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Technology in the delivery room supporting the neonatal healthcare 
provider’s task 

Sophie J.E. Cramer *, Kristel L.A.M. Kuypers, Tessa Martherus, Janneke Dekker, Arjan B. te Pas 
Willem-Alexander Children’s Hospital, Department of Paediatrics, Division of Neonatology, Leiden University Medical Centre, the Netherlands  

A B S T R A C T   

Very preterm infants are a unique and highly vulnerable group of patients that have a narrow physiological margin within which interventions are safe and effective. 
The increased understanding of the foetal to neonatal transition marks the intricacy of the rapid and major physiological changes that take place, making delivery 
room stabilisation and resuscitation an increasingly complex and sophisticated activity for caregivers to perform. While modern, automated technologies are pro-
gressively implemented in the neonatal intensive care unit (NICU) to enhance the caregivers in providing the right care for these patients, the technology in the 
delivery room still lags far behind. Diligent translation of well-known and promising technological solutions from the NICU to the delivery room will allow for better 
support of the caregivers in performing their tasks. In this review we will discuss the current technology used for stabilisation of preterm infants in the delivery room 
and how this could be optimised in order to further improve care and outcomes of preterm infants in the near future.   

1. Introduction 

Because of their immaturity, very preterm infants are a unique and 
highly vulnerable group of patients that have a narrow physiological 
margin within which interventions are safe and effective. A large 
amount of scientific research along with technological innovations have 
improved care for preterm infants in the neonatal intensive care unit 
(NICU). In the NICU, infants are monitored meticulously and devices are 
used to provide treatment in a safe and sophisticated manner. The 
arrival of automated technologies, whether or not in combination with 
artificial intelligence (servo-controlled incubator, algorithm driven 
ventilators, automated oxygen titration, predictive monitoring) has 
decreased the manual work in the NICU and improved care and outcome 
in the last twenty years. 

While these automated technologies are increasingly being used in 
the NICU, technology in the delivery room still lags far behind. Preterm 
infants can be difficult to manage in the intensive care unit, but this task 
is considerably more complex at birth due to the infant’s rapidly 
changing physiology. Particularly at birth, automated technologies and/ 
or artificial intelligence could be highly relevant, since the infant’s 
physiology is undergoing large and rapid changes. We now start to un-
derstand that the transition to life after birth is an extremely critical 
phase of life which greatly impacts an individual’s risk of death, injury 
[1,2] or life-long disability [3,4], particularly infants born very preterm. 

Stabilisation of preterm infants in the delivery room is usually brief, 

but many interventions need to be performed in order to stabilise the 
infant’s temperature, (spontaneous) ventilation and oxygenation in a 
time sensitive manner. It has been shown that some interventions are not 
as effective as caregivers assumed and that the provision of an optimal 
and safe treatment during this stressful moment is a major challenge for 
caregivers [5–8]. It also has been demonstrated that caregivers have 
difficulty in assimilating the complex and rapidly changing physiolog-
ical information that is required to make accurate strategic decisions 
with regard to assisting preterm infants as they transition to newborn 
life [6–10]. 

In this review we will discuss the current technology used for sta-
bilisation of preterm infants in the delivery room and how this could be 
optimised by the provision of purpose-built devices and technology that 
assimilates all of the physiology data and supports decision making 
processes. 

2. Temperature management 

The first step of neonatal stabilisation is the prevention of heat loss, 
which easily occurs in the exposed and wet infants through convection, 
conduction, radiation and evaporation, resulting in a decreased body 
temperature. Hypothermia after birth has been recognised as a signifi-
cant contributor to neonatal morbidity and mortality [11,12]. Although 
less is known about the acute and long-term impact of hyperthermia 
after birth, the potential risks for both hypothermia and hyperthermia 
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are currently recognised in the international resuscitation guidelines 
with the advice to keep the body temperature of the infant between 36.5 
and 37.5 ◦C [13,14]. While measures to prevent hypothermia – such as 
increased room temperature and the use of a head cap, a wrap, a radiant 
heater, a thermal mattress and heated and humidified gases - are 
commonly performed, keeping the body temperature within the normal 
range during stabilisation at birth proves to be challenging [15–18]. 

Currently, the temperature is often only measured at NICU admis-
sion, which does not allow us to take correcting measures until that 
moment. Although standardised thermoregulation protocols, training, 
and audits have shown to improve our temperature management 
[19–21], frequent or continuous measurement of temperature, in com-
bination with a temperature dependent protocol, can further improve 
this [22,23]. However, temperature management based on continuous 
measurements requires constant attention and is more labour intensive. 
Technology could assist in this process by providing visual or audible 
cues when the recommended ranges are exceeded in order to capture the 
attention of the caregiver or by providing decision support on the timing 
and type of heat loss measures to take. Technology could even further 
assist caregivers by enabling automated regulation via servo-controlled 
mattresses and radiant warmers, which are commonly used in the NICU. 

Although a recent multi-centre study reported that the use of servo- 
controlled radiant warmers on the delivery room showed no benefits 
over the use of radiant warmers on maximal output [24], studies 
implementing servo-controlled radiant warmers combined with a tem-
perature dependent protocol for additional measures show the highest 
overall scores of normothermia at NICU admission, ranging from 74% to 
100% [25–28]. As infants are much more exposed in the delivery room 
as compared to the NICU, full automation of thermoregulation in the 
delivery room probably asks for completely different closed-loop solu-
tions minimising the effects of the environment on their temperature. 

3. Tactile stimulation 

As of 2005, local and international resuscitation guidelines recom-
mend tactile stimulation in the form of warming, drying and rubbing the 
back or soles of the feet to evoke spontaneous breathing in newborn 
infants [13,14,29]. While experimental studies demonstrated tactile 
stimulation to increase respiratory effort [30,31], the clinical guidelines 

are still largely based on many years of experience and expert opinion as 
there is lack of data on this topic in human infants. 

Several retrospective studies recently evaluated current practice, 
showing a wide variation between caregivers and between centres 
concerning timing, duration and method of stimulation [32–36]. In 
addition, stimulation turned out to be often omitted, in particular in 
preterm infants placed in a polyethylene bag [34–36]. A recent rando-
mised trial showed that repetitive tactile stimulation in preterm infants 
increased oxygenation, while less oxygen was needed, and improved 
respiratory effort [37]. However, the trial also led to a high incidence of 
stimulation in the standard group. This effect could be attributed to the 
Hawthorne effect and/or the increased focus on tactile stimulation 
during the study, which in turn implies that omission of stimulation 
happens because it is simply forgotten. 

Albeit the most optimal way of stimulation remains unclear, auto-
mated mechanical stimulation could ensure tactile stimulation to be 
provided, in a more consistent way [38]. Several closed-loop vibratory 
stimulation devices to treat apnoea’s of preterm infants admitted to the 
NICU have been described in literature, but currently none of these are 
commercially available [39–42]. No studies have been performed in the 
delivery room, but mechanical vibratory stimulation in preterm infants 
in the NICU proved to be as effective as manual stimulation in aborting 
apnoeic episodes in two preliminary studies [42,43], and two other 
observational studies reported that their closed-loop pulsating and 
vibrating devices were able to terminate 90% of all apnoeas [44,45]. 
Applying this technique in the delivery room has the potential to replace 
manual intervention, eliminating the chance that stimulation will be 
forgotten. 

4. Oxygenation 

Currently, oxygen administration is guided by predefined oxygen 
saturation (SpO2) target ranges [46]. Caregivers manually titrate the 
fraction of inspired oxygen (FiO2) accordingly to avoid hypoxia and 
hyperoxia. At birth, hypoxia can lead to suppression of spontaneous 
breathing, and hypoxia that persists for more than 5 min after birth is 
associated with an increased risk of mortality and the development of 
intraventricular hemorrhages [47–50]. On the other hand, hyperoxia 
needs to be avoided as this increases the production of free radicals, but 

Fig. 1. Overview of the alveoli, sur-
rounded by capillaries. A: Directly at birth, 
lung liquid needs to be replaced with air. 
The movement of liquid into the interstitial 
tissue causes a high airway resistance and 
the partially liquid-filled alveoli reduces the 
surface area available for gas exchange. B: 
As the liquid moves into the interstitial tis-
sue surrounding the alveoli, the airway 
resistance decrease while the interstitial 
pressure and lung recoil increase. This cau-
ses alveolar collapse and liquid re-entry at 
end-expiration. Nevertheless, the surface 
area available for gas exchange increases.   
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also can inhibit the respiratory centre [51,52]. As such, it is critical to 
adequately control oxygenation during this period. However, this is an 
incredibly difficult and complex task given the fact that immediately 
after birth, the lung is constantly and rapidly changing. 

It has been shown that maintaining SpO2 values within a predefined 
target range with manual titration is extremely difficult in the delivery 
room as well as in the NICU [53–59]. Randomised trials demonstrated 
the potential of closed-loop titration of FiO2 in the NICU, increasing the 
time spent within the SpO2 target range with a decrease in extreme 
deviations in oxygenation, including both the duration and the number 
of episodes [60–69]. The use of a closed-loop oxygen controller in the 
delivery room has so far only been studied once in a preterm lamb model 
[70]. In this study, the effect of a closed-loop oxygen controller with 
timeout restrictions of 30s after each titration step was compared to 
manual titration of oxygen after evaluation of SpO2 to be performed 
every 30s. Results show similar time within the SpO2 target range and 
below the target range, while time above the target range was signifi-
cantly shorter in the automatic titration group [70]. 

However, this technique cannot just simply be extrapolated to the 
delivery room, as there are considerable differences with regard to 
target ranges, physiology and devices used. In the NICU, the SpO2 target 
range is static, while this is dynamic in the first minutes after birth. 
Oxygen exchange in the lungs is largely determined by the surface area 
available for gas exchange and the oxygen concentration gradient be-
tween the alveoli and adjacent capillaries. At birth, when the airways 
are mostly liquid-filled, the surface area available for gas exchange is 
small and a high oxygen concentration is required for adequate ex-
change (Fig. 1A). As the lungs aerate, the surface area available for gas 
exchange increases exponentially and as such a much lower oxygen 
concentration is needed for adequate oxygenation (Fig. 1B). The oxygen 
concentration administered after birth should thus be adjusted accord-
ing to the degree of lung aeration. This would require the closed-loop 
titration mechanism to adjust the SpO2 target range continuously 
based on the time after birth. In addition, the algorithm of the closed- 
loop oxygen controller should also be calibrated based on the factors 
present at birth which influence the position of the oxygen-haemoglobin 
dissociation curve. 

Furthermore, titration of oxygen using a T-piece ventilator, which is 
commonly used for respiratory support at birth [14], can result in a 
delay between the moment of titration and the delivery of the corre-
sponding FiO2 at the face mask of the infant [71]. The algorithm used by 
the closed-loop oxygen controller that is used with the T-piece resusci-
tator should therefore reckon with this delay. 

5. Continuous positive airway pressure 

Although most preterm infants breathe at birth, the breathing effort 
is often insufficient to ensure the large pulmonary physiological changes 
that are needed to survive the foetal to neonatal transition. While 
continuous positive airway pressure (CPAP) is often used to support the 
infant’s breathing, there is no data on the optimal pressure level. The 
CPAP level of 4–8 cmH2O that is currently used is predominantly 
extrapolated from data from CPAP later in the NICU, while the under-
lying physiology during the neonatal transition is strikingly different 
[13,72]. 

Considering the physiological changes that need to occur during 
transition, it would be more logical to use a dynamic CPAP strategy 
wherein the CPAP levels suit the different phases of the transition. In the 
first phase of the transition (Fig. 1A), the role of CPAP is to promote lung 
aeration and assist movement of lung liquid across the distal airway wall 
into the interstitial tissue. As a result, the resistance in the airways is 
high due to the high viscosity of liquid (compared with air) moving 
across the airway epithelium requiring higher CPAP levels to overcome 
this [73–77]. Once the lungs become more aerated and liquid is accu-
mulated in the interstitial tissue, the lung characteristics change quickly 
and the role of CPAP converts to maintaining lung aeration. During this 
phase of the transition (Fig. 1B), airway resistance is considerably lower 
(~100 fold), but lung recoil and interstitial tissue pressure increase 
which promote alveolar collapse and liquid re-entry at end-expiration 
[73–81]. Lower CPAP levels are likely sufficient to maintain aeration 
and support breathing, while decreasing the risk for lung overexpansion 
and/or adverse effect on pulmonary blood flow. This dynamic CPAP 
approach, following the pulmonary physiological changes during tran-
sition, has been called physiological based (PB)-CPAP. 

Fig. 2. Respiratory Function Monitor display.  
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Experimental studies in spontaneously breathing preterm animal 
models demonstrated that PB-CPAP should ideally start with CPAP of 15 
cmH2O which is stepwise decreased to 8 cmH2O. These studies also 
showed that PB-CPAP promotes lung aeration (functional residual ca-
pacity; FRC)), breathing effort and pulmonary blood flow, without 
causing bulging of the lungs or pneumothoraxes [82,83]. These results 
were translated into a small randomised controlled trial wherein 
PB-CPAP was compared to 5–8 cmH2O CPAP. This feasibility study 
demonstrated that PB-CPAP led to a quicker restoration of heart rate and 
shorter duration of mask ventilation, likely reflecting lung aeration. 
Nevertheless, post-trial evaluations indicated that caregivers found it 
difficult to combine standard care with a CPAP protocol that requires 
constant evaluations and changes in CPAP levels [84]. 

This is where technological innovation could help the caregiver in 
assimilating complex physiological changes and fine-tuning and opti-
mising the respiratory support. Mathematical modelling with currently 
available physiological data could be used to create algorithms, which 
will allow us to develop a decision or even automated pressure support 
system in the delivery room. 

6. Positive pressure ventilation 

If preterm infants fail to clear their lung liquid, establish FRC and 
initiate spontaneous breathing to facilitate gas exchange [85], manual 
non-invasive positive pressure ventilation (NIPPV) is provided by 
occluding the aperture of a T-piece resuscitator with a thumb or finger. 
The sufficiency of the provided tidal volumes is confirmed by adequate 
chest rise, auscultation or, indirectly, by an increase in heart rate [86]. 
However, due to rapidly changing pulmonary physiology and inconsis-
tent respiratory drive of infants at birth, variable tidal volume are 
administered that might be inadequate or excessive. Large tidal volumes 
could overstretch the delicate alveoli and airways (volutrauma), while 
small tidal volumes could lead to loss of lung volume or cycling between 
collapse and recruitment (atelectotrauma) thereby injuring the lungs 
[87,88]. A recent multicentre trial evaluating tidal volume monitoring 
during manual ventilation reported that, despite using a respiratory 
function monitor (RFM) (Fig. 2), ineffective ventilation <4 mL/kg and 
potentially harmful ventilation >8 mL/kg was provided 40.7% and 
20.0% of the time, respectively [89]. 

The high percentage of ineffective manual ventilation could be 
caused by pharyngeal ventilation as the glottis is predominantly closed 
after birth and only opens when a spontaneous breath is taken [90]. 
When ventilation is provided to a closed glottis, no air is able to enter 
into the lungs [90]. Providing inflations which coincides with sponta-
neous breaths would be more effective, but also increases the risks of 
high tidal volumes and thus the risk of lung and/or cerebral injury [91]. 
As it is difficult for caregivers to evaluate the presence and quality of 
spontaneous breathing at birth [8], especially during manual ventilation 
[7], this hampers safe and effective ventilation at birth. 

Again, automation can offer a solution. In this case, several solutions 
already exist and are being applied as features of a neonatal ventilator. 
Replacing the T-piece resuscitator for a regular neonatal ventilator in the 
delivery room therefore brings several opportunities to prevent inap-
propriate ventilation. The first solution is automated synchronised 
NIPPV (sNIPPV). Caregivers can only detect breathing after a breath has 
been taken, while a ventilator can detect the start of a breath. This en-
ables ventilators to synchronise their ventilation. In addition, caregivers 
have to keep overview of the clinical condition of the infant and are, 
therefore, not able to continuously focus on the infant’s breathing while 
a ventilator can. Although there is no evidence for the effectiveness of 
synchronised ventilation in the delivery room, it has shortened the 
duration and improved the effectiveness of ventilation in the NICU [92, 
93]. 

Even with sNIPPV, it remains difficult to provide tidal volumes in a 
safe target range. To date, caregivers are only able to apply pressure- 
limited manual ventilation in the delivery room due to the lack of 

appropriate technology. However, a recent neonatal resuscitation 
simulation study showed it is feasible to use a ventilator with RFM in the 
delivery room as it increased the proportion of tidal volumes within the 
target range and reduced the number of large tidal volumes during 
different simulated scenarios of changing pulmonary mechanics 
commonly encountered at birth [86]. Also, the delivery of consistent 
tidal volumes during changing pulmonary mechanics could be improved 
by implementing volume-targeted ventilation. While, this ventilation 
mode showed to improve outcome and is a widely accepted in the NICU, 
there is no data on using this mode in preterm infants at birth [87,94, 
95]. This effect might even be increased when using a ventilator with 
synchronised ventilation and/or volume-targeted ventilation. 

7. Monitoring 

Regular feedback on the patient’s physiological state is a pivotal 
element of neonatal stabilisation after birth, guiding corrective actions 
and clinical decision making of the caregivers. Despite its importance, 
monitoring in this critical period is still relatively basic compared to the 
continuous and extensive monitoring techniques used in the NICU. 

The current guidelines recommend the use of pulse oximetry and/or 
ECG for physiological feedback instead of rudimentary methods such as 
auscultation, palpation of the umbilical cord and assessment of skin 
color, as these methods proved to be prone to subjectivity [96,97]. The 
same applies to the assessment of administered tidal volumes by 
observing chest excursions [98] but the evidence for using a RFM 
instead remains conflicting. Although manikin studies demonstrated 
that providing continuous feedback on ventilation pressures, tidal vol-
umes, mask leak, SpO 2, heart rate and FiO2 via a RFM improved the 
performance of the caregiver during PPV [86,99–101], a recent multi-
center randomised controlled trial showed no difference between 
neonatal resuscitation with or without integrated feedback by RFM [89]. 
This result might be explained by previous findings that the use and 
interpretation of a RFM in the delivery room is experienced as chal-
lenging and therefore not helpful to all caregivers in critical decision 
making [7,102]. 

Although continuous, objective and accurate data acquisition is 
necessary to further implement modern technological innovations such 
as closed-loop interventions and prediction models, the question is 
whether presenting all this data directly to the caregivers is always 
useful. Future research should also be focused on which data to present, 
and in particular in what manner, to facilitate quick assimilation and 
easy interpretation by caregivers so that they can recognize and act upon 
abnormalities or changes in physiology. In other words, in the design or 
development of monitoring methods, one should consider carefully 
whether the data is processed by algorithms or a human brain. 

8. Man and machines 

Our understanding of the foetal to neonatal transition and the un-
derlying physiological changes has evidently increased in the recent 
decades, facilitating clear opportunities aiming to improve clinical 
outcome. However, these insights also underscore the eminent 
complexity of the transition process, especially in ill or preterm infants 
who cannot meet the required physiological challenges on their own. 

Whilst the expansion of monitoring solutions and intervention stra-
tegies and the finetuning of protocols and target ranges can definitely 
aid caregivers in providing the right support, it makes the resuscitation 
process increasingly sophisticated. As of today, caregivers continuously 
have to assimilate and interpret many physiological parameters from 
different devices in order to decide if, when and which intervention is 
required, in just a small-time window. The more difficult, dynamic and 
versatile the process, the more prone it becomes to human errors such as 
forgetfulness and lack of continued focus. 

Over the last decades the development and adoption of automated 
medical technology has tremendously increased and accordingly 
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revolutionised medical practice, but not yet in the delivery room. We 
argue that the development and implementation of automation, closed- 
loop systems and artificial intelligence could serve as a next iteration in 
improving resuscitation management by reducing human error and 
unwanted variability in human behaviour. However, this can only be 
achieved if we critically validate the added value using a holistic 
approach; not only taking into account the patient but also the care-
givers. This means that we should not blindly use existing solutions for 
new problems but find new ones fitting the entire context. We should not 
use or implement innovations because it is technically feasible, but 
because it is desirable and we should not endlessly extend and expand 
existing solutions but come up with solutions that replace a bundle of 
existing ones. 

Although some might dream, and others fear, a completely auto-
mated transition support system, it is more likely that technology will 
take on an integral part of resuscitation management, resulting in an 
increased caregiver-machine interaction. Given the growing complexity 
of automated systems, the poor explainability of artificial intelligence 
and the consequences of possible erroneous automated interventions, a 
paradigm shift is necessary. Caregivers should not only be clinically 
aware, understanding the status of the patient with regard to the 
interlinked physiological changes, but be situational aware, also un-
derstanding the status of all automated devices, systems and software 
during the transition process. Shaping this role is however not the sole 
responsibility of the caregivers. To make the most out of it, designers and 
developers should indeed focus on the explainability and interpret-
ability of automated systems and error prone interfaces including clear 
user feedback. Managers and medical engineers should moreover ensure 
that caregivers are trained like pilots; focussing on the capabilities to 
identify and respond to system errors or failure. As it is utopian to think 
that capitalising some strength of computers will fully replace human 
weaknesses, caregivers have to accept that improvement of care will 
always remain an iterative process. 

9. Conclusion 

Although the complexity of stabilisation after birth increases by our 
growing understanding of the complex physiology, the development and 
implementation of technology to assist in this process lags behind. 
Implementing state-of-the-art technology during the neonatal stabilisa-
tion would enable us to i) prevent hypo- and hyperthermia through 
closed-loop temperature management, ii) stimulate spontaneous 
breathing by providing automatic repetitive tactile stimulation to all 
infants, iii) control oxygenation in relation to neonatal transition 
through closed-loop oxygenation, iv) support spontaneous breathing 
during neonatal transition by automated PB-CPAP algorithms and v) 
provide safe and effective ventilation by using synchronised volume 
targeted ventilation (Fig. 3). By using technology to assist caregivers to 
provide the optimal care, caregivers would be able to comprehend an 
overview of the infant’s clinical condition more easily and finetune the 
stabilisation where appropriate. 

Although most of the technology discussed in this review is already 
used in the NICU, it cannot simply be extrapolated to the delivery room 
because of the difference in physiology, environment and situation. The 
adoption of automation has great potential to improve the care we 
provide in the delivery room, as long as we put humans, not technology, 
first. Above all, we must realise that technology does not make man 
superfluous: the clinical view remains necessary. 
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