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CHAPTER

Computations with the refined
Swan conductor

This final chapter is divided in two parts. In the first part we develop some
techniques needed to compute the refined Swan conductor of certain elements in
the Brauer group. In particular, in Section starting from a result from Bright
and Newton, we prove a formula that relates the refined Swan conductor with the
extension of the base field over which the variety is defined. In Section we
explain some results of Kato that allows to compute the refined Swan conductor
of p-order elements when the base field contains a primitive p-root of unity. In
the second part of this final chapter we provide several examples and we use them
to show that Theorem and are optimal. In particular, we exhibit K3
surfaces V' over number fields such that:

(a) V has good ordinary reduction at a prime p with ramification index e, = p—1
and there is an element A € Br(V)[p] whose evaluation map is non-constant
on V(kp);

(b) V has good ordinary reduction at a prime p with e, = p — 1 and p does not
play a role in the Brauer—-Manin obstruction to weak approximation;

(c) V has good non-ordinary reduction at a prime p with e, > p and there is an
element A € Br(V')[p] whose evaluation map is non-constant on V(ky).

More precisely: from (a) we get that the condition (p — 1) { e, in Theorem
is necessary; from (b) we get that the inverse of Theorem does not hold in
general; from (c) we get that the bound in Theorem is optimal.
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Finally, as already pointed out in the introduction, we recall that in all the
examples of K3 surfaces in which a prime of good reduction plays a role in the
Brauer—-Manin obstruction of weak approximation, the corresponding element in
the Brauer group is of transcendental nature, i.e. it does not belong to the
algebraic Brauer group, which is defined as the kernel of the natural map from
Br(V) to Br(V), where V is the base change of V to an algebraic closure of k (cf.

Lemma [4.3.4)).

Moreover, we prove that if V' is a Kummer K3 surface coming from a prod-
uct of elliptic curves defined over Q with good ordinary reduction at the prime
2 and full 2-torsion defined over Q2, then Br(V)[2] = Ev_1Br(V)[2] (cf. Theo-
rem [4.5.6). This theorem proves what was already predict by Ieronymou after
some computational evidence, see [Ier23, Remark 2.6].

4.1 Refined Swan conductor and extension of the base field

Let L be a p-adic field with ring of integers Oy, uniformiser 7 and residue field /.
Let X be a proper, smooth and geometrically integral L-variety having a smooth,
proper model X with geometrically integral fibre. We denote by Y its special fibre:

X X Y

RN =

Spec(L) —— Spec(Or) «—— Spec(¥)

In this section we want to analyse what happens to the refined Swan conductor
when we take a field extension L’/L of the base field L. Bright and Newton prove
the following result.

Lemma 4.1.1. Let K'/K be a finite extension of Henselian discrete valuation
fields of ramification index e. Let ™ be a uniformiser in K', F' be the residue field
of K' and define a € F' to be the reduction of m(xw')~¢. Let x € fil,Br(K), and let

res: Br(K) — Br(K')
be the restriction map. Then res(x) € file, Br(K') and if rsw,, -(x) = (o, ), then
ISWen, o (res(x)) = (@™ " (o + B A dlog(a),a"ef).
Proof. See [BN23| Lemma 2.16]. O
The aim of this section is to use this result to prove the following Lemma.
Lemma 4.1.2 (Base change). Let L'/L be a finite field extension, with ramifi-

cation index ers/r,. Let ' be an uniformiser in L' and ¢’ its residue field. Let
A € Br(X) and let

res: Br(X) — Br(Xy/)
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be the restriction map. Then res(A) € fil Br(Xr) and if rswy, (A) = (a, B)

GL//L’VL

with (o, ) € HO(Y, Q%) @ HO(Y,QL), then
rswe,, na (res(A)) = (@ "a,a e 8) € H(Yer,93,,) @ HO(Yer, 4,
with a € ¢' reduction of w(w')~¢L'/L.

The refined Swan conductor of an element A € Br(X) is defined through the
refined Swan conductor of its image in the discrete henselian valuation field K.
Namely, we have the following commutative diagram

ISWp,

fil,, Br(X) HO(Y,02) & HO(Y, QL)

l l

fil,Br(K") — " 4 02 & Q.

We recall the construction of K”: let 1 be the generic point of Y C X, then
we define R as henselisation of the discrete valuation ring Ox , and K" as the
fraction field of R. The construction of O, (and hence of K") is local on X.
From now on we will therefore assume X = Spec(A), with A smooth Op-algebra,
Y = Spec(A/mA); hence n = (7) € Spec(A) and Ox,, = A(r). We can re-write
diagram as:

A®p, L +—— A — A/rA

1T &

L Or, L.

Lemma 4.1.3. The uniformiser 7 is also a uniformiser for K". Moreover,
orden (p) = ordp(p).

Proof. The uniformiser 7 is also the generator of the maximal ideal of A(,), hence
of its henselisation R. The equality (p) = (7)¢ as ideals on Oy implies that
p € (m)°R, hence e; := ordgn(p) < e. The equality between the two orders follows
from the fact that for every m > 1, (7)™ RN Op = (7)™ Oy, O

We denote by L’ a finite field extension of L, by Oy, its ring of integers with
uniformiser 7’ and residue field /. Moreover, we denote by X’, X’ and Y’ the base
change of X, X and Y to Spec(L'), Spec(Oy/) and Spec(#') respectively. Let (K')"
be the fraction field of R’, where R’ is the henselisation of the discrete valuation
ring Oy ys. In this setting

A®o, Op

A
— @l =A L0 =A / U=
Re Qo £ e Qo O ®o,, Tar)

TA

Thus, the generic point 7" of Y is the ideal generated by 1®7" and Ox+ y+ becomes
the ring (A Koy OL’)(l(gm—')-

Lemma 4.1.4. The field extension (K')'/K" is finite with ramification index
eL//L.
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Proof. We start by noticing that
O,’wm/ ~ OXJI ®o, Or.

We have that Oy, ®o, O = S7H(A®o, Or/), with S = (A\ (7)) - A®o, O,
while Oy, = T7H(A®op, Op/), with T' = (AQe, Or/)\ (1@7'). The isomorphism
follows from the equality (1 ® 7")°r’/t = (1 ® ) together with the fact that Op
is a free Or-module with basis {1,#’,..., (7")°="/2}.

As a second step we show that
R ~R®o, Op .

The discrete valuation ring Op: is a finite Op-module, hence we get that the
natural map

R— R®o, Op

is finite; therefore [Stal, 05WS] implies that R ®, Or is henselian and therefore
by [Sta, 05WP]

R =R®o, OL.

As a final step, we notice that

(K'Y =R [1,] =R H :RH @, L' =K"'ep L.

™

Proof of Lemma[{.1.2 It follows immediately from the previous lemma together
with Lemma and the fact that since a € ¢/, which is a finite field, dlog(a) =
0. O

Corollary 4.1.5. Assume that A € fil,Br(X) for some n > 1 is such that
rswy, x(A) = (o, B) with o # 0, then A ¢ Bri(X), i.e. A is a transcendental
element in the Brauer group of X.

Proof. Assume A to be in Bry(X); then by definition of Bry(X) there is a finite
field extension L’/L such that res(A) = 0 in Br(Xy/), where res is the restriction
map from Br(X) to Br(Xp/). Let er//z, be the ramification index of the extension,
7’ be a uniformiser of L' and ¢ its residue field. We know from Lemma [£1.2] that

—n

ISWe(L//L)n,np, (I'ES(.A)) = (C_L " Q, dineL'/L ' 6)

where a=" € (¢')*. Hence, rsWe(1//1)n,x,, (res(A)) # (0,0) and therefore res(.A)
can not be the trivial element. O
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4.2 Computations with the Refined Swan conductor on
the p-torsion of the Brauer group

The aim of this section is to collect some results that will allow us to compute later
in this chapter the Swan conductor and the refined Swan conductor of elements
of order p in the Brauer group of K3 surfaces. In this section we work under the
same setting as Section K is a henselian field of characteristic 0 with ring
of integers Ok, uniformiser 7w and residue field F' of positive characteristic p.

We work under the additional assumption that the field K contains a primitive
p-root of unity ¢. It follows from the Merkurjev-Suslin Theorem [GS17, Theorem
8.6.5] that in this case Br(K)[p| is generated by the classes of cyclic algebras. In
order to do computations with the refined Swan conductor, in this section we will
introduce a new filtration on Br(K)[p], defined by Bloch and Kato in [BK86] and
prove that via this filtration it is possible to compute the refined Swan conductor
of cyclic algebras in Br(K)[p].

4.2.1 Cyclic algebras
Let a,b € K*, then the K-algebra (x,y), defined as

(,y)p :=(a,b ] a? =z, BP =y, ab = (ba),

is a central simple algebra, see [GS17, Section 2.5] for more details. With abuse
of notation we will denote by (z,y), also the corresponding equivalence class in
Br(K)[p|. It is possible to realise (z, y), also as the cup product of an element x, €
H)(K) with 6(y), where ¢ is the boundary map K* — H'(K,Z/pZ(1)) coming
from the Kummer sequence (a proof can be found in the proof of Proposition 4.7.1

[GS17)).

4.2.2 Another filtration
The map from Z/pZ(1) to Z/pZ(2) sending 1 to ¢ induces an isomorphism
Br(K)[p] ~ H? (K,Z/pZ(2)) =: h*(K). (4.3)

For any two non-zero elements x,y € K we will denote by {z,y} € h?(K) the cup
product of §(z) with d(y).

Bloch and Kato [BK86] define a decreasing filtration {U™h?(K)},>0 on h%(K)
as follows: U°h?(K) = h?(K) and for m > 1, U™h?(K) is the subgroup of h?(K)
generated by symbols of the form

{1+ 7™z,y}, with z € O and y € K*.

In this section we are going to prove that for any 0 < m < €’ the isomorphism (4.3))
induces an isomorphism

U™h?(K) ~ filos_,, Br(K)[p).
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This isomorphism will be crucial in being able to compute the refined Swan conduc-
tor. In fact, in [BK86] Bloch and Kato describe the graded pieces of the filtration
{U™h2 (") bz o h3(K)
o Uth(Kh)
85T Umrip2(Kh)
in terms of differential forms on the residue field F. In [Kat89] Kato strongly relate
them to the computation of the refined Swan conductor. We now state the two

main results that show how it is possible to calculate the refined Swan conductor
of elements of order p in Br(K).

Proposition 4.2.1. We have the following description of the graded pieces gr'™.

(1) U™h2(K") = {0} for m > €; U h3(K) coincides with the image of the
mjective map

Ar: HA(F) @ HY(F) — gr® = h2(K)
b1 - dlogg] =+ {1+ (¢ ~ 17z, )
01 [Z] = {1+ (¢ — )Pz, 7}
where x and y are any lifts of T and § to K.
(2) Let 0 <m < €' and ptm. Then we have an isomorphism
pm: Qp = g™
Z-dlogy— {1+ 7"z, y}
where x and y are any lifts of T and y to K.
(8) Let 0 < m < €' with p| m. Then we have an isomorphism
P Xp/ Zp © U/ 25 = g™
([Z-dlogg],0) — {1+ 7"z, y}
0,[z]) = {1+ 7"z, 7}
where x and y are any lifts of T and § to K.

(4) We have an isomorphism

Po: Q%‘,log 2 Q}F,log = gr?
(dlogy1 A dlog 2, 0) = {y1,y2}
(0,dlogy) — {y,}
where y,y1 and yo are any lifts of §,y1 and s to K.

Proof. See [BK86, Section 5]. More precisely, in [BK86, Lemma 5.1] Bloch and
Kato prove However, instead of A, (cf. Section they have
the morphism p./, and they just prove afterwards [BK86, equation (5.15.1)] that
per induces the map A,. Finally, in [BK86, Lemma 5.2 and 5.3] the rest of the
proposition is proven. O
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Note that since by assumption K contains a primitive p-root of unity ¢, the
ramification index e = ordx (p) is divisible by (p — 1) and hence ¢’ = ep(p — 1)~*
is divisible by p. The key result of this section is the following proposition.

Proposition 4.2.2. For every 0 < m < ¢ we have that the isomorphism@
induces an isomorphism

files_Br(K)[p] =~ U™h?(K).

Let ¢ be the reduction modulo w of ¢ 1= w*e'(g —1)P. For m < €' the compositions
ISWe/ g © P are as follows:

rswe x(po(a, B)) = (¢a, EB)
1SWe' —m x(pm (@) = (eda, (€' — m)eB), ifptm
ISWe/—m,x (pm (e, B)) = (¢da, cdp), ifp|lm

Warning: The proof of Proposition [£:2.2] is quite technical and will occupy the
rest of this section.

4.2.3 Proof of Proposition [4.2.2

We divide the proof into several rather technical lemmas.

Lemma 4.2.3. Let a,b € O and n, m be non-negative integers, then the symbol
{1+ n"a,1 4 7a™b} can be rewritten as

b b
— 31 4 gtm a A4+amhy — 14 gt a ,—m"a .
14+ 7"a 14+ m"a

In particular, it lies in U™ h2(K).
Proof. This lemma is a reformulation of a special case of [BK86, Lemma 4.1], for

which no proof is provided. We have that

ab
1+ 7"a

{1—|—7r"a,1+7rmb}+{l+7r"+m ,1—|—7rmb} =
{1+ 7"a(l+7™b),1+ 7n"b}.
We also have that,
{1+7"a(l+7"b),1+7"b} + {1+ 7"a(l +7"b), —7"a} =
{1+ 7"a(l+7™b),—(1+ 7"b)7"a} =0

where the last equality follows from the fact that {z,y} =0 if  + y = 1. Finally,
since {1 + 7"a, —7"a} = 0, we have

{1+ 7"a(1+a™b), —7"a} = {1+ 7"a(l +7"b), —7"a} — {1 + n"a, —7"a} =

1+ 7r”+ma7b, —7m"a .
14 7"a
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Lemma 4.2.4. Let x € Ok, y € K* and n,m be two positive integers; then
{(y, 1 +7"x)p, 1 +7"T} can be written as

Tx Tx
- Ul+4atm—=_ 14 7"T Ul4attm_——=_ _gm .
(Xy { o 14z’ o }+Xy { o T+ I}>

Proof. As already anticipated at the beginning of this section, we can write (y, 1+
7"x)p as the cup product of x, € HY(K) and 6(1 + 7™z) with § boundary map
coming from the Kummer sequence, see [GS17, proof of Proposition 4.7.1]. Hence,

{(y, 1 +7"x)p, 1 +7"T} = x, U{1 + 7", 1 +7"T}.
The result now follows from Lemma [4.2.3] O

Corollary 4.2.5. If m >0 and m +n > €', we get that

T
{(y, 1 + me)p, 1 + ,].‘_TLT} = —Xy U {1 + WTL-FTUﬁ’ _ﬂ—mm} .

Proof. If follows from the previous lemma together with the fact that by Lemma[4.2.3]

T
{1 + 7Tn+m1+733n$7 1+ w"T} € U™ H"p2(K)
Y

and U™t h2(K) = 0 from Proposition 4.2.1] since 2m +n > ¢'. O

Proposition 4.2.6. Let e = ordg(p) and ' = ep(p — 1)L, For 0 < m < ¢ the
isomorphism of equation (4.3)) induces an inclusion

U™h?(K) C filo_, Br(K)[p).

Proof. This is [Kat89, Lemma 4.3(1)], we include a proof of it here. By definition
U™h?(K) is generated by symbols of the form {1 + 7™z, y}, with x € O and
y € K*. In order to show that the corresponding element in Br(K)[p] lies in
file—,, we need to check that

{(1+7"z,y,1 47 ~"T} = 0.

From Corollary we have that {1+ 7z,y,1+ 7¢ 1T} can be written as

e, 'I:T m m €, :Z:T
wu {ten i b= { e

and the latter is zero, since we know that fil..Br(K)[p] = Br(K)[p], see Sec-
tion L2311 O

We will now show how the inclusion appearing in Proposition is an equal-
ity. We start by recalling the following properties that we proved in Section|1.2.3.1

Properties 4.2.7. For any m > e’ we have fil,, Br(K)[p] = Br(K)[p]. Moreover,
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(1) If p4m, then the map
fil,, Br(K)[p] —=75 0% & Ok 22 Qb
has also kernel equal to fil,,,_1Br(K)[p].
(2) If p| m and m < ¢/, then the map rsw,, . takes values in B% & Br..

(3) If m = ¢/, then the map multz—1 orswes , takes values in Q%)log @Q}mog, with

¢ the reduction modulo 7 of 7€ - (¢ —1)7P.
We proceed by induction on m + 1.

e For m = 0 we have by definition U°h?(k) = h?(K), which implies that the
inclusion U°h?(K) C fil./Br(K)[p] is indeed an equality.

e For m = 1 we have
Q2F,10g ® Q}J‘Jog = gr0h2 (K) - gre,Br(K)[p] — QQF,log D Q}ﬂlog (44)

where the first isomorphism is induced by pg, while the inclusion follows from
property 4.2.7(3)l Moreover, note that given o« = dlogz A dlogy € Qfmog,
po(OZ,O) =Y and

{z,y, 1+ 7T} = {z,y,1 + (C = DP(cT)} = As (61 [¢Tdlog @ A dlog],0).

Similarly, if we start with 8 = dlogy € Q}mog, 00(0,8) ={y, 7} and

{y,m 1+ 7T} = {y, 7,1+ (( = 1)P(cT)} = Ar (0,81 [eTdlog7]) .

Hence, rswe »(po(e, 8)) = &(a, B) and therefore the chain of maps (4.4) is
the identity and we have that the inclusion of U*h?(K) in fil,_1Br(K)[p| is
in fact an equality.

e Inductive step on m + 1 when p{ m and m < ¢’. In this case we have

Qf ~ g™ Cgr,_,, = Qk

where the first isomorphism is induced by p,,, while the inclusion is the
restriction of the refined Swan conductor to QL. which is injective because
of property 4.2.7(1)l In this case, given o = Zdlogy € Qk, pp(a) = {1+
7™z, y}. From corollary 4.2.5

/ / T
{1+7"z,y,1+7°""T} =—xy U {1 + ¢ 1_::me7—x7rm}

The latter can be rewritten as

cxT cxT
- 1 —1)P— - 1 —1)P—— 7.
qu{ +(¢—-1) 1+me,x}+m qu{ +((—1) 1+7Tm33,7r}
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which is equal (using isomorphism (4.3))) to

cxT
1+ mmx

cxT
1+ 7mx

{1+(c—1)P my} —m{1+(c—1)P yw} (4.5)

Note that ;5 is a possible lift of z € F' to K. Hence, (4.5) is equal to

Ax (ET;Edlog:E A dlog y, méTzdlog g) =\ (ETda, mETa) .
Thus, in this case the composition
Q. ~ g™ Cgr, . — QL

sends « to méa and therefore we get again the equality between U™h?(K)
and filo_,,, Br(K)[p]. Finally, using that by induction hypothesis we have an
isomorphism between U™h?(K) and file: _,,, Br(K)[p], we get that U T1h%(K)
is isomorphic to file/_ (,41)Br(K)[p].

Inductive step on m + 1 when p | m and m < €’. In this case we have
Qp/Zp ® O/ Z% ~ gr™ " < gr,_,, < B @ Bp

where the first isomorphism is induced by p,,, while the inclusion comes
from the refined Swan conductor property Given « = [Zdlogg] in
OL/ZL, pm(a,0) = {1+ 7™z, y} and again using an argument similar to the
one used above

{14772,y 147 "™T}
T T
{1 ) - -

14+ 7mg + my’

cxT
=<1 -1
{ +(C—1) 1+ﬁmz7w7y}

where the last equality follows from the fact that p | m and that we are
working with groups of order p. Like before, note that is a possible
lift of £ € F' to K. Hence,

{1y

T
14+7mx

cxT

m,x,y} = )\ﬂ- (ETdOé,O)

With very similar computations it is possible to show that starting from
B =[] € O /2%,

1+a"x,w ,1+7re,_mT = \:(0,ETdj
P

Hence, in this case the composition

rsw

Oh/Zh © Q% /2) ~ @™ < gy — T B} & B,
sends (a, 8) to (¢da,cdB). Finally, using that by induction hypothesis we
have an isomorphism between U™h?(K) and fil.s ., Br(K)[p], we get an iso-

morphism between U™ h?(K) and file_ (;n41)Br(K)[p].
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4.3 The case of K3 surfaces

In this thesis examples will always be about K3 surfaces with good reduction, cf.
Section for the definition and some properties of K3 surfaces. The special
fibre of a K3 surface with good reduction is still a K3 surface, see for example
[BN23, Remark 11.5]. We start by stating the following well known result, of
which we include the proof as we could not find it in standard literature.

Lemma 4.3.1. Let p be a prime number and Y a K3 surface over the finite field
Fyn for some non-negative n. Then'Y is ordinary if and only if |Y (Fpn)| # 1
mod p.

Proof. The proof is an almost immediate consequence of [BZ09, Section 1]. Let
Y be the base change of Y to an algebraic closure of F,» and [ be a prime dif-
ferent from p. The Frobenius endomorphism F of Y acts by functoriality on
22-dimensional Q;-vector space

Hgt(Ya Q) = Hﬁt(Y,Zz) ®z, Q.

Let A; with ¢ = 1,...,22 be the corresponding eigenvalues. From the Lefschetz
trace formula [Kat81l Section 1] we get

22
Y (Fp)l = (1) Te(F, Hgy (V, Qi) = 1+ Y N+ p™" (4.6)

i=1

The last equality follows from the fact that for K3 surfaces both the first and the
third Betti numbers are trivial and HY, (Y,Q;) and HZ (Y, Q;) are 1-dimensional
Qq-vector spaces with Frobenius eigenvalue equal to 1 and p?" respectively [Del74}
Theorem 1.6].

It is proven in [BZ09, Lemma 1.1] that a K3 surface Y is ordinary if and only
if Z?il A; is not divisible by p. It is therefore clear from that

22
Y(Fpr)| =1+ Y Ai#1 modp.

i=1
if and only if Y is ordinary. O

If the K3 surface X has good ordinary reduction, then the remark that follows
shows that there is a strong link between global logarithmic 2-forms on Y and
p-torsion elements on X having non-constant evaluation map.

Remark 4.3.2 (K3 surfaces with good ordinary reduction). Let X be a K3 surface
defined over a p-adic field L having absolute ramification index divsible by p — 1
with good ordinary reduction. Assume that there is an element A € Br(X)[p]
that does not belong to filyBr(X). Then, A € fil,,Br(X) for some n > 1. From
Section we can assume n < €' = & = p, since file Br(K)[p] = Br(XK)[p].
Moreover, for n < ¢’ = p we have from Corollary together with the fact
that for K3 surfaces we do not have non-trivial global 1-forms, fil, Br(X)[p] =
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filoBr(X)[p]. By property 4.2.7(3)| we know that there is a constant ¢ € £* such
that

mult, (fil,Br(X)[p]) € HO(Y,9Q8,,,) CH(Y, 03 ).

From Proposition |4.2.2| we know that the class of A in % ~ gr¥ has to
o

be such that

(4] = po(w,0)
where w € QzF,log is the image in Q% of a n9n—trivial global logarithmic form, i.e.
an element of H(Y, Q3,,,,). Moreover, H(Y, Q3. | ) is a 1-dimensional F,-vector
s Jlog

space (cf. (3.2))).

If the K3 surface is defined by an homogeneous polynomial of degree 4, the
following lemma gives us a way to write down explicitly a generator for the /-vector
space of global 2-forms.

Lemma 4.3.3. Let ¢ be a field and f(xo, 1, 22,23) € Lo, 21, X2, 23] be a homo-
geneous polynomial of degree 4. Assume that the corresponding projective variety
Y is smooth. Then Y is a K3 surface and the 1-dimensional {-vector space of
global 2-forms is generated by the 2-form

d(z)na(z)
1, 9f :

3
zg Ozs

w =

Proof. The first part follows from [Huy16, Example 1.3(i)]. For every permutation

{p,q,i,j} of {0,1,2,3} we define W, , C Y as the open subset of Y where z, - %

does not vanish. We define

a(z)
Wp,q *= ~of . EHO(Wp,anQY)~

Oxq

(_1)p+q+1 A d (9%7)

8
ﬁu""

Since Y is smooth, the open sets {W), ,} cover it. We are left to show that for

every (p> q) 7& (p/a q/)> Wp,g = Wp’,q’ Ol WP,Q N Wp/,q’-
It is enough to show the equality in the following two cases (the complete proof
follows from the symmetry among the variables):

e (p,q) =(0,1) and (p',¢") = (0,2).

Let 51 1= x1(w0) 71, 59 1= wa(wg) ~?

, s3:=w3(x0) " and fo := f(1, 51,52, 53).

We can then rewrite wp 1 and wp 2 as

w - dSQ A d33 and w o dSl A d83
Y Y 02 0o )dsy
From the equation fy =0 we get
9o 9o 9fo

——d ——d ——ds3 = 0.
351 51 + 652 52 + 353 53
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In particular,

_ afO dfo afO _ af() afo
0= (881 dsy + D5, dss + Dss dss | ANdsz = D5, (dsy Adss)+ D5, (dsg Adss).
therefore, on Wy 1 N Wy 2
dsa N\ dss ds1 A dss

WOJZW:(* )‘M:wo,z-

* (p,q) =(0,2) and (p',¢') = (1,2).

Let t1 := zo(x1) 7Y, to i= xo(x1) 7, t3 := a3(xy) ! and f1 := f(t1,1,t0,13).
On WO’Q N WLQ we have

-1 -1 -1 4
S1 Ztl, 52 8¢ ZtQ 83 854 :t3 81~f1=f0.

In particular,

Cdty Adts d(sy') Ad(ss sy
8f1/6t2 8Sf4f0/(9(82 . Sfl)

sfgdsl A dss

== ) sf38f07/882 = Wo,2

wi,2

where the second last equality comes from the equality

57 fo _39f0

A(sas7h) 1 Bsy
O

We point out that in [Ter23 Proposition 2.3] it is proven that for K3 surface
an element A lies in filyBr(X) if and only if ev4: X (L) — Br(L) is constant. It is
already known from [BN23| Lemma 11.3| that, since for K3 surface H*(Y,Z/pZ) =
0, then filyBr(X) = EvoBr(X) = Ev_;Br(X). Hence, from the result proven by
Ieronymou we know that in order to detect whether A belongs to filyBr(X) it is
enough to look at the corresponding evaluation map on the L-points, X (L).

Lemma 4.3.4. Let X be a K3 surface and A € Br(X) be such that A ¢ filoBr(X).
Then A ¢ Bri(X).

Proof. As we just pointed out, if A ¢ filgBr(X), then the evaluation map attached
to A in non-constant on X (L). The result now follows from the fact that in
[CTS13l, Proposition 2.3] Colliot-Théléne and Skorobogatov prove that for every
element in the algebraic Brauer group the associated evaluation map at a prime
with good reduction has to be constant. O
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4.4 Example of Chapter 2 revisited

We start with recalling the following example, which is the central result of Chap-
ter 2.

Example 4.4.1 ([Pag22]). Let V C P} be the projective K3 surface defined by
the equation
23y + 122 + 2Bw + wir + zyzw = 0. (4.7)

Then V has good ordinary reduction at 2 and the class of the quaternion algebra

3 2
22 +wr + xyz z
A:(S i
x

) _x> S BI‘Q(V)

defines an element in Br(V'). The evaluation map ev4: V(Q2) — Br(Qs) is non-
constant, and therefore gives an obstruction to weak approximation on X.

In this case, HY(Y,2.) is a one dimensional F5 vector space, let w be the only
non-trivial element, then C'(w) = 0 or C(w) = w. However, Y being ordinary
implies that H°(Y, BZ) = 0, hence by Lemma and Corollary Clw)=w
and HO(Y, Q%) is a 1-dimensional Fa-vector space. From Lemma we get
that the non-zero global logarithmic 2-form w can be written (locally) as:

d <Z3+w2§+myz> d )

x

A
(z3+w2w+xyz> (
3

T

SHEN

w =

ISHENS
~

If we denote by f and g the functions w and £ seen as element in the

function field F' of Y, then we see that the two functions appearing in the definition
of A are lifts to characteristic 0 of f and g, and hence from Proposition

3 2
27 t+wr + xyz z
po(w,0) = {33371;} Ggro-

Using Proposition [£:2.2]
rswa (A) = (w,0) # (0,0)
and A ¢ fil; Br(X)[2] 2 Ev_1Br(X)[2].

Note that, by Remark [.3:2] we already know that since the K3 surface has good
ordinary reduction at 2, the only way for the prime 2 to play a role in the Brauer—
Manin obstruction to weak approximation via an 2-torsion element A € Br(X)[2]
is if A comes from a logarithmic 2-form through pg.

4.5 Kummer K3 surfaces over 2-adic fields

In this section we are going to treat Kummer K3 surfaces. As already mentioned
in Section those surfaces arise as the resolution of singularities of the quotient
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of an abelian surface by its involution map. The details about the construction
for fields of characteristic different from 2 can be found in [BO1, Section 10.5].

Let L be a 2-adic field. The recent papers [LS23], [Mat23] allow us to know
whether the Kummer K3 surface attached to an abelian variety A/L with good
reduction is still a K3 surface with good reduction (this was already known for
K3 surfaces over p-adic fields with p # 2). In [SZ12| Skorobogatov and Zarhin
link the transcendental part of the Brauer group of a Kummer K3 surface to the
one of the corresponding abelian variety (cf. Section . All these results
open up the possibility of building examples of K3 surfaces with good reduction
at the prime 2 and for which we are able to study the Brauer group. In this
section, we are going to show that for every pair of elliptic curves E7, F; over
Q with good ordinary reduction at p = 2 and full 2-torsion defined over o, the
2-torsion elements in the Brauer group of the corresponding Kummer K3 surface
X do not play a role in the Brauer—-Manin obstruction to weak approximation. In
particular, this shows that the field extension in Theorem [3.1.6]is needed. We will
then use these computations to exhibit an example of a K3 surface over Qy with
good ordinary reduction and such that Br(X) = Ev_;Br(X), showing that the
inverse of Theorem does not hold in general.

4.5.1 Kummer K3 surfaces and their Brauer group: generalities

Let A be an abelian surface over a field k of characteristic different from 2 and
V = Kum(A) the corresponding Kummer surface, Skorobogatov and Zarhin [SZ12]
prove that there is a well-defined map

7 : Br(V) — Br(A)

that induces an injection of Br(V)/Bri(V) into Br(A)/Bri(A). They also prove
that this injection is an isomorphism on the p-torsion for all odd primes, see [SZ12]
Theorem 2.4]. We say that an element A € Br(A4) descends to Br(V) if there
exists C € Br(V) such that 7*(C) = A.

Lemma 4.5.1. Let V = Kum(A), C € Br(V) and B := 7*(C) € Br(A). Let p be
a prime in Oy; if the image of C in Br(V,) lies in Ev_;Br(V,) then the image of
B in Br(A,) lies in Ev_1Br(A4,).

Proof. The result follows from the fact that any finite field extension M/k, and
P € A(M) we have

evg(P) = evy« (o) (P) = eve(m(P)).
O

Moreover, Skorobogatov and Zarhin [SZ12] show that given two elliptic curves
FE, and Es with Weierstrass equations

Ey:vi=u-(ur —y11) (w1 —712), Fa:vd=wus-(uz —v21) (uz — Y2,2)
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the quotient Br(E; x E)[2]/Bry(E1 x E2)[2] is generated by the classes of the four
Azumaya algebras

Aey oo = (U1 — €1)(u1 —m,2), (ug — €2)(uz — Y2,2)) with ¢ € {0,741}

Finally, if M is the matrix

1 V1,10 71,2 72,10 V2,2 —71,1 72,1
M= | 71 1 V1,10 V2,1 Y21 - (V2,1 — 72,2)
72,1 " 72,2 Y1,1 0 72,1 1 Y1,1 (71,1 - ’71,2)
—71,1 72,1 V2,1 (’Y2,1 - ’72,2) Y1,1 (71,1 - ’71,2) 1

then by [SZ12, Lemma 3.6

1. A, | ~,, descends to Br(V) if and only if the entries of the first row of M
are all squares;

2. A, 0 descends to Br(V) if and only if the entries of the second row of M
are all squares;

3. Ao,y,,, descends to Br(V) if and only if the entries of the third row of M are
all squares;

4. Ap,o descends to Br(V) if and only if the entries of the last row of M are all
squares.

4.5.2 Product of elliptic curves with good reduction at 2 and
full 2-torsion

In order to use the results summarised in the previous section we need to analyse
what the 2-torsion points of an elliptic curve with good ordinary reduction at
2 look like. Let E/Q be the elliptic curve defined by the minimal Weierstrass
equation

v oy +oy=2a+ax?+br+c (4.8)
with § € {0,1} and a,b,¢ € Z such that E has good reduction at 2. Assume
furthermore that the 2-torsion of E is defined over Qo, i.e. E(Q2)[2] = F(Q2)[2)].

Let «;, 8; € Q2 be such that E(QQ)[Q] = {O, (al,ﬂl), (052752), (043,63)}, with O
the point at infinity of E.

Lemma 4.5.2. Assume that 31, B2, B3 are ordered as

orda(f1) < orda(f2) < orda(f3).
Then ords (1) = —2 and asg, ag € Zs.

Proof. The 2-torsion points on E can be computed through the 2-division poly-
nomial of E, which is ¥o(z,y) = 2y +  + 4. In particular, a; = —23; — 6 with j;
solution of

D(y) ==y* + (—2y — 0O)y + oy — ((—2y — 0)® + a(—2y — 6)* + b(—2y — b) + ¢).
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The polynomial ®(y) can be rewritten as
(y) = 8y® — (1 — 120 + 4a)y* — (=606 + 4ad — 2b)y + 6° — ad® + b5 —c.  (4.9)

Looking at the coefficients of ®(y) we get that

orda (51 + B2 + P3) = orda(1 — 128 + 4a) — orda(8)
orda (8182 + 185 + B2B3) = orda(—662 + 4ad — 2b) — orda(8)
ordy(B12/33) = orda (62 — ad? + bd — ¢) — ordy(8).

From the first equation, we get ords(f1) < —3 that combined with [Sil86, The-
orem VIIL.7.1] tells us that ords(f1) = —3. From the third equation, we get
orda(B2) + orda(B3) > 0. Hence, if orda(82) = orda(f3) then Sz and S5 have both
non-negative 2-adic valuation; otherwise, if ords(f82) < orda(Bs3) then, from the
second equation, we get orda(f2) > 1 which implies again that both S and (3
have non-negative 2-adic valuation. The result now follows from the fact that
a; = —2B; — 6, with § € {0, 1}. O

Lemma 4.5.3. The change of variables given by

u=4r — 4o (4.10)
v =412y + x + 0) '

induces an isomorphism between E and the elliptic curve given by the equation

o2 = u(u— 1) (u - 72) (4.11)

where y1 =4 - (g —aq) and 2 =4 - (a3 — a1).

Proof. The change of variables

uy = 4z
vy =42y + x + 9)
sends the elliptic curve given by the equation
v? = ui + (4da + 1)ui + (16b + 85)uy + 16¢ + 165° (4.12)

to the elliptic curve given by equation . Moreover, the 2-division polynomial
of E is given by 2y + x + §. Hence the non-trivial 2-torsion points on the elliptic
curve given by equation are sent to non-trivial 2-torsion points on E. It is
therefore enough to consider the extra translation v = u; — 4a; and v = vy to get
the desired equation. [

Let Fy and Es be two elliptic curves with equations of the form . We de-
note by (d;, a;, b;, ¢;) the parameters that determine the equation attached to E;, by
(e j,Bi,j), 7 € {1,2,3} the non-trivial 2-torsion points of E; and by A the abelian
surface given by the product of Fy with Es. We denote by (Ev_;Br(A)[2], Bri(A4)[2])
the subgroup of Br(A)[2] generated by Ev_;Br(A)[2] and Bry (A)[2], where Br;(A)[2]
is the algebraic Brauer group of A.
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Lemma 4.5.4. Assume that €, and es are as in Section [[.5.1; then the class of
the quaternion algebra Ae, ., lies in (Ev_1Br(A)[2],Br1(A4)[2]) if and only if at
least one among €1 and eo is different from 0.

Proof. We fix m = 2 as a uniformiser and £ = —1 as a primitive 2-root of unity.
We start by assuming that at least one among €; and e is different from 0. By the
symmetry of the statement, we can assume without loss of generality that e; # 0.
Then

Ay e = (w1 —v11) - (U1 —712) 5 (u2 — €2) - (u2 — 12,2)) = (u1, fe, (u2))

where fe,(u2) = (u2 — €2) - (u2 —72,2). The quaternion algebra A, ., corresponds
via the change of variables of Lemma to

Ao =@ (@1 —a11), fo,(dxa —4dao)) = (21 — 11, fe,(dz2 —4aay)).

We define

) (r2—an2) (w2 —ag3) if €2 = 72,15
962(:1:2) T . _
(1’2 — Oé271) . (1’2 — Ot273) if €9 = 0.

Then, 16 - g, (x2) = fe,(4z2 —4as1). Thus we can rewrite A, ., as

(—a1,1, gea(22)) @ (1 + (—ag) - 21, gey (22))-

Since (—01,1, ge, (x2)) lies in Brq(A)[2], we are left to show that the class of the

quaternion algebra (1 + (—a1.1)7 ! - 71, ge,(22)) lies in Ev_1Br(4)[2]. By Lemma
we know that ords (af}) = 2 and therefore by Proposition |4.2.2

(1 + (_aii) " L1 Geo (1'2)) € ﬁlOBr(A)[Q]

By [BN23| Theorem C] in order to establish whether (14 (—aq.1)™! 21, ge, (22))
belongs to Ev_;Br(A)[2] we need to compute d(1 + (—aj1) - 1, gy (T2)). We
have that g.,(x2) Z 0 mod 2 and from Proposition |4.2.1.(1)| together with Propo-

sition [£.2.2) we get
Ax (jl : dlog(gQ (52))70) = (1 + (70[1_&) * L1y Geo (x2)>

since 1+ (fal_’}) Ty =1+4-(s71-21) with s = —4-; 1 € Z5 and hence s~1 -4
is a lift to characteristic 0 of ;. Therefore, by definition of the residue map 0, we
get

(1 + (= Qaq, 1) T1, ge,(22))) =0

which by Theorem implies that
1+ (—ozf&) “Z1, geo (12)) € Ev_oBr(A4)[2] € Ev_1Br(A4)[2].

In order to end the proof we are left to show that Ag o ¢ (Ev_1Br(A)[2], Bri(4)[2]).
The change of variables of Lemma sends the class of the quaternion algebra

Ao,o = (U1 : (ul - ’Yl,z), uz - (Uz - 72,2)) = (ul — 71,1, U2 — ’}’2,1)
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to the class of the quaternion algebra

(4-(r1—01,2),4 (22 —2)) = (21 +2B12+ 9, 12 + 2022 +9).
From Proposition [1.2.1)(d) the latter is such that

<d(x1 +9) A d(z +9)

1490 To+0

In fact, 1 + 2821 + 6,22 + 2822 +d and x2 + 235 2 + ¢ are lifts to characteristic 0
of 1 4+ 6 and T2 + 6 respectively. Note that, d(jil_;?) A % comes from a global
2-form on the special fibre Y of A and hence it is non-zero in its function field.

Finally, using Proposition [£.2.2| we get that

> = [{xl + 2621 + 0,22 + 2622 + 5}} € g’

d(Z1 +9) A d(Za + 9)

rswo (21 + 2821 + 0,22 + 2622+ 0)) = < 710 s

0) # (0.0

and hence (z1+281 240, 22+2022+9) ¢ fil; Br(A4)[2] 2 Ev_1Br(A4)[2]. Moreover,
as a consequence of Corollary [4.1.5| we get that Ago ¢ (Ev_1Br(A)[2], Bri(A4)[2]).
In fact, otherwise, there would be an element A; € Ev_;Br(A)[2] such that Ay o®
A; € Bri(A)[2], but Ag o ® Ay has the same refined Swan conductor as Ago. O

Remark 4.5.5. We will later use a slightly stronger statement of the theorem
above. Let L/Qy be any field extension and res the natural map from Br(A)[2]
to Br(Ar)[2]. Then, res(Ae, .,) € (Ev_1Br(A4)[2],Bri(AL)[2]) if and only if
at least one among €; and e is different from 0. We clearly have that A, .,
in (Ev_1Br(A)[2],Bri(A)[2]) implies res( A, ,) in (Ev_1Br(Ar)[2],Bri(A4L)[2]).
Moreover, we have proven that the first component of rswo r(Ago) is different
from 0, and hence using Lemma we get that rswe , 2 x(res(Ao,)) # (0,0)
and therefore in particular res(Ag ) ¢ (Ev_1Br(Ar)[2], Bri(AL)[2])

4.5.3 No Brauer—Manin obstruction from 2-torsion elements in
Kum(A)

In this section, we show how, from the results of the previous section, we can deduce
information on the 2-torsion elements in the Brauer group of the corresponding
Kummer surface V' = Kum(Ag). We denote by A and X the base change of the
abelian surface Ag and the corresponding Kummer surface X to Q2. By Section
[£5.T) we know that Ag o descends to X if and only if

=711 72,0, 72,1 (21 — 12,2)s 111 (0 — M,2), 1] € ( 31,
By construction, y11 =4 (1,2 — o1,1) = 861,1 — 8612 and therefore

",1 = 86171 =1- 1261 + 40,1 =1- 4(351 — al) mod 8.

In fact, from Lemma and more precisely from equation (4.9) we know that
8611 + 8012 + 80813 = 1 — 1281 + 4a; and both ords(B1,2) and ords(B1,3) are

non-negative. Similarly,

Yo,1 =821 =1—1202 +4as =1 —4(362 —az) mod 8.
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In particular, both 7;,; and ~2; are either 1 or 5 modulo 8; hence —v1,1 - 72,1 is
either —1 or 3 and therefore it is never a square. Summing up: we have shown
Ag o never descends to Br(X). We are ready to prove the main theorem of this
section.

Theorem 4.5.6. Let X = Kum(A), where A = Ey X Ey is as in Section |4.5.1];
then Br(X)[2] = Ev_1Br(X)[2].

Proof. We recall that if A, ., descends to Br(X)[2], we denote by C¢, ., the corre-
sponding element in Br(X)[2], i.e. C, e, is such that 7*(C, ¢,) = Ae;e,- We need
to prove that if A, ., descends to Br(X), then C,, ., lies in Ev_;Br(X). Since we
have already shown at the beginning of this section that Ay ¢ never descends to
Br(X) we are left to show it for (e1,e2) # (0,0).

Let L/Q3 be such that all elements appearing in the matrix M of Section
are squares, i.e. the injective map

 Br(X)[2 | Br(4)[2]
Bri(X)[2]  Bri(4)[2]

*

™

is an isomorphism.
With abuse of notation, we denote by res both

res: Br(A) — Br(Ar) and res: Br(X) — Br(Xy).

We denote by (Ce, ., )1 the pre-image of res(A, .,) € Br(Ar)[2].

From [LS23] Theorem 2| we know that the reduction of X is an ordinary K3
surface. Let e be the ramification index of L/Qs and 7y, the an uniformiser of Op;
then we have fil,, Br(X)[p] = filyBr(X.)[p] = Ev_1Br(X)[p] if n < €’ := 2e and
file'Br(X)[p] = Br(X)[p], see Remark Hence, using Corollary we

have an injection

Br(Xy)[2]

BB Y W)

multz 0 ISWes g, - Yo log
where ¢ is the residue field of L.

Since X (and hence all its base change) has good ordinary reduction, we know
that HO(Y, Q%’,log) ®r, ¢ is a one dimensional ¢-vector space (cf. equation (3.2))
and hence Br(X},)[2]/Ev_1Br(X1)[2] is a vector space of dimension at most 1 over
Fs.

From Lemma we know that A o ¢ fil; Br(A4)[2]. Applying Lemmamwe
get that res(Ag,o) ¢ fil.Br(Ay)[2] and by Lemma (Co0)r ¢ Ev_1Br(X)[2].
Therefore Br(X,)[2]

r(Xp
C =
(Cooleh = g mrixn )

Assume that there exists (e1,€2) # (0,0) such that A, ., descends to Br(X)
and the corresponding element C, ., does not lie in Ev_;Br(X)[2]. By Lemma
1.2 res(Ce, e,) does not lie in Ev_1Br(X.)[2] and therefore, since the quotient
Br(X)[2]/Ev_1Br(X.)[2] is a 1-dimensional Fa-vector space, we have that also
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the product res(Ce,.c,) ® (Coo)r lies in Ev_1Br(X)[2]. This implies that also
the corresponding element in Br(Ap)[2], res(Ae, e, ® Ago) lies in Ev_1Br(Ayg).
However, since by Remark res(Ae, e,) lies in (Ev_1Br(X)[2], Br1(XL)[2]),
we get that also res(Ag,) has to lie in (Ev_1Br(A)[2], Br1(Az)[2]) which gives
us the desired contradiction. O

Finally, we give an example of a K3 surface over Q with good ordinary reduction
at 2 and such that Br(X) = Ev_;Br(X). The existence of such an example shows
that the converse of Theorem [3.1.1]is not true, i.e. it is not enough to have that
p—1] e in order to find an element in Br(X) that does not lie in Ev_;Br(X).

Example 4.5.7. Let A = E x E, where E is the elliptic curve given by the
minimal Weierstrass equation

v 4aoy+y=a>—7-x+5.

Then, with the same notation as in the previous sections 81 = —11/8, s = —1
and B3 = 1. Hence

] = 7/47 Qo = 13 a3 = -3 and Y1 = 737 Yo = —21.

The matrix M is of the form

1 3-21 3-21 -9
3-21 1 9 -3-18
3-21 9 1 -3-18

-9 -3-18 —-3-18 1

In particular, all the rows of M have at least one term which does not lie in QQXQ.
Moreover, using [SZ12, Proposition 3.7] we can compute the dimension as an Fo-
vector space of the quotient of Br(X)[2] by Br(Q2)[2] and in this case particular

example:
. Br(X)[2]\
i (Br(Qz)m) -

We want to show that Br(X){2} = Br(Q2){2}. We work by induction on n; let A
be in Br(X)[2"], then

277.71

A®2 € Br(X)[2] = Br(Q2)[2].

In particular, given P € X(Q-), we have that
(A@eva(P)®? " = A" @ ev ygom1(P) =0

hence A®ev 4(P) € Br(X)[2"~ 1], and by induction hypothesis that A € Br(Q5)[2"].
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4.5.4 Examples of Brauer—Manin obstruction

We continue this section by giving new examples of primes of good reduction that
plays a role in the Brauer—-Manin obstruction to weak approximation in the case
p=3and p=>5.

Example 4.5.8. Let L = Q3(¢) with ¢ primitive 3-root of unity. Let 7w be a
uniformiser of Op; then e = e¢(L/Q3) = 2 and the residue field ¢ is equal to Fs.
We define X to be the Kummer K3 surface over L attached to the abelian
surface A = F x E, with E the elliptic curve over L defined by the Weierstrass
equation
V=2 +4-2°+3 2+ 1.

The elliptic curve F (and hence A and X) has good ordinary reduction at the prime
p = (m). We will denote by {z,y, z} and {u, v, w} the variables corresponding to
the embedding of respectively the first and the second copy of E in PZ. We define
the cyclic algebra

w z

A= v u, y—z € Br(L(A))[3].
Claim 1: A belongs to Br(4)[3].

Proof. First of all, notice that from 3%z = 23 + 4222z + 3222 + 2 we get

2y —x)(y+z)=(x+2)°* and z(y? —4a? — 3zz — 2%) = 2>
Then:

- if z = 0, then = 0 and therefore y? — 422 — 322 — 22 # 0 and = # y and
from the equation above A is equivalent to

( v—u y—x ) .
2 _ 442 — —w2) -1 (42 — 4z2 — _ 21 ) 7
(v2 —4u? — 3uw — w?)~ 7 (y? — 422 — 3xz — 22) ¢

- if z =y, then © # —y and z # 0 (since z = 0 implies  # y) and from the
equation above A is equivalent to

()
vtuzty/),

Thus, we see that along all the divisors over which A is not well defined we are
able to find an equivalent Azumaya algebra which on those divisors is well defined.
Hence, A defines an element in Br(A)[3]. O

Claim 2: A and does not lie in Ev_;Br(A)[3].
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Proof. The regular global 1-form on the reduction of £ modulo p is given by the
(local) formula

de 1 de-(z—y) 1 dv-j—dv dfy-—u)

2y 2 yly—x) 2 y-= y—a

where the last equality follows from the fact that on the special fibre %’3 = d?y and

since we are in characteristic 3, % = —1. Hence, if we denote by Y the reduction
modulo p of A, we have that the global 2-form on Y is given by

_agsy ()
(%) (=)
Finally, po(w,0) = [{ ST yzm}] and hence again by Proposition 4.2.2| we get

that

W

rsws . (A) # (' w,0)
and therefore A ¢ filyBr(A)[3] 2 Ev_1Br(A)[3]. O

Claim 3: The cyclic algebra A in Br(A)[3] is not algebraic, i.e. A ¢ Bri(A)[3].
Proof. If follows directly from Corollary O

Finally, from [SZ12, Theorem 2.4] the map

*

o BBl Br(4)[3]

"B (X)B]  Br(4)B]

is an isomorphism. Let B € Br(X)[3] be such that #*(B) = A € Br(4)[3]. Then,
from Lemma we get that B ¢ Ev_1Br(X)[3], namely (since for K3 surfaces
EvoBr(X) = Ev_1Br(X), see Section the corresponding evaluation map on
X (L) is non-constant.

Before proceeding with the next example we need a lemma that shows how
the evaluation map behaves under base change without the assumption of good
reduction for X.

Lemma 4.5.9. Let X be a variety over a p-adic field L, not necessarily having good
reduction, and let A € Br(X){p} be such thatev4: X(L) — Br(L) is non-constant.
Then for every field extension L'/ L with degree co-prime to p we have that res(A) €
Br(Xy/) has also a non-constant evaluation map evyes(ay: Xr/(L") — Br(L').

Proof. Let P,Q € X (L) be such that

ev4(P) # eva(Q).
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Denote by P’ and @’ the base change of P and Q) to L', i.e. we have the following
commutative diagrams

Xy —Y s X, Spec(L') —E X1, Spec(L') —2— X,

| | |# K |# ¥

Spec(L') —2— Spec(L) Spec(L) —X— X Spec(L) ~ 9% . x
Then

eVres(a) (P') = Br(P')(Br(¢r)(Ao)) = Br(pr)Br(P)(A) = Br(pr)(eva(P)).

Finally since L'/L has degree co-prime to p the map Br(y¢): Br(L) — Br(L') is
injective on elements of p-order; hence

€Vres(A) (P/) 7é evres(A)(Q/)'
O

Example 4.5.10. Let X be the diagonal quartic surface over Q5 defined by the
equation:
St — Ayt = 2t + wt

Skorobogatov and Ieronymou prove [[S15l Theorem 1.1], [IS15, Proposition 5.12]
that there exists an element A € Br(X)[5] with surjective evaluation map. Let
L = Qs5(v/5), e(L/Qs) = 4 and « € L be such that a* = 5. Then the change of
variables:

T
(%ZU,ZGU})’_) ;ayhzhwl

sends X1, to the diagonal quartic X /L given by the equation
x] — 4yt = 2} +wi.

The surface X has good ordinary reduction over L. Finally, by Lemma we
know that res(.A) € Br(Xy,) = Br(X) has non-constant evaluation map.

Note that, at this point we have not write the algebra A as a cyclic algebra,
and hence we are not able to show explicitly the link with the global logarithmic
2-forms on the special fibre and hence compute the refined Swan conductor of A,

even if from Remark we know that A € fil, Br(X)[5].

4.6 Family of examples

We end this thesis by giving an example of a family of K3 surfaces.
Let a € Q be such that o? € Z and let V,, be the K3 surface over k := Q(«)
defined by the equation

1

By+yiz+2Bw—w+ o ryzw—2-a7 ! zzw? = 0. (4.13)
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Lemma 4.6.1. The class of the quaternion algebra

Aim (*“”Cy—x> € Br(k(V,)

52
lies in Br(V,,)[2].

Proof. Let f := 2% + a*zy and C,,C,,C; be the closed subsets of V,, defined by
the equations z = 0, z = 0 and f = 0 respectively. The quaternion algebra A
defines an element in Br(U), where U := V,, \ (C; UC, UC}). The purity theorem
for the Brauer group [CTS21, Theorem 3.7.2], assures us of the existence of the
exact sequence

0 — Br(Va)[2] — Br(U)[2] 222 @ H'(k(D),Z/2) (4.14)

where D ranges over the irreducible divisors of V,, with support in X \U and k(D)
denotes the residue field at the generic point of D.

In order to use the exact sequence we need to understand what the prime
divisors of V,, with support in V,, \ U = C, U C, U Cf look like. Using MAGMA
[BCPI7] it is possible to check the following:

e (, has one irreducible component D; defined by the equations {z = 0,332+
22w+ w* = 0};

e (. has one irreducible component D5, defined by the equations {z = 0, 23y —
4
w* =0}

e C; has one irreducible component Ds, deﬁned by the equations {a?xy+2? =

0,322 + 4222 + 2a2?20w? + o?rw?* = 0,02y 2z — 2222 — 20z20?% — ?w? = 0}.

Therefore, we can rewrite (4.14) in the following way:
0 — Br(Va)[2] = Br(U ED H(k(D;),Z/2). (4.15)

Moreover, we have an explicit description of the residue map on quaternion alge-
bras: for an element (a,b) € Br(U)[2] we have

v; (b) A X
5Dqﬂ,(a7b)[(1)”(a>w(b)a ] k(D;)

i@ | € kD~ H'(k(D;),Z/2) (4.16)

where v; is the valuation associated to the prime divisor D;. This follows from the
definition of the tame symbols in Milnor K-theory together with the compatibility
of the residue map with the tame symbols given by the Galois symbols (see [GS17],
Proposition 7.5.1).

We can proceed with the computation of the residue maps dp, fori =1,...,3:
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1. vi(z) =1 and v1(f) = v1(2) = 0. Hence,

o (5-2)=[(2) ] -re i

where the last equality follows from the fact that = 0 on D, thus f |p,=

22

2. v9(z) =1 and v2(f) = va(z) = 0. Hence,

[z AV I k(Ds)*
a _——— = —_ —_— = | —| = 1 _—
D> <z2’ x 22 x x2 < k(Dy)*2
where the last equality follows from the fact that z = 0 and 23y = w* on
2 2
Do, thus f |p,= a?zy and &Y = o2 (%)4 = (an) .

T 2

3. v3(f) =1 and v3(x) = v3(z) = 0. Hence,

oo, (52) = [2] = | (F (w0 2)) | -re i

where the last equality follows from the following equalities on Dj:
o Pz =wt+ Zz2w? + mi—‘f = (w? + %2)2;
o 7y — — -1 »2implies that 132 — 521 _ 2 (2\ 1 _ a2
y=—-zz°impliesthat y°z = (vy)’2 5 = -2 (&) = =753
Therefore, Op,(A) = 0 for all i € {1, 2,3}, hence A € Br(V,,). O

Let p be a prime above 2 and O, be the valuation ring of k,. We have that
2-a~! € O, if and only if a® # 0 mod 8; we can define X, to be the Op-scheme
defined by equation . If o> # 0 mod 8, then X, is smooth and hence V,
has good reduction at p, we denote by X, the base change of V,, to k.

Theorem 4.6.2. Assume that o> £ 0 mod 8. Then, X,, has good ordinary re-
duction if and only if o> =1 mod 2. The evaluation map attached to A

eva: Xo(ky) = Q/Z
18 mon-constant if and only if

o> #0 mod 4.

Proof. Recall that we know that for K3 surfaces the evaluation map attached to
A is non-constant if and only if A ¢ filyBr(X,) (cf.Section [4.3).
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o If o> =1 mod 2, then the special fibre Y,, is defined by the equation
x?’y + y3z + 23w+ w* + TYzW.

From Lemma[4.3.1|we get that Yy, is an ordinary K3 surface. From Lemmal[.3.3|
we know that a generator (as k(p)-vector space) of H(Y,, 3. ) is given by
the global 2-form w that can be written (locally) as

d(Z)nd(Z) _ o d(y>Ad<2)x:

Zg’*# 22 +xy T T/ z
x

(=)« (52) ()
(

where the last equality follows from d (z TWINd (2) = d (L)Ad (Z). Hence,
we can write w as % A% with f = thmy, g = £. Finally, we see that, by
g T x
Proposition
2., 2 2, .2
. Zt+at-xy oz . Zt+at-ry oz .
[A]_ { 22 7_} - { I’Q ’_IIJ} —PO<W»O>

2 2
since Zﬁ‘f” and —Z are lifts to characteristic 0 of f and g, respectively.

Hence, using Proposition we get that rswe -(A) # (0,0) and A ¢
ﬁle/_lBI‘(Xa) 2 ﬁloBI‘(Xa)

o If &2 =2 mod 4, then the special fibre Y, is defined by the equation
x3y + y3Z + 23w + wt

From Lemma we get that Y, is a non-ordinary K3 surface over k(p).
From Lemma we know that H(Y,, Q% ) is generated (as a k(p)-vector
space) by the 2-form w that can be written (locally) as

ML () a(2)0 (1) o (2) -0(2) ()« )

where the last equality follow from the fact that, since we are working over a
field of characteristic 2, (2)2 d (%) =d (%) Hence, in this case we can write

w as d (f . %), with f = 24, g = 2. Since a? =2 mod 4, the prime ideal

(2) is ramified in the field extension Qz(«)/Q2 and ™ = « is a uniformiser.

From Proposition [{:2.1] we get that
x z d
{1 + aQ%, —}] = p2 (f' g)
z x g

Zha’ay 2| _

22 x|
since Z¥ and —Z are two lifts to characteristic 0 of f and g, respectively.
Hence, by Proposition rswa r(A) # (0,0) and hence A ¢ fil;Br(X,)
and thus A ¢ filyBr(X,) C fil; Br(X,).
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e If o> =0 mod 4, then the special fibre Y,, is defined by the equation
a:3y + y3z + 23w + w* + zzw?.

Again, from Lemma we get that Y,, is a non-ordinary K3 surface over
E(p). If Q2(a)/Qy is unramified then we are done by Theorem If
the field extension is ramified and 7 is a uniformiser, then since a? = 0
mod 4 and o # 0 mod 8, we have that o = 7*3 with 8 € O;'. Hence,
if we look at the corresponding element in k%(K") via the isomorphism of

equation (4.3)), we have that

2 2, .
AH{M7_2}2{1+7T4_6 )

22 x 22 x

Hence, using again Proposition A € filyBr(X,)[2].
O

Remark 4.6.3. The case a®> =2 mod 4 proves that the bound appearing in The-
orem [3.2.1] is optimal. In fact, we are able to find examples of K3 surface V' over
a quadratic field extensions of Q such that there is a prime above 2 whose ramifi-
cation index is e(p/2) = 2 and that plays a role in the Brauer-Manin obstruction
to weak approximation.

Finally, note that when a? = 0 mod 4 and e(p/2) = 1, we know from Theo-
rem [3.2.1]that there is an equality Ev_;Br(X,) = Br(X,). However, if e(p/2) = 2,
we just showed that the element A of the previous theorem lies in Ev_;Br(X,)[2]
and not that Br(X,) = Ev_1Br(X,).





