

The wild Brauer-Manin obstruction on K3 surfaces Pagano, M.

Citation

Pagano, M. (2024, July 4). *The wild Brauer-Manin obstruction on K3 surfaces*. Retrieved from https://hdl.handle.net/1887/3766332

Version:	Publisher's Version
License:	<u>Licence agreement concerning inclusion of doctoral thesis in the</u> <u>Institutional Repository of the University of Leiden</u>
Downloaded from:	https://hdl.handle.net/1887/3766332

Note: To cite this publication please use the final published version (if applicable).

STELLINGEN

behorende bij het proefschrift

The wild Brauer-Manin obstruction on K3 surfaces

1. Let $V \subseteq \mathbb{P}^3_{\mathbb{O}}$ be the projective K3 surface defined by the equation

$$x^{3}y + y^{3}z + z^{3}w + w^{3}x + xyzw = 0.$$

The class of the quaternion algebra

$$\mathcal{A} = \left(\frac{z^3 + w^2 x + xyz}{x^3}, -\frac{z}{x}\right) \in \operatorname{Br} \mathbb{Q}(V)$$

defines an element in Br(V). The evaluation map $ev_{\mathcal{A}} \colon V(\mathbb{Q}_2) \to Br(\mathbb{Q}_2)$ is non-constant, and therefore gives an obstruction to weak approximation on V. Finally, $V(\mathbb{Q})$ is not dense in $V(\mathbb{Q}_2)$, with respect to the analytic topology.

- Let V be a smooth, proper and geometrically integral k-variety and V an O_k-model of V. Let p be a prime of good ordinary reduction for V of residue characteristic p. Assume that the special fibre V(p) has no non-trivial global 1-forms, H¹(V(p), Z/pZ) = 0 and (p − 1) ∤ e_p. Then the prime p does not play a role in the Brauer–Manin obstruction to weak approximation on V.
- 3. Let *V* be K3 surface over a number field *k* and \mathfrak{p} be a prime of good ordinary reduction for *V*. Then there exists a finite field extension k'/k and an element $\mathcal{A} \in Br(V_{k'})[p]$ that obstructs weak approximation on $V_{k'}$.
- 4. Let *V* be a K3 surface and \mathfrak{p} be a prime of good non-ordinary reduction for *V* with $e_{\mathfrak{p}} \leq (p-1)$. Then the prime \mathfrak{p} does not play a role in the Brauer–Manin obstruction to weak approximation on *V*.
- 5. Set X = Kum(A), where $A = E_1 \times E_2$, with E_1, E_2 two elliptic curves over \mathbb{Q} with good ordinary reduction at 2 and full 2-torsion defined over \mathbb{Q}_2 ; then every element in Br(X)[2] has constant evaluation map on $X(\mathbb{Q}_2)$.
- 6. Let $A = E \times E$, where E is the elliptic curve given by the minimal Weierstrass equation

$$y^2 + xy + y = x^3 - 7x + 5$$

Let *V* be the corresponding Kummer K3 surface over \mathbb{Q} . Then 2 is a prime of good ordinary reduction for *V* that does not play a role in the Brauer–Manin obstruction to weak approximation.

7. Let *V* be the K3 surface over $k := \mathbb{Q}(\sqrt{2})$ defined by the equation

$$x^{3}y + y^{3}z + z^{3}w - w^{4} + 2xyzw - \sqrt{2}xzw^{2} = 0.$$
 (1)

The class of the quaternion algebra

$$\mathcal{A} := \left(\frac{z^2 + 2xy}{z^2}, -\frac{z}{x}\right) \in \operatorname{Br} k(V)$$

lies in Br(V)[2]. Let \mathfrak{p} be the prime above 2 in \mathcal{O}_k , then the evaluation map attached to \mathcal{A}

$$\operatorname{ev}_{\mathcal{A}} \colon X(k_{\mathfrak{p}}) \to \mathbb{Q}/\mathbb{Z}$$

is non-constant.

8. Set $L = \mathbb{Q}_3(\zeta)$ with ζ primitive 3-root of unity. We define *X* to be the Kummer K3 surface over *L* attached to the abelian surface $A = E \times E$, with *E* the elliptic curve over *L* defined by the Weierstrass equation

$$y^2 = x^3 + 4x^2 + 3x + 1.$$

Then there exists $\mathcal{A} \in Br(X)[3]$ such that $ev_{\mathcal{A}} \colon X(L) \to \mathbb{Q}/\mathbb{Z}$ is non-constant.

- 9. Progress and change are always positive. But there is an exception to every rule: Snellius was a better building for the mathematical department of Leiden than Gorlaeus.
- 10. According to some parameters, colour analysis can be considered closer to being a science than mathematics.

Margherita Pagano, Leiden, 04-07-2024