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Pieter Kwantes(B) and Jetty Kleijn

LIACS, Leiden University, P.O. Box 9512, 2300 RA Leiden, The Netherlands
{p.m.kwantes,h.c.m.kleijn}@liacs.leidenuniv.nl

Abstract. We investigate to what extent existing algorithms for the
discovery of component models from event logs can be leveraged to a sys-
tem of asynchronously communicating components. Here, Enterprise nets
model local processes, while Industry nets are compositions of Enterprise
nets which interact through asynchronous message passing. We investi-
gate the relation between the behaviour of an Industry net and that of
its constituting Enterprise nets and we formalise the (causal) structure
of global (Industry net) behaviour in terms of a partial order derived
from the message passing. Next, we specify how (existing) algorithms
for the discovery of isolated processes, can be adapted to enable the dis-
covery of Enterprise nets, and we demonstrate how to combine these
Enterprise nets into an Industry net. Using the results on the structure
of the global behaviour, we relate the behaviour of the Industry net thus
synthesised to the behaviour of the Enterprise nets and show how fitness
of the Enterprise nets (the event log provided as input is included in the
behaviour of the discovered net) is preserved as fitness of the Industry
net. Moreover, we discuss possible underfitting of the global model (the
model exhibits more behaviour than observed in the event log) and show
how it can be explained in terms of concurrency between the component
models and a completeness property of the event log.

Keywords: Enterprise net · Industry net · process discovery ·
distributed process · asynchronous communication · partial order

1 Introduction

Industry nets have been introduced in [21] as a framework to model global com-
munication between enterprises where the design of their internal operations
is left to the local level. In this set-up, operations at the enterprise level are
represented by Enterprise nets (Petri nets with input, output, and internal tran-
sitions) and Industry nets are compositions of Enterprise nets that interact by
exchanging messages through channels. In [21], a method is proposed to estab-
lish global compliance of an Industry net with a reference model by local checks
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(of Enterprise nets) only. In this paper, we focus on the synthesis of an Indus-
try net from the (observed) combined behaviour of a collection of collaborating
enterprises.

Business process modelling and process mining are nowadays very active
research areas and there are many approaches both to process discovery and con-
formance checking (see, eg., [6,8,12]). Here, we take advantage of this in the sense
that we consider the synthesis of distributed processes (in the form of Industry
nets) from component processes, while assuming the existence of an algorithm for
the discovery of component processes (in the form of Enterprise nets).

To be precise, we assume an algorithm that discovers from an event log (a
set of action sequences) a Petri net such that fitness of the discovered Petri net
(the event log provided as input is included in the behaviour of the discovered
net) is guaranteed. Moreover, we show how from this Petri net an Enterprise
net with the same behaviour can be derived. Then, given an event log repre-
senting (observed) global behaviour of a distributed process, we first identify the
behaviours of its components. Next, we show how an Industry net can be con-
structed by combining the Enterprise nets discovered from the respective local
behaviours, such that fitness is preserved.

In order to be able to relate the given global behaviour to the behaviour of
the synthesised Industry net, we first investigate, after the preliminary Sect. 2,
in Sects. 3, 4, and 5, the structure of the behaviour of an Industry net in terms
of the behaviours of its component Enterprise nets. In Sect. 6, working under
the assumption that an algorithm for the discovery of Petri net models from
isolated component behaviours is available, we explain how to derive Enterprise
nets from these Petri net models. Then we show how these Enterprise nets can
be used for the synthesis of Industry nets. Based on the results from the earlier
sections, we then argue how fitness of the local models delivered by the original
algorithm guarantees the fitness of the distributed model. Moreover, we discuss
underfitting of the model (the model exhibits more behaviour than observed in
the event log). In the final Sect. 7, we give an overview, compare our set-up with
some approaches from the literature and briefly discuss possible future work.

This paper is a revised and extended version of the workshop paper [20].
Proofs and examples have been added. Also a notion of completeness of an event
log is added as well as several results on the relationship between completeness
and properties of the I-net synthesised from the event log.

2 Preliminaries

N = {0, 1, 2, . . .} is the set of natural numbers including 0. For n ∈ N, we set
[n] = {1, 2, 3, . . . , n} and if n = 0, then [n] = ∅. The restriction of a function
f : A → B to a set C ⊆ A, is the function f |C : C → B, defined by f |C(b) = f(b)
for all b ∈ C. Given a partial order R ⊆ A×A, we refer to a total order R′ ⊆ A×A
such that R ⊆ R′, as a linearisation of R.

An alphabet is a finite, non-empty, set of symbols. Let Σ be an alphabet. A
word over Σ is a sequence w = a1 · · · an, with n ≥ 0 and ai ∈ Σ, for all i ∈ [n];
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we refer to n as the length of w, denoted by |w|. If n = 0 then w is the empty
word denoted by λ. The set of all words over Σ is denoted as Σ∗. Any subset of
Σ∗ is a language (over Σ). It is often convenient to consider a word w = a1 · · · an

with ai ∈ Σ for all i ∈ [n], as a function w : [n] → Σ, defined by w(i) = ai for all
i ∈ [n]. The alphabet of w is alph(w) = {w(i) | i ∈ [|w|]}. Hence alph(λ) = ∅.
For a language L, Alph(L) =

⋃{alph(w) | w ∈ L} is the set of all symbols that
occur in a word of L.

If a word w is a concatenation of words v1 and v2, i.e., w = v1v2, then v1 is
said to be a prefix of w. The set of all prefixes of w is denoted by pref(w). The
set of all prefixes of a language L is Pref(L) =

⋃{pref(w) | w ∈ L}.
The number of occurrences of a ∈ Σ in w ∈ Σ∗ is defined as #a(w) = |{i |

w(i) = a}| and the set of occurrences in w is occ(w) = {(a, i) | a ∈ alph(w)∧1 ≤
i ≤ #a(w)}. In addition, we allocate a position with each occurrence in w
through the function posw : occ(w) → [|w|] as follows: for all (a, i) ∈ occ(w),
posw((a, i)) = k if w(k) = a and #a(w(1) · · · w(k)) = i. Consider eg., w =
abbab. Then alph(w) = {a, b} and occ(w) = {(a, 1), (a, 2), (b, 1), (b, 2), (b, 3)}.
Moreover, posw((a, 1)) = 1, posw((a, 2)) = 4, posw((b, 1)) = 2, posw((b, 2)) = 3
and posw((b, 3)) = 5.

For a subset Δ of Σ, the projection of Σ∗ on Δ∗ is projΣ,Δ : Σ∗ → Δ∗,
defined by projΣ,Δ(a) = a if a ∈ Δ, projΣ,Δ(a) = λ if a ∈ (Σ \ Δ) ∪ {λ}, and
projΣ,Δ(wa) = projΣ,Δ(w)projΣ,Δ(a) whenever w ∈ Σ∗ and a ∈ Σ. We omit
the subscript Σ if it is clear from the context and thus write projΔ(w) instead
of projΣ,Δ(w). The notation is extended to languages L ⊆ Σ∗ by projΔ(L) =
{projΔ(w) | w ∈ L}. As an example, let L = {abbab, abcbdab, cbbbad}. Then
proj{a}(L) = {a, aa}, proj{a,b}(L) = {abbab, bbba}, and proj{c,d}(L) = {cd}.

Petri Nets. A Petri net is a triple N = (P, T, F ), where P is a finite set of
places, T is a finite non-empty set of transitions such that P ∩ T = ∅, and
F ⊆ (P × T ) ∪ (T × P ) is a set of arcs.

Let N = (P, T, F ) be a Petri net. If N ′ = (P ′, T ′, F ′) is a Petri net such that
P ∪ T and P ′ ∪ T ′ have no elements in common, then N and N ′ are disjoint.
Let x ∈ P ∪ T . Then •x = {y | (y, x) ∈ F} and x• = {y | (x, y) ∈ F} are the
preset and the postset, respectively, of x (in N). A marking μ of N is a function
μ : P → N. Let t ∈ T and μ a marking of N . Then t is enabled at μ if μ(p) > 0
for all p ∈ •t. If t is enabled at μ, it may occur, and thus lead to a new marking
μ′ of N , denoted μ

t−→N μ′, with μ′(p) = μ(p) − 1 if p ∈ •t \ t•; μ′(p) = μ(p) + 1
if p ∈ t• \ •t; and μ′(p) = μ(p) otherwise. We extend the notation μ

t−→N μ′ to
sequences w ∈ T ∗ as follows1: μ

λ−→N μ for all μ; and μ
wt−→N μ′ for markings μ, μ′

of N , w ∈ T ∗ and t ∈ T , whenever there is a marking μ′′ such that μ
w−→N μ′′

and μ′′ t−→N μ′. If μ
w−→N μ′, for some w ∈ T ∗, then w is a firing sequence (in N)

from μ to μ′ and μ′ is said to be reachable from μ (in N). If N is clear from the
context, we may omit the subscript N and write w−→ rather than w−→N . We write
L(N,μ) for {w ∈ T ∗ | μ

w−→N μ′ for some marking μ′}. A place p ∈ P is a source
1 We thus view T as an alphabet.
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place of N if •p = ∅. The marking μ of N such that, for all p ∈ P , μ(p) = 1 if p
is a source place and μ(p) = 0 otherwise, is the default initial marking of N . If
μ is the default initial marking of N , we also write L(N) to denote L(N,μ) and
refer to it as the behaviour or language of N . Note that L(N) is prefix-closed,
i.e., w ∈ L(N) implies v ∈ L(N) for all prefixes v of w.

Enterprise Nets and Industry Nets. We recall the definitions of Enterprise
and Industry nets from [21]. Enterprise nets (or E-nets, for short) are Petri
nets equipped for asynchronous communication with other E-nets; they have
transitions designated to receive input and transitions designated to produce
output. An interaction between E-nets is realised by an occurrence of an output
transition of one E-net and an occurrence of an input transition of another E-net
that is connected to the output transition by a dedicated intermediate place and
that has a matching message type.

Throughout this paper, we assume a fixed set M of message types.

Definition 1. An Enterprise net is a tuple E = (P, 〈Tint, Tinp, Tout〉, F,M) such
that Tint, Tinp, and Tout are mutually disjoint sets; Tint is the set of internal
transitions of E, Tinp its set of input transitions, and Tout its set of output
transitions; furthermore, the underlying Petri net of E, und(E) = (P, Tint ∪
Tinp ∪ Tout, F ), is a Petri net with exactly one source place; finally M : Tinp ∪
Tout → M is the communication function of E. �
Given an Enterprise net E , L(E) = L(und(E)) is the language of E .

Composing E-nets yields an Industry-net (or I-net, for short) with multiple
source places. The E-nets involved are pairwise disjoint, i.e., their underlying
Petri nets are disjoint. When combining them into an I-net, output and input
transitions are matched via their message types.

Definition 2. Let n ≥ 2. Let V = {Ei | i ∈ [n]} be a set of pairwise disjoint
E-nets with Ei = (Pi, 〈Ti,int, Ti,inp, Ti,out〉, Fi,Mi) for each i ∈ [n].
A matching over V is a bijection ϕ :

⋃
i∈[n] Ti,out → ⋃

j∈[n] Tj,inp such that
whenever t ∈ Ti,out and ϕ(t) ∈ Tj,inp, for some i, j, then i �= j and Mi(t) =
Mj(ϕ(t)). �
A set V of mutually disjoint E-nets is said to be composable if there exists a
matching over V . To construct an I-net from a composable set V and a matching
ϕ over V , matching output and input transitions of the E-nets in V are connected
through (new) channel places using channel arcs.

Definition 3. Let n ≥ 2. Let V = {Ei : i ∈ [n]} be a composable set of E-nets
with Ei = (Pi, 〈Ti,int, Ti,inp, Ti,out〉, Fi,Mi) and Ti = Ti,int ∪ Ti,inp ∪ Ti,out for all
i ∈ [n]. Let ϕ be a matching over V .

Then P (V, ϕ) = {[t, ϕ(t)] | t ∈ Ti,out, i ∈ [n]} is the set of channel places
of V and ϕ, and F (V, ϕ) = {(t, [t, ϕ(t)]) | t ∈ Ti,out, i ∈ [n]} ∪ {([t, ϕ(t)], ϕ(t)) |
t ∈ Ti,out, i ∈ [n]} is the set of channel arcs of V and ϕ. The sets P (V, ϕ),
F (V, ϕ), and Pi, Ti, Fi, where i ∈ [n], are all pairwise disjoint.
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The Industry net over (V, ϕ) is the Petri net I(V, ϕ) = (P, T, F ) with P =⋃
i∈[n] Pi ∪ P (V, ϕ), T =

⋃
i∈[n] Ti, and F =

⋃
i∈[n] Fi ∪ F (V, ϕ). �

Example 1. Consider two enterprises, an Investment Firm and an Exchange mod-
elled by the E-nets E1 and E2 in Figs. 1(a) and 1(b), respectively. The Investment
Firm sends order messages to the Exchange (modelled by output transition sowith
message type mo). The Exchange, upon receiving a message (via input transition
ro with message type mo), subsequently sends an order confirmation message to
the Investment Firm (output transition sc with message type mc). This message
can be received by the Investment Firm through input transition rc with message
type mc. Then I(V, ϕ), the I-net in Fig. 1(c), with V = {E1, E2} and ϕ defined by
ϕ(so) = ro and ϕ(sc) = rc, models the collaboration between the Investment
Firm and the Exchange. Note that this V allows for only one matching. �

Related models. E-nets can be considered as a generalisation of workflow nets.
Workflow nets (see [7]) are Petri nets with a single source place. They, moreover,
have a single sink place (i.e., a place p with p• = ∅) and a default final marking
that assigns a single token to the sink place. Additional requirements are that
all places and transitions are on a path from source to sink and that the final
marking is an always reachable marking. These (so-called soundness) criteria
are not a priori imposed on E-nets. All possible firing sequences reflect possible
behaviour and the language of an E-net is always prefix-closed. E-nets, moreover,
explicitly capture the potential interaction with other enterprises by a bilateral,
asynchronous exchange of messages of a specified type (for applications, see
eg., [13,18,24,28]). With the term “industry” used to loosely refer to a sector of
enterprises, Industry nets model collaborating Enterprise nets. Overall, the ideas
underlying the concepts of E-nets and I-nets belong to a well-established branch
of research concerned with composing systems modelled as Petri nets, into larger
correctly functioning (concurrent) systems [14,15,26,27]. An overview of how
this line of research is concerned with combining compatible business processes
(or services) in Service Oriented Architectures’ can be found in [3].

(a) (b) (c)

Fig. 1. (a) E-net E1. (b) E-net E2. (c) The I-net
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Open Petri nets, introduced in [9], are proposed in [16] as a formalization of
workflows with a capability to interact with other workflows through open places.
The composition of open Petri nets is characterised as a pushout in the corre-
sponding category, suitable to model both interaction through open places and
synchronization of transitions. Decomposing Petri nets into functional Petri nets
to speed up analysis is described in [30,31]. Compositions of open workflow nets,
a model similar to functional Petri nets, are considered in [1,23,29]. Functional
Petri nets have disjoint sets of input places and output places and composition
is based on identifying corresponding elements. In [15], I/O-Petri nets which are
similar to I-nets, are considered. These nets have transitions as interface elements
that have input and output labels and communicate via places. The advantage
of this approach, as argued in [15], is that it leads to a better separation of
concerns: eg., the designer of a local system does not have to consider how it
will be used; this is a concern for the designer of the global system. Composition
of Petri nets by sharing places in [9,16,23] or by connecting transitions through
channel places as in [15] and our approach, models asynchronous communication
between the component nets.

3 E-net Languages and I-net Languages

Let the composable system V , specified as in Definition 3, and the matching ϕ
over V be fixed for this section and Sects. 4 and 5.

Clearly, the construction of I(V, ϕ) does not affect the internal structure of
the E-nets in V and the set of source places of I(V, ϕ) consists of all source
places of the Ei. Moreover, removing channel places from I(V, ϕ) does not
restrict the behaviour of its E-nets. In other words, if μ

w−→ μ′ in I(V, ϕ), then

μ|Pi

projTi
(w)−−−−−−→ μ′|Pi

in Ei. Consequently, the firing sequences in L(I(V, ϕ)) are
combinations of firing sequences of the Enterprise nets. Actually, as formulated
in the next lemma, this statement can be strengthened to include all prefixes
of firing sequences in L(I(V, ϕ)), because projTi

(v) ∈ pref(projTi
(w)), for all

v, w ∈ T ∗ such that v ∈ pref(w), and L(I(V, ϕ)) and L(Ei), i ∈ [n], are prefix-
closed.

Lemma 1. If w ∈ L(I(V, ϕ)), then projTi
(v) ∈ L(Ei) for all v ∈ pref(w) and

all i ∈ [n]. �
However, the composition of E-nets into an I-net adds channel places to the

presets of input transitions. The property defined next describes how the number
of occurrences of input transitions depends on the number of occurrences of
corresponding output transitions.

Definition 4. Let w ∈ T ∗. Then w has the prefix property with respect to ϕ if
#a(v) ≥ #ϕ(a)(v) for all v ∈ pref(w) and all a ∈ Tout.
A language L ⊆ T ∗ has the prefix property with respect to ϕ if all w ∈ L have
this property. �
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In other words, w has the prefix property with respect to ϕ if #b(v) ≤ #ϕ−1(b)(v)
for all prefixes v of w and all b ∈ Tinp. Clearly, if w has the prefix property with
respect to ϕ, then all its prefixes have this property as well.

Henceforth, we will omit the reference to ϕ as it is fixed.
Since channel places are not source places and consequently not marked by

the default initial marking, it follows that the firing sequences of I(V, ϕ) have
the prefix property.

Lemma 2. If w ∈ L(I(V, ϕ)), then w has the prefix property. �
Conversely, any sequence w ∈ T ∗ that can be (locally) executed by all E-nets

and that satisfies the prefix property, belongs to L(I(V, ϕ)).

Lemma 3. Let w ∈ T ∗ be such that projTi
(w) ∈ L(Ei) for all i ∈ [n]. If w has

the prefix property, then w ∈ L(I(V, ϕ)).

Proof. If w = λ then w ∈ L(I(V, ϕ)). Assume now that w = xa with |x| ≥ 0
and a ∈ Tk for some k ∈ [n], and that w has the prefix property. Then x being a
prefix of w, has the prefix property as well. Moreover, by Lemma 1, projTi

(x) ∈
L(Ei), for all i ∈ [n]. Hence, we may assume by an inductive argument that
x ∈ L(I(V, ϕ)). Consequently, there exist a marking μ′ of I(V, ϕ) such that
μ

x−→ μ′ in I(V, ϕ), where μ is the default initial marking of I(V, ϕ). This implies

that μ|Pk

projTk
(x)−−−−−−→ μ′|Pk

in Ek with μ|Pk
the default initial marking of Ek. By

assumption projTk
(w) = projTk

(xa) = projTk
(x)a ∈ L(Ek) and so a is enabled

at μ′|Pk
in Ek. We distinguish two cases:

(i) If a �∈ Tinp, it directly follows that a is enabled at μ′ thus w ∈ L(I(V, ϕ)).
(ii) If a ∈ Tinp, then it has a corresponding output transition t = ϕ−1(a) in

some Ei and a channel place [t, a] �∈ Pk such that (t, [t, a]), ([t, a], a) ∈ F .
Note that a is otherwise only connnected to places in Pk. Since w has the
prefix property, #a(w) ≤ #t(w). So #a(x) < #t(x). Hence μ′([t, a]) > 0,
and a is enabled at μ′. Consequently, also in this case, w ∈ L(I(V, ϕ)). �

Example 2. (Ex. 1 ctd.) We have T1 = {so, rc}, T2 = {ro, sc} (with T1

and T2 the transitions of E1 and E2 from Example 1 respectively), and T =
{so, rc, ro, sc}. Consider w = 〈so, ro, sc, rc〉.2 Now projT1

(w) = 〈so, rc〉 ∈
L(E1) and projT2

(w) = 〈ro, sc〉 ∈ L(E1). Clearly, w has the prefix prop-
erty. Thus w ∈ L(I(V, ϕ)) by Lemma 3. For w′ = 〈so, ro, rc, sc〉, we have
projT1

(w′) = projT1
(w) and projT2

(w′) = projT2
(w). However, w′ does not

have the prefix property: in u = 〈so, ro, rc〉, a prefix of w′, we have #rc(u) = 1,
but #sc(u) = 0. Indeed, w′ �∈ L(I(V, ϕ)). �

The next theorem is an immediate consequence of Lemmas 1, 2, and 3.

2 The elements of the alphabet T are symbols consisting of two letters. We denote in
this and similar examples, any sequence a1 · · · an with ai ∈ T for each i ∈ [n] by
〈a1, · · · , an〉.
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Theorem 1. Let L ⊆ T ∗. Then L ⊆ L(I(V, ϕ)) if and only if L has the prefix
property and projTi

(L) ⊆ L(Ei) for all i ∈ [n]. �
In case there exists a language L that has the prefix property and is such

that projTi
(L) = L(Ei) for all i ∈ [n], the behaviour of the I-net encompasses

the full unrestricted behaviour of each E-net. This is captured in Theorem 2.

Theorem 2. Let L ⊆ T ∗ be a language with the prefix property and let
projTi

(L) = L(Ei) for all i ∈ [n]. Then projTi
(L(I(V, ϕ))) = L(Ei) for all i ∈ [n].

Proof. L ⊆ L(I(V, ϕ)) follows from Theorem 1. Hence, for all i ∈ [n],
projTi

(L) ⊆ projTi
(L(I(V, ϕ))). By Lemma 1, projTi

(L(I(V, ϕ))) ⊆ L(Ei)
for all i ∈ [n]. By assumption projTi

(L) = L(Ei) for all i ∈ [n]. Thus
L(Ei) ⊆ projTi

(L(I(V, ϕ))) ⊆ L(Ei) for all i ∈ [n] and the statement follows. �
It should however be noted, that the conditions on L in Theorem 2 do not

imply that L = L(I(V, ϕ)). By Theorem 1, L ⊆ L(I(V, ϕ)), and as illustrated
in the following example, this inclusion may be strict even in case L satisfies the
conditions from Theorem 2.

Example 3. Consider a collaboration between three enterprises, an Investment
Firm, an Exchange and a Central Securities Depository (modelled by E-nets E1,
E2 and E3 respectively, with transitions T1 = {so, rc, rs}, T2 = {ro, sc, si} and
T3 = {ri, ss}) represented by the I-net in Fig. 2. The interaction between the
Investment Firm and the Exchange is the same as in Example 2. After sending
a confirmation (output transition sc) to the Investment Firm, the Exchange can
send (output transition si) a settlement instruction to the Central Securities
Depository to transfer ordered securities to the Investment Firm. The Central
Securities Depository - after receiving (input transition ri matching si) the set-
tlement instruction - sends (output transition ss) a confirmation of settlement
to the Investment Firm (that receives the message via input transition rs). Let
w = 〈so, ro, sc, rc, si, ri, ss, rs〉 and let L = pref({w}).

Fig. 2. The extended I-net
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Clearly projTi
(L) = L(Ei) for each i ∈ [3]. Also, L has the prefix property

(w.r.t. ϕ displayed in Fig. 2). Hence L satisfies the conditions in Theorem 2,
and, indeed, projTi

(L(I({E1, E2, E3}, ϕ))) = projTi
(L) for each i ∈ [3]. Now,

consider the sequence v = 〈so, ro, sc, si, rc, ri, ss, rs〉, obtained by exchanging
the occurrences of rc and si in w. It is easy to see that v is also in the language
of the I-net in Fig. 2. Hence this I-net exhibits behaviour not included in L. �

4 Structuring Words with the Prefix Property

In this section, we identify a property of I-net languages that explains why
the conditions of Theorem 2 imposed on L are not sufficient to guarantee that
L = L(I(V, ϕ)). First, we demonstrate how the occurrences in words with the
prefix property, can be seen as partially ordered sets. The occurrences rc and si
in the word w from Example 3, can be exchanged (to obtain v) because they are
unrelated in this partial order (i.e., they are from different components and not
connected by an input/output relation with each other, see Example 6 below).
We will show that any word obtained from a word in L(I(V, ϕ)), by exchanging
unrelated occurrences, is included in L(I(V, ϕ)). To define the partial order, we
introduce the notion of an assignment function. Whereas the prefix property is
based on a simple comparison of numbers of occurrences, assignment functions,
as defined next, relate each occurrence of an input transition to a corresponding
occurrence of an output transition.

Definition 5. An assignment function with respect to ϕ for a word w ∈ T ∗ is
an injective function θ : (occ(w)∩ (Tinp ×N)) → (occ(w)∩ (Tout ×N)) such that
for every occurrence (b, j) ∈ occ(w) with b ∈ Tinp, θ(b, j) = (a, i) implies that
a = ϕ−1(b) and i is such that posw(a, i) < posw(b, j). �
Again, since ϕ is fixed, we will omit the reference to ϕ.

Example 4. Assume T = {a, b} and ϕ(a) = b. Let w = aabb. Then w has two
assignment functions: θ defined by θ(b, 1) = (a, 1) and θ(b, 2) = (a, 2); and θ′

defined by θ′(b, 1) = (a, 2) and θ′(b, 2) = (a, 1). �
The notion of an assignment function is closely related to the prefix property,

as captured in Theorem 3.

Theorem 3. Let w ∈ T ∗. Then w has the prefix property if and only if there
exists an assignment function for w.

Proof. Let θ be an assignment function for w. Since θ is injective, we have that
for every input transition b and every 1 ≤ j ≤ #b(w), the j-th occurrence (b, j)
of b in w is preceded by at least j occurrences of output transition ϕ−1(b). In
other words #b(u) ≤ #ϕ−1(b)(u) for every prefix u of w as desired.

Next, assume that w has the prefix property and consider the function θ
with domain occ(w) ∩ (Tinp ×N) defined by θ(b, j) = (ϕ−1(b), j) for all (b, j) ∈
occ(w) ∩ (Tinp × N). As we argue next, θ is an assignment function for w.
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Let (b, j) ∈ occ(w) with b ∈ Tinp. Hence there exists a prefix xb of w such
that #b(xb) = j. Since w has the prefix property, #b(xb) ≤ #ϕ−1(b)(xb), thus
#ϕ−1(b)(xb) ≥ j and therefore posw(ϕ−1(b), j) < posw(b, j) as required. �

Theorem 3 implies that every word with the prefix property has an assign-
ment function. As Example 4 shows, in general, each such word can have more
than one assignment function. We will now show how each assignment function
θ for a word w determines a partial order on occ(w). First the relation ≤w,θ is
defined.

Definition 6. Let w ∈ T ∗ and let θ be an assignment function for w. Let
(a, i), (b, j) ∈ occ(w), with a ∈ Tk and b ∈ Tl for some k, l ∈ [n].

Then (a, i) ≤w,θ (b, j) if

(1) k = l and posw(a, i) ≤ posw(b, j) or
(2) k �= l and b ∈ Tinp and θ(b, j) = (a, i). �
By condition (1), ≤w,θ respects the ordering of occurrences of transitions in
w that originate from the same E-net; by (2), it fixes the order between an
occurrence of an input transition and its assigned output transition occurrence.
As usual, ≤+

w,θ denotes the transitive closure of ≤w,θ. The following lemma states
that ≤+

w,θ moreover respects the relative position of all occurrences in w.

Lemma 4. Let w ∈ T ∗ and let θ be an assignment function for w. Then x ≤+
w,θ

y implies posw(x) ≤ posw(y), for all x, y ∈ occ(w).

Proof. Let x, y ∈ occ(w) and assume x ≤+
w,θ y holds. So, there exist occurrences

o1, . . . , om in occ(w), with m ≤ |w|, such that o1 = x, om = y and oi ≤w,θ oi+1,
for all i ∈ [m − 1]. Hence, using Definition 6 and Definition 5, it follows that
posw(oi) ≤ posw(oi+1), for all i ∈ [m − 1]. Since ≤ is a total order on the
positions of w, we have posw(x) ≤ posw(y). �
Using this observation, we can now prove that indeed ≤+

w,θ is a partial order on
the occurrences of w.

Lemma 5. Let w ∈ T ∗ and let θ be an assignment function for w. Then ≤+
w,θ

is a partial order on occ(w).

Proof. From condition (1) in Definition 6 it follows that ≤+
w,θ is reflexive, while

transitivity is immediate. Let x ≤+
w,θ y and y ≤+

w,θ x for some x, y ∈ occ(w). By
Lemma 4, posw(x) = posw(y) and so x = y. Hence ≤+

w,θ is anti-symmetric. �
By Lemmas 4 and 5, given an assignment function θ for w, the partial order
≤+

w,θ is a subset of the total order induced by posw. The linearisations of ≤+
w,θ,

where w is a word and θ an assignment function for w, are those words that can
be obtained from w by (repeatedly) interchanging the positions of occurrences
not related by ≤+

w,θ.
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Definition 7. Let w ∈ T ∗ and let θ be an assignment function for w. Then
linθ(w) = {v ∈ T ∗ | occ(v) = occ(w) and for all x, y ∈ occ(v), x ≤+

w,θ

y implies posv(x) ≤ posv(y)} is the set of θ-linearisations of w. �
The next example shows that if v is a θ-linearisation of w than w is also a
θ-linearisation of v.

Example 5. (Ex. 4 ctd.) Let v = abab. Then occ(v) = occ(w) and linθ(w) =
{v, w}. Clearly, θ is an assignment function for v and linθ(v) = linθ(w). Note
that linθ′(w) = {w} and θ′ is not an assignment function for v. �
We now turn to the proof of the main result of this section by which for every
firing sequence w of an I-net and each of the assignment functions θ of w, also
all its θ-linearisations are firing sequences of the I-net. We first list some basic
properties of linearisations.

Lemma 6. Let w and θ be as in Definition 7 and let v ∈ linθ(w). Then the
following statements hold:

(1) w ∈ linθ(w);
(2) projTi

(v) = projTi
(w) for all i ∈ [n];

(3) θ is an assignment function for v and ≤v,θ=≤w,θ;
(4) linθ(v) = linθ(w);
(5) v has the prefix property.

Proof. (1) follows directly from Definition 7 and Lemma 4.
(2) is proved by contradiction. Assume (2) to be false and let k ∈ [n] be such

that projTk
(v) �= projTk

(w). Since occ(v) = occ(w) by Definition 7, this
implies that there are x, y, z ∈ T ∗ and a, b ∈ Tk, such that projTk

(v) = xay
and projTk

(w) = xbz with a �= b. Moreover, occ(v) = occ(w) implies
that occ(projTk

(v)) = occ(projTk
(w)), i.e., occ(xay) = occ(xbz). Let now

#a(xa) = i and #b(xb) = j. Then posxay((b, j)) > |xa| and posxbz((a, i)) >
|xb|. Thus posv(a, i) < posv(b, j) and posw(b, j) < posw(a, i). The lat-
ter inequality combined with condition (1) from Definition 6 shows that
(b, j) ≤+

w,θ (a, i). Hence the first inequality implies that v �∈ linθ(w) by
Definition 7, a contradiction. Consequently, (2) must be true.

(3) Let (b, j) ∈ occ(v) = occ(w) with b ∈ Tinp and let θ(b, j) = (a, i). Since
θ is an assignment function for w, it follows from condition (2) from
Definition 6 that (a, i) ≤w,θ (b, j). With v ∈ linθ(w) this implies that
posv(a, i) ≤ posv(b, j). Hence θ is an assignment function for v.
Next we investigate ≤v,θ (which is defined because θ is an assignment func-
tion for v). Let x, y ∈ occ(v) = occ(w) with x = (a, i) and y = (b, j) where
a ∈ Tk and b ∈ Tl with k, l ∈ [n].
Firstly, assume x ≤w,θ y. Then posv(x) ≤ posv(y), because v ∈ linθ(w). In
case k = l, x ≤v,θ y by condition (1) of Definition 6. If k �= l, then x ≤w,θ y
must be a consequence of θ(b, j) = (a, i) (condition (2) of Definition 6) and
hence also x ≤v,θ y.
Secondly, assume x ≤v,θ y. In case k = l, posv(x) ≤ posv(y) by condition
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(1) of Definition 6. We claim that also posw(x) ≤ posw(y): if not, then
posw(y) < posw(x) which would imply x �= y and y ≤w,θ x by condition
(1) of Definition 6 and hence posv(y) < posv(x), because v ∈ linθ(w), a
contradiction. From posw(x) ≤ posw(y) and condition (1) of Definition 6, it
follows that x ≤w,θ y. Finally, let k �= l. Then x = θ(y) follows from x ≤v,θ y
and condition (2) of Definition 6. This implies that also x ≤w,θ y.

(4) Follows from the definitions of linθ(w) and linθ(v) since occ(v) = occ(w)
and ≤v,θ=≤w,θ by (3).

(5) follows from (3) and Theorem 3. �
Combining Lemma 6 with Lemma 3 shows that whenever a word with the

prefix property can be locally executed by all component E-nets, then, for all its
assignment functions θ, each of its θ-linearisations can be executed globally by
the I-net.

Theorem 4. Let w ∈ T ∗ be such that projTi
(w) ∈ L(Ei) for all i ∈ [n]. If θ is

an assignment function for w, then linθ(w) ⊆ L(I(V, ϕ)).

Proof. Assume θ is an assignment function for w. Let v ∈ linθ(w). From
Lemma 6(2) it follows that projTi

(v) = projTi
(w) for all i ∈ [n] and from

Lemma 6(5) that v has the prefix property. Using Lemma 3, we can then con-
clude that v ∈ L(I(V, ϕ)). �
Example 6. (Ex. 3 ctd.) Consider the word w from Example 3. Define θ by
θ(ro, 1) = (so, 1), θ(rc, 1) = (sc, 1), θ(ri, 1) = (si, 1), and θ(rs, 1) = (ss, 1). This
θ is an (the only) assignment function for w (w.r.t. ϕ). Then v, obtained from
w by exchanging (si, 1) and (rc, 1). These occurrences are not ordered by ≤+

w,θ.
Hence v ∈ linθ(w) and v is, like w, in the language of the I-net. �

5 Assignment Functions of Type FIFO

By Theorem 4, every assignment function θ for a word w (with the prefix prop-
erty) that can be locally executed by all component E-nets, determines a set of
words linθ(w) that can be executed by the I-net. In this section, we demon-
strate that considering one particular type of assignment function is sufficient
to describe all possible linearisations.

Intuitively, in terms of the I-net, one could say that each assignment function
describes for each occurrence of an input transition, which token to take from
its channel place (namely the token deposited by the assigned occurrence of
the output transition). Based on this point of view, the following two types
of assignment functions represent natural policies to deal with the messages
(tokens) in the channel places.
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Definition 8. Let w ∈ T ∗ and let θ be an assignment function for w. Then

(1) θ is of type FIFO with respect to ϕ if θ(b, j) = (ϕ−1(b), j) for every (b, j) ∈
occ(w) such that b ∈ Tinp;

(2) θ is of type LIFO with respect to ϕ if for every (b, j) ∈ occ(w) such that
b ∈ Tinp and θ(b, j) = (a, i) where a = ϕ−1(b), there exist x, y, z ∈ T ∗ such
that w = xaybz with i = #a(xa), j = #b(xayb), and #a(y) = #b(y). �
Again, since ϕ is fixed, we will omit the reference to ϕ.
When scrutinising the proof of Theorem 3, one sees that the function θ

constructed there is of type FIFO. Hence we have the following corollary.

Corollary 1. Every word with the prefix property has an assignment function
of type FIFO. �

Actually, the argument in the proof of Theorem 3 could also have been based
on the construction of an assignment function of type LIFO. In other words,
every word with the prefix property has an assignment function of type LIFO.
Finally, it is easily seen that each w with the prefix property has exactly one
assignment function of type FIFO; also its assignment function of type LIFO is
unique (the proof of which we leave to the reader).

Example 7. (Ex. 4 and Ex. 5 ctd.) Assignment function θ of w is of type FIFO
and θ′ is of type LIFO. For v, however, θ is an assignment function both of type
FIFO and of type LIFO. �

We now investigate the assignment functions of type FIFO. It will be shown
that the assignment function of type FIFO of a word w defines the least restric-
tive ordering on occ(w) in the sense that its set of linearisations is maximal
(w.r.t. set inclusion) among all sets of θ-linearisations of w.

In the sequel, θfifow denotes the assignment function of type FIFO of any
word w ∈ T ∗ with the prefix property. In addition, if L ⊆ T ∗ is a language with
the prefix property, then linFIFO(L) =

⋃{linθfifo
w

(w) | w ∈ L} consists of all
FIFO-linearisations of L.

Lemma 7. Let v, w ∈ T ∗ be such that v and w have the prefix property and
occ(v) = occ(w). Then θfifov = θfifow .

Proof. By Corollary 1, θfifov and θfifow exist. Let (b, j) ∈ occ(v), with b ∈ Tinp

for some j ≥ 1. Then θfifov (b, j) = (ϕ−1(b), j) = θfifow as required. �
A similar result does not hold for assignment functions of type LIFO (cf.

Example 7).
The set of linearisations determined by an assignment function of type FIFO

can be characterised as follows.

Lemma 8. Let w ∈ T ∗ have the prefix property. Then linθfifo
w

(w) = {v ∈ T ∗ |
v has the prefix property and projTi

(v) = projTi
(w) for all i ∈ [n]}.
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Proof. The inclusion from left to right follows immediately from Lemma 6(2)
and Lemma 6(5).

To prove the converse inclusion, consider a word v ∈ T ∗ such that v has
the prefix property and projTi

(v) = projTi
(w) for all i ∈ [n]. Hence occ(v) =

occ(w). Let now (a, i), (b, j) ∈ occ(v) be such that (a, i) ≤+
w,θfifo

w
(b, j). We prove

that posv(a, i) ≤ posv(b, j) from which it then follows that v ∈ linθfifo
w

(w) by
Definition 7.

Since (a, i) ≤+
w,θfifo

w
(b, j), we have posw(a, i) ≤ posw(b, j) by Lemma 4. If

a, b ∈ Tk for some k ∈ [n], then also posv(a, i) ≤ posv(b, j) because projTk
(v) =

projTk
(w).

If a ∈ Tk and b ∈ Tl, for some k �= l, we first consider the case that
(a, i) ≤w,θfifo

w
(b, j). This implies that θfifow (b, j) = (a, i) and hence i = j. Since

v has the prefix property, posv(a, j) ≤ posv(b, j). Otherwise there exist occur-
rences o1, . . . , om in occ(w), with m ≤ |w|, such that o1 = (a, i), om = (b, j),
and oi ≤w,θ oi+1, for all i ∈ [m − 1]. With a reasoning similar to the above, we
obtain posv(oi) ≤ posv(oi+1), for all i ∈ [m − 1] and so posv(a, i) ≤ posv(b, j).

�
Example 8. (Ex 2. Ctd.) The Investment Firm and Exchange from Example 2 are
now extended with the possibility to repeatedly send and receive orders and their
sets of transitions extended to T ′

1 = {so, rc, ii1, ii2} and T ′
2 = {ro, sc, ei1, ei2}.

The composition of the thus extended E-nets leads to the I-net in Fig. 3.

Fig. 3. I-net with option to repeat orders

Consider words v = 〈ei1, ii1, so, ii2, ro, ei2, so, ii2, ro, ei2, so, ro, sc, rc〉 and
w = 〈ei1, ii1, so, ii2, so, ii2, so, ro, ei2, ro, ei2, ro, sc, rc〉. Both v and w have
the prefix property and projT ′

i
(v) = projT ′

i
(w) for i ∈ {1, 2}. Let θ be the

assignment function for w of type FIFO. From Lemma 8, we know that v ∈
linθ(w). The assignment function θ′ of w of type LIFO however has θ′(ro, 1) =
(so,3) and so v ∈ linθ′(w) does not hold. �

For a language L that has the prefix property, we denote by lin(L) the
language consisting of all words that can be obtained as a θ-linearisation of
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any word w ∈ L for whatever assignment function θ for w. Thus lin(L) =⋃{linθ(w) | w ∈ L and θ an assignment function for w}.
Lemma 8 shows that indeed and as announced, the assignment functions of

type FIFO are the most “generous” in the sense that they determine a maximal
(w.r.t. set inclusion) set of linearisations. This observation is formalised in the
following statement which is an extension of Theorem 4.

Theorem 5. Let L ⊆ T ∗ be a language with the prefix property such that
projTi

(L) ⊆ L(Ei) for all i ∈ [n]. Then L ⊆ lin(L) = linFIFO(L) ⊆ L(I(V, ϕ)).

Proof. The two inclusions are immediate: linFIFO(L) ⊆ L(I(V, ϕ)) follows from
Theorem 4 and L ⊆ lin(L) from Lemma 6(1). By definition linFIFO(L) ⊆
lin(L). So we only have to prove that lin(L) ⊆ linFIFO(L).

Let v ∈ lin(L). Hence there exists a w ∈ L and an assignment function θ for
w such that v ∈ linθ(w). From Lemma 6(2) and (5), we know that projTi

(v) =
projTi

(w) and that v has the prefix property. Hence v ∈ linθfifo
w

(w) by Lemma 8
(note that θfifow exists by Corollary 1). Consequently, v ∈ linFIFO(L). �

An immediate consequence of Theorem 5 is the closure of the languages of
I-nets under exchanging unordered occurrences of transitions.

Corollary 2. lin(L(I(V, ϕ))) = linFIFO(L(I(V, ϕ))) = L(I(V, ϕ)). �
The inclusion linFIFO(L) ⊆ L(I(V, ϕ)) in Theorem 5 may be strict even if

all inclusions projTi
(L) ⊆ L(Ei) for all i ∈ [n], are equalities (see Example 9

below). In fact, as we demonstrate next, it may be the case that not all words
in L(I(V, ϕ)) are represented in L. This is expressed by means of the following
notion.

Definition 9. Let L ⊆ T ∗ be a language with the prefix property. Then L is
complete with respect to I(V, ϕ)) if for all w ∈ L(I(V, ϕ)) there exists a w′ ∈ L
such that projTi

(w) = projTi
(w′) for all i ∈ [n]. �

By Theorem 5 we know that for a language L with the prefix property, that
is locally executable by the component E-nets of I(V, ϕ), the FIFO-linearisation
of L is included in the language of I(V, ϕ). The next theorem adds to this result
by showing that this inclusion is an equality in case L is complete with respect
to I(V, ϕ).

Theorem 6. Let L ⊆ T ∗ be a language with the prefix property such that
projTi

(L) ⊆ L(Ei) for all i ∈ [n]. If L ⊆ T ∗ is complete with respect to I(V, ϕ),
then linFIFO(L) = L(I(V, ϕ)).

Proof. Assume L is complete and let w ∈ L(I(V, ϕ)). Let w′ ∈ L be such that
projTi

(w) = projTi
(w′) for all i ∈ [n]. Since L is complete, such w′ exists.

Moreover, w′ has the prefix property. So, by Corollary 1, θfifow′ exists. Since
w ∈ L(I(V, ϕ)), w has the prefix property by Lemma 2. Now we can apply
Lemma 8 to conclude that w ∈ linθfifo

w′ (w′), i.e., w ∈ linFIFO(L). We conclude
that L(I(V, ϕ)) ⊆ linFIFO(L). By Theorem 5, linFIFO(L) ⊆ L(I(V, ϕ)). Hence
equality follows. �
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Example 9. (Ex 2. Ctd.) The E-nets E ′′
1 and E ′′

2 in Figs. 4(a) and 4(b), with
transitions T ′′

1 = {so, rc, ii} and T ′′
2 = {so, rc, ei}, are extensions of the

E-nets in Fig. 1(a) and Fig. 1(b). Each has an extra internal action (ii and
ie, respectively). The I-net in Fig. 3(c) is the composition of E ′′

1 and E ′′
2 .

Let v = 〈so, ro, sc, rc〉, w = 〈so, ro, ie, ii〉 and let L = Pref({v, w}).
Then projT ′′

1
(L) = Pref({〈so, ii〉, 〈so, rc〉}) = L(E ′′

1 ) and projT ′′
2
(L) =

Pref({〈ro, ie〉, 〈ro, sc〉}) = L(E ′′
2 ). Furthermore, we have linFIFO(L) = Pref

({v, w, x}) where x = 〈so, ro, ii, ie〉.

(a) (b) (c)

Fig. 4. (a) E-net E ′′
1 (b) E-net E ′′

2 (c) Their I-net

L(I(V, ϕ)) = Pref({v, w, x, y, z}) where y = 〈so, ro, sc, ii〉, and z = 〈so, ro,
ii, sc〉. Hence linFIFO(L) ⊆ L(I(V, ϕ)). Even though projT ′′

1
(L) = L(E ′′

1 ) and
projT ′′

2
(L) = L(E ′′

2 ), this inclusion is strict. L is not complete with respect to
I(V, ϕ) because y does not have a representation in L. Neither v nor w (nor
their prefixes) are such that their projection on T ′′

1 would yield projT ′′
1
(y) and

their projection on T ′′
2 would yield projT ′′

2
(y): projT ′′

1
(y) = 〈so, ii〉 �= 〈so, rc〉 =

projT ′′
1
(v) and, similarly, projT ′′

2
(y) = 〈ro, sc〉 �= 〈ro, ie〉 = projT ′

2
(w). In con-

trast, L′ = L ∪ pref(y) is complete and we have linFIFO(L′) = L(I(V, ϕ)). Note
that z ∈ linFIFO(L′) as projT ′′

1
(y) = projT ′′

1
(z) and projT ′′

2
(y) = projT ′′

2
(z). �

Recall that L(I(V, ϕ)) has the prefix property. Hence combining Lemma 6(2)
– by which projTi

(L) = projTi
(linFIFO(L)) whenever language L has the prefix

property – with Theorem 6 leads to the observation that L and L(I(V, ϕ)) are
in full agreement on their recordings of the components’ behaviours.

Corollary 3. Let L ⊆ T ∗ be a language with the prefix property such that
projTi

(L) ⊆ L(Ei) for all i ∈ [n]. If L ⊆ T ∗ is complete with respect to I(V, ϕ),
then projTi

(L) = projTi
(L(I(V, ϕ))) for all i ∈ [n]. �

As illustrated next in Example 10, Corollary 3 does not imply that
projTi

(L) = L(Ei) for all i ∈ [n].
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Example 10. Consider the I-net I(V, ϕ) in Fig. 5(c) composed of E-nets E1 in
Fig. 5(a) and E2 in Fig. 5(b). Thus L(I(V, ϕ)) = Pref({abc, bac}).

Consider now L = Pref({abc}) which is complete with respect to I(V, ϕ).
Moreover, L has the prefix property and proj{a}(L(I(V, ϕ))) = proj{a}(L) =
Pref({a}) = L(E1) as well as proj{b,c}(L(I(V, ϕ))) = proj{b,c}(L) = Pref({bc})
⊆ L(E2). However, proj{b,c}(L) = L(E2) does not hold. �

6 Synthesising I-nets

We are now ready to address our initial question. Assume that we have an algo-
rithm to discover Petri net models of isolated (i.e. not interacting) component
processes from a description of their behaviour (in the form of action sequences).
Then, when given an event log (a language), representing the observed behaviour
of a given number of distinct collaborating processes, construct an I-net that
generates this observed behaviour. A formal definition of the assumed process
discovery algorithm, based on [6], is given next.

(a) E-net E1

(b) E-net E2

(c) The I-net I(V, ϕ)

Fig. 5. (a) E-net E1 (b) E-net E2 (c) The I-net I(V, ϕ)

Definition 10. Let L be a family of languages. A process discovery algorithm A
for L is an algorithm that computes for all L ∈ L, a Petri net A(L) = (P, T, F )
with a single source place such that T = Alph(L) and L ⊆ L(A(L)). �
Note that we require that the Petri nets discovered have a single source place (as
E-nets have). Actually, such algorithms exist [6]. The Inductive Miner [22], a tool
for discovering a workflow net implementing the communicating (input/output)
behaviour, is one example. The similarity between E-nets and workflow nets
makes it possible to leverage the large amount of research into the automated
discovery of workflow nets, for the purpose of automated discovery of E-nets. A
comprehensive overview of existing algorithms including an evaluation of their
performance can be found in [8]. To leverage such an algorithm to a system
of asynchronously communicating nets, one needs to describe the distribution
of actions over components in combination with their role as internal, input, or
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output action. This leads to the concept of a distributed communicating alphabet
defined next.

Definition 11. Let n ≥ 1. An n-dimensional distributed communicating alpha-
bet (or n-DCA, for short) is a tuple

DA = (〈Σ1, . . . , Σn〉, 〈Σint, Σinp, Σout〉,mt, cp) such that

– Σ1, . . . , Σn are non-empty, pairwise disjoint alphabets;
– Σint, Σinp, Σout are pairwise disjoint alphabets consisting of internal actions,

input actions and output actions, respectively;
–

⋃
i∈[n] Σi = Σint ∪ Σinp ∪ Σout;

– mt : Σinp ∪ Σout → M is a function that assigns message types to the input
and output actions;

– cp : Σinp ∪ Σout → Σinp ∪ Σout is a ( complementing) bijection, which is not
defined (cp = ∅) if n = 1, and otherwise (n ≥ 2), for all a ∈ Σinp ∪ Σout:
if a ∈ Σinp, then cp(a) ∈ Σout and if a ∈ Σout, then cp(a) ∈ Σinp;
if a ∈ Σi for some i ∈ [n], then cp(a) ∈ Σj where j ∈ [n] is such that i �= j;
mt(cp(a)) = mt(a); and cp(cp(a)) = a. �
The alphabet

⋃
i∈[n] Σi = Σint ∪Σinp ∪Σout in Definition 11, also referred to

as the underlying alphabet of the n-DCA DA, is intended to represent the actions
available to n interacting enterprises. DA describes both their distribution across
the enterprises and their interaction capacities. A 1-DCA consists of a single
enterprise. When specifying a 1-DCA, we can omit its complementing bijection
cp as it is not defined (and not needed). For i ∈ [n], we refer to the 1-DCA
DAi = (〈Σi], [Σi,int, Σi,inp, Σi,out〉,mti) as the i-th component of DA.

For the rest of this section we assume a fixed family of languages L and a
fixed process discovery algorithm A for L. Moreover, we assume that we know the
desired distribution of Alph(L) over internal, input and output actions. The fol-
lowing definition describes how the discovery of E-nets depends on these assump-
tions.

Definition 12. The E-net discovery algorithm derived from A, is the algorithm
AE that computes, for all pairs (L,DA) such that L ∈ L with A(L) = (P, T, F ),
and DA = (〈T 〉, 〈Tint, Tinp, Tout〉,mt) is a 1-DCA with Alph(L) = T as its under-
lying alphabet, the E-net AE(L,DA) = (P, 〈Tint, Tinp, Tout〉, F,mt). �
Thus AE(L,DA) adds the information from DA, about the distribution of
actions, to the transitions of A(L). Clearly, AE(L,DA) is an E-net.3 Hence-
forth we fix an AE , as specified in Definition 12. The following lemma shows
that the behaviour of AE(L) is the same as that of A(L).

Lemma 9. Let L ∈ L and DA a 1-DCA with Alph(L) as its underlying alphabet.
Then L(A(L)) = L(AE(L,DA)).

Proof. The statement follows directly from Definition 12.
3 In case A is an algorithm for the discovery of workflow nets, like the Inductive

Miner [22], AE(L, DA) would have the structure of a workflow net.
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Now we move to the discovery of I-nets on the basis of A.

Definition 13. The I-net discovery algorithm derived from A, is the algorithm
AI that computes, for all pairs (L,DA) such that

– DA = (〈Σ1, . . . , Σn〉, 〈Σint, Σinp, Σout〉,mt, cp) is an n-DCA for an n ≥ 2,
– Alph(L) =

⋃
i∈[n] Σi, the underlying alphabet of DA, and

– projΣi
(L) ∈ L for all i ∈ [n],

the I-net AI(L,DA) = I(V, ϕ) with V = {AE(projΣi
(L),DAi) | i ∈ [n]} and

ϕ(a) = cp(a) for all a ∈ Σout. �
Note that AI(L,DA) = I(V, ϕ) in Definition 13 is indeed an I-net, since,

by Definition 12, for all i ∈ [n], AE(projΣi
(L),DAi) is an E-net with set of

transitions Σi; the Σi are mutually disjoint; and the properties of cp described
in Definition 11 guarantee that ϕ is a matching for V .

By Definitions 10 and 13, we can transfer Theorem 5 and Theorem 6 to the
setting of discovering an I-net from a given language L.

Corollary 4. Let L be a language with the prefix property and DA an n-DCA,
both as specified in Definition 13. Then,

(1) linFIFO(L) ⊆ L(AI(L,DA));
(2) linFIFO(L) = L(AI(L,DA)) if L is complete with respect to AI(L,DA). �

Thus, given a language L with the prefix property representing an event log
of a system of n enterprises, and an n-dimensional distributed communicating
alphabet, we can construct an I-net in the way described in Definition 13. This
I-net has all words in L in its language together with all their linearisations
(obtained by exchanging occurrences of independent actions). In fact, it is suffi-
cient to consider only their FIFO-linearisations. Even then, though, there may in
general be more firing sequences than what can be deduced from the description
L of the observed behaviour. On the other hand, by Corollary 4(2), in case L is
complete with respect to the I-net, i.e., each firing sequence of the constructed
I-net has a representation in L, then the additional behaviour exhibited by the
I-net, not observed in L (underfitting), can be fully explained by the concurrency
between the E-nets.

Example 11. (Ex. 8 ctd.) Let w and v be as in Example 8 and let L = {w}. Let
DA = (〈Σ1, Σ2〉, 〈Σint, Σinp, Σout〉,mt, cp) be the 2-DCA, with components DA1

and DA2, as given in Fig. 6, representing the actions available to the collaboration
between the Investment firm and the Exchange from Example 8. Let AE and AI
be the E-net and I-net discovery algorithms, respectively, derived from process
discovery algorithm A. Furthermore, assume that the E-nets discovered from
L, AE(projΣ1(L)) and AE(projΣ2(L)), are as depicted in Figs. 7(a) and (b),
respectively. Then AI(L,DA) is the I-net in Fig. 3. By Corollary 4(1), we have
L ⊆ linFIFO(L) ⊆ L(AI(L,DA)). Hence, also v ∈ L(AI(L,DA)) since v ∈
linFIFO(w) as outlined in Example 8. �

The next example serves as an illustration of Corollary 4(2).
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Fig. 6. The 2-DCA DA

(a) (b)

Fig. 7. (a) E-net AE(projΣ1(L)) (b) E-net AE(projΣ2(L))

Example 12. (Ex. 3 ctd.) Let AE and AI be the E-net and I-net discovery
algorithms respectively, derived from the process discovery algorithm A. Let
w = 〈so, ro, sc, rc, si, ri, ss, rs〉 as in Example 3 and let L = {w}. The 3-DCA
DA = (〈Σ1, Σ2, Σ3〉, 〈Σint, Σinp, Σout〉, mt, cp) is specified in Fig. 8.

It represents the actions for the collaboration between the Investment firm,
the Exchange and the Central Securities Depository from Example 3 Let DA1,
DA2, DA3 denote the first, second, and third component, resp., of DA. Assume
that AE(projΣ1(L),DA1), AE(projΣ2(L),DA2), and AE(projΣ3(L),DA3) are
the E-nets depicted in Figs. 9(a), (b), (c) resp. Then AI(L,DA) is the I-net in
Fig. 2.

Fig. 8. The 3-DCA DA
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(a) (b)
(c)

Fig. 9. (a) AE(projΣ1(L), DA1) (b) AE(projΣ2(L), DA2) (c) AE(projΣ3(L), DA3)

Now, let v = 〈so, ro, sc, si, rc, ri, ss, rs〉 as in Example 3, x = 〈so, ro,
sc, si, ri, rc, ss, rs〉 and y = 〈so, ro, sc, si, ri, ss, rc, rs〉. Then L(AI(L,DA)) =
Pref({w, v, x, y}). Note here that linFIFO({w}) = {w, v, x, y}.

Next, we observe that L is complete with respect to Pref({w, v, x, y}) as
projΣi

(v) = projΣi
(x) = projΣi

(y) = projΣi
(w) ∈ projΣi

(L) for each i ∈
{1, 2, 3} and similar for their prefixes. Furthermore, we know from Example 3
that L has the prefix property. And indeed L(AI(L,DA)) = linFIFO(L). �

7 Discussion

In this paper we have considered the problem of the synthesis of a distributed
process model (in the form of an I-net) from an event log (given in the form of
a language). Also the number of participating processes (modelled as E-nets) is
known as are their channels (in the form of matching input and output actions).
We have shown how, given an algorithm for the discovery of Petri net mod-
els from event logs of isolated processes, the discovered models can be used for
the synthesis of a new I-net. Moreover, by Theorems 1 and 5, fitness of the
resulting I-net is guaranteed if and only if fitness of the component nets is guar-
anteed and the event log has the prefix property (a natural assumption). It is
interesting to reflect on the inclusion of FIFO-linearisations in the language of
the I-net (see Corollary 2 and Corollary 4.(1)) and the role of the channels.
The exchange of unrelated occurrences of actions suggests a relationship to the
well-known Mazurkiewicz traces (equivalence classes of words, see, eg., [25]) and
their dependence graphs (defining their causal structure in the form of a labelled
partial order, see [17]). There is however an important difference: independence
in Mazurkiewicz’ theory is between actions rather than their occurrences. The
independence between occurrences considered here is determined by the history
leading to these occurrences and hence to a theory of context dependent or local
traces (see, eg., [11,19]). The I/O-Petri nets of [15] use communication channels
modelled by places and channel properties are investigated in terms of asyn-
chronous I/O-transition systems rather than languages. Note that, as can be
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seen from our results, choosing FIFO channels or “normal” places (in which the
order of arrival of tokens is not taken into account) does not change the language
of the resulting I-net.

Process mining is an active research area, that has resulted in many process
discovery algorithms (see, eg., [6] for an overview). Typically, these algorithms
are used for the discovery of local processes in isolation, i.e., interaction between
processes is not taken into account. In [5] this state of affairs is identified as
an omission that should be addressed. This motivated us to investigate to what
extent existing algorithms for the discovery of single (isolated) process mod-
els could be used for the synthesis of composed systems. In [5], two challenges
are identified. The first one is “context dependency” which refers to the obser-
vation that composition of services might restrict their behaviour. Therefore,
event logs generated by collaborating services might not show every possible
local behaviour. As a consequence, the process models discovered, can be under-
fitting. We provide a precise specification of the conditions that determine the
extent to which such underfitting can occur. The second challenge is “instance
correlation” which concerns the problem of the use of different case identifiers
for the same case by different services. This complicates the identification of
global behaviour associated with a single case from local behaviours associated
with that case. In this paper, this issue is not addressed as here event logs are
seen as consisting of executed actions without explicit reference to cases. Cur-
rently we are investigating how to deal with case information associated with
event sequences. Then the problem of instance correlation, mentioned above,
could eg., reappear as the problem of relating observations of local behaviour to
observations (as projections) of global behaviour.

In [2,4], the problem of process mining from large event logs is addressed and
various options to distribute the mining problem over sublogs (with overlapping
activities) are considered. In [10], similar to our approach, the event logs of
Multi Agent Systems are projected onto individual agents in order to discover
component models in terms of workflow nets using existing process discovery
algorithms. By means of α-morphisms an abstraction of each component model
is derived and the goal is to show that if the composition of these abstract models
is sound, the composition of the original component models is sound.

As the focus of this paper has been on the collaboration between different par-
ties, we did not deal with the question which algorithms from the set of available
algorithms (see eg., [8]) is most suitable to serve as a precursor for the discovery
of E-nets, and how an implementation of an algorithm for the discovery of E-nets
can be derived from it. Since we are in particular concerned with the discovery
of models of communicating behaviour this might also involve reconsidering per-
formance criteria like fitness and precision, to accommodate this concern, for
instance by making a distinction between performance with respect to internal
and external behaviour. An interesting and practically relevant research ques-
tion concerns the exchange of messages between processes (abstracting from their
internal actions). One could adapt the approach presented here using projections
on communicating actions only. The message exchanges generated from these
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communicating actions, actually arise in the course of doing business between
enterprises. For example, a significant volume of messages is exchanged on a
daily basis, between the business processes of financial institutions connected
by the computer network (SWIFTnet) that is maintained and monitored by the
SWIFT organization4. Extending our model to include such indirect observa-
tions of communicating behaviour would open up the possibility to use these
observations to support future, more empirical, research in this direction.

Acknowledgement. The authors are grateful to the anonymous reviewers for their
constructive suggestions which have led to an improvement of the presentation of the
results of this paper.
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