low condition occurrence.

Model performance
The internal validation performance for each model 
is presented in Table  3. The external validation of the 
COVER scores on the COVID-19 patients is shown in 
Table 4. Full validation results can be seen in Appendix 
1B of the online supplement. Receiver operating char-
acteristic and calibration plots are included in Fig. 2 and 
Appendix 1C of the online supplement.

Model specification
The data-driven models for hospitalization, intensive ser-
vices, and fatality contained 521, 349, and 205 predictors 
respectively. The COVER-H, COVER-I, and COVER-F 
scores are presented in Fig. 3. After data-driven selection, 
clinicians reviewed the resulting models and created the 
composite predictors. This produced the COVER scores 
which include 7 predictors, in addition to age groups 
and sex, that corresponded to the following conditions 

https://github.com/ohdsi-studies/Covid19PredictionStudies
https://github.com/ohdsi-studies/Covid19PredictionStudies
http://evidence.ohdsi.org/Covid19CoverPrediction
https://zenodo.org/record/4697417
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existing any time prior to the index date: cancer, chronic 
obstructive pulmonary disease, diabetes, heart dis-
ease, hypertension, hyperlipidemia, and kidney disease 
(chronic and acute). A description of the covariates can 
be found in Appendix 1A of the online supplement. The 
COVER scores are detailed in Fig.  3 and are accessible 
online under the calculator tab at: http:// evide nce. ohdsi. 
org: 3838/ Covid 19Cov erPre dicti on/

Figure  3 also provides a risk converter, which allows 
for easy conversion between the risk score and predicted 
risk of the outcomes. The scores can be converted to a 
probability by applying the logistic function: 1/(1 + exp.
((risk score-93)/10)). Furthermore, we provide a plot of 
the probability distribution for each of the three mod-
els from patients in ClinFormatics to demonstrate the 
expected regions the probabilities fall into. To calculate 
the COVER scores using Fig. 3, a clinician first needs to 
identify which conditions the patient has. The points for 

the corresponding predictors are then added to arrive 
at the total score. For example, if a 63-year-old female 
patient has diabetes and heart disease, then her risk 
score for hospital admission (COVER-H) is 43 (female 
sex) + 4 (heart disease) + 3 (diabetes) + 15 (age) = 65. The 
risk scores for intensive services (COVER-I) and fatality 
(COVER-F) are 51 and 47, respectively. Using the risk 
converter in Fig.  3, a score of 65 corresponds to a risk 
of 6%. Scores of 51 and 47 correspond to 1.5 and 1%, 
respectively.

Discussion
Interpretation
We developed and externally validated models using 
large datasets of influenza patients to quantify a 
patient’s risk of developing severe or critical illness due 
to COVID-19. In the development data, the 9-predictor 
COVID-19 Estimated Risk (COVER) scores were a good 
trade-off between model complexity and performance, 
as the AUCs were generally close to the large data-
driven models. In the development database the COVER 
scores achieved an AUC of 0.84 when predicting which 
patients will be hospitalized or require intensive services 
and an AUC of 0.90 when predicting which patients will 
die within 30 days. When validated on 1985 COVID-19 
patients in South Korea the COVER-H score achieved 
an AUC of 0.81, COVER-I and COVER-F achieved an 
AUC of 0.90 and 0.91. When applied to 37,950 COVID-
19 Spanish patients COVER-H had an AUC of 0.75 and 
performed better when predicting fatality (COVER-F: 
AUC 0.89). When applied to US patients, the COVER-I 
and COVER-F models achieved AUCs of 0.73 and 0.82 in 
CUIMC, VA performed similarly with AUCs of 0.76 and 
0.72 respectively. The VA also achieved 0.69 for COVER-
H. The results show reasonable performance with some 
inconsistency across a range of countries.

A visual assessment of calibration plots across vali-
dations showed reasonable calibration in HIRA, 

Table 3 Results for internal validation in ClinFormatics

Outcome Predictors No. Variables AUC AUPRC

Hospitalization with pneumonia Conditions/drugs + age/sex 521 0.852 0.224

Age/sex 2 0.818 0.164

COVER‑H 9 0.840 0.120

Hospitalization with pneumonia requiring 
intensive services or death

Conditions/drugs + age/sex 349 0.860 0.070

Age/sex 2 0.821 0.049

COVER‑I 9 0.839 0.059

Fatality Conditions/drugs + age/sex 205 0.926 0.069

Age/sex 2 0.909 0.037

COVER‑F 9 0.896 0.039

Table 4 Results of external validation of the COVER scores on 
COVID‑19 patients with a GP, ER, or OP visit in 2020 (*Confidence 
interval is not reported as the number of outcomes is larger than 
1000)

Outcome Database AUC (95% 
confidence 
interval)

AUPRC

Hospitalization with pneu‑
monia
(COVER‑H)

HIRA 0.806 (0.762‑0.851) 0.134

SIDIAP 0.748* 0.072

TRDW 0.731 (0.611‑0.851) 0.132

VA 0.689 (0.649‑0.729) 0.179

Hospitalization with pneumo‑
nia requiring intensive services 
or death
(COVER‑I)

CUIMC 0.734 (0.699‑0.769) 0.100

HIRA 0.910 (0.889‑0.931) 0.053

VA 0.763 (0.708‑0.818) 0.058

Fatality
(COVER‑F)

CUIMC 0.820 (0.796‑0.840) 0.400

HIRA 0.898 (0.857‑0.940) 0.150

SIDIAP 0.895 (0.881‑0.910) 0.083

VA 0.717 (0.642‑0.791) 0.068

http://evidence.ohdsi.org:3838/Covid19CoverPrediction/
http://evidence.ohdsi.org:3838/Covid19CoverPrediction/
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SIDIAP, and VA. There was a slight overestimation of 
risk amongst oldest and highest risk strata in SIDIAP, 
and to a lesser extent in HIRA. The calibration was 
poor in CUIMC, as risk was often underestimated. This 
may be due to CUIMC containing mostly hospitalized 
COVID-19 patients, so the CUIMC cohort are experi-
encing more severe COVID-19. The VA showed some 
miscalibration in the lowest and highest risk strata. The 
observed miscalibration is possibly due to the differing 

severities of the diseases used for model development 
and calibration. However, miscalibration could also 
be due to other differences in populations not caused 
by the use of a proxy disease. The variable calibration 
results suggest that the model’s performance should be 
assessed and the model should potentially be recali-
brated before being implemented in a local context. 
A simple method to do this is by adjusting the base-
line risk based upon the differences found between 
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development and validation populations using an 
adjustment factor derived from the differences in case 
mix between development and validation settings [16, 
17].

The age/sex models also show reasonable perfor-
mance, and these predictors are among the main con-
tributors to performance in the COVER scores. This 
suggests these models could also be suitable if access to 
medical history is difficult.

These results showed that training in large historical 
influenza data was an effective strategy to develop mod-
els for COVID-19 patients. We also performed sensitiv-
ity analyses using more sensitive COVID-19 definitions, 
for example including patients with symptoms, influenza, 
and visits any time prior to 2020. The results did not 
show much deviation from the specific definition (online 
supplement Appendix 1B). Our results show that quanti-
fying a symptomatic patient’s risk based on a small selec-
tion of comorbidities as well as age/sex gives improved 
model performance.

Limitations
First, it has become clear that there are differences in 
the underlying nature of the two diseases, particularly 
in respect to the severity of symptoms in COVID-19 
patients compared with influenza patients. Therefore, it 
is possible another disease may have provided a better 
proxy than influenza.

Second, despite preserving all the target disease data 
for validation, we still had relatively low outcome num-
bers. In the CUIMC, HIRA, SIDIAP, and VA COVID-19 
databases we either reached or approached the threshold 
for reliable external validation of 100 patients who expe-
rience the outcome of interest [18, 19], but the results of 
TRDW might not be reliable.

Furthermore, the data reported early during the 
COVID-19 pandemic was noisy and skewed. This might 
cause misclassification in the target and outcome cohorts. 
In order to counter this, we performed sensitivity analysis 
using cohorts that included broad and narrow COVID-19 
definitions, the impact of this on the results was minimal. 

Fig. 3 A graphic showing how to calculate the 3 Cover scores with a nomogram to convert the raw score into a percentage risk. There is also a 
distribution of scores found using internal validation to allow for comparison of a patients score to the wider population
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The use of a 30-day risk window has the limitation that if 
a patient experiences an outcome after the time window, 
this will be (incorrectly) recorded as a non-event. There 
is further potential misclassification of predictors, for 
example, if a disease is incorrectly recorded in a patient’s 
history. Moreover, the result of the phenotype generation 
process is not fully reproducible due to the use of clini-
cian expertise, which is an unresolved problem in much 
epidemiological work. However, the phenotype develop-
ment process is reproducible and the phenotypes gener-
ated are provided. The evidence in the paper shows the 
models to be robust and transportable.

We were unable to include some suspected disease 
predictors in the analysis as these are not readily avail-
able (e.g. lymphocyte count, lung imaging features) or 
inconsistently collected and reported across the vari-
ous databases included in the study (e.g. BMI, ethnic-
ity). However, due to the high load on healthcare systems 
and the contagious nature of the disease we believe it is 
useful to have a model that does not require a patient to 
be either in hospital or another setting to receive tests. 
A similar issue also meant we were not able to validate 
the COVER-H score in CUIMC (it mostly contains ER or 
hospitalized COVID-19 patients) and the COVER-I score 
in SIDIAP (due to a lack of information on intensive ser-
vices in the database).

Finally, concerns exist over the clinical validity of claims 
data, however we were able to develop models using 
claims data that transported well into EHR data. There is 
the potential for some overlap of patients between claims 
and EHR databases, although this number is likely to be 
small.

Implications
The results show we were able to develop models that 
use historical influenza patient’s socio-demographics and 
medical history to predict their risk of becoming severely 
or critically ill when infected with COVID-19. To our 
knowledge, this is the first study that has been able to 
extensively externally validate prediction models on 
COVID-19 patients at a global scale. The adequate per-
formance of the COVER scores in COVID-19 patients (as 
quantified by consistent finding of AUC > 0.7 in new set-
tings) show these scores could have been used to identify 
patients who should have been shielded from COVID-19 
in the early stages of the pandemic.

Conclusion
In this paper we developed and validated models that 
can predict which patients presenting with COVID-19 
are at high risk of experiencing severe or critical illness. 
This research demonstrates that it is possible to develop 

a prediction model rapidly using historical data of a simi-
lar disease that, once re-calibrated with contemporary 
data and outcomes from the current outbreak, could be 
used to help inform strategic planning and healthcare 
decisions.
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