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CHAPTER4
Computations with the refined

Swan conductor

This final chapter is divided in two parts. In the first part we develop some
techniques needed to compute the refined Swan conductor of certain elements in
the Brauer group. In particular, in Section 4.1, starting from a result from Bright
and Newton, we prove a formula that relates the refined Swan conductor with the
extension of the base field over which the variety is defined. In Section 4.2 we
explain some results of Kato that allows to compute the refined Swan conductor
of p-order elements when the base field contains a primitive p-root of unity. In
the second part of this final chapter we provide several examples and we use them
to show that Theorem 3.1.1 and 3.2.1, are optimal. In particular, we exhibit K3
surfaces V over number fields such that:

(a) V has good ordinary reduction at a prime p with ramification index ep = p−1
and there is an element A ∈ Br(V )[p] whose evaluation map is non-constant
on V (kp);

(b) V has good ordinary reduction at a prime p with ep = p− 1 and p does not
play a role in the Brauer–Manin obstruction to weak approximation;

(c) V has good non-ordinary reduction at a prime p with ep ≥ p and there is an
element A ∈ Br(V )[p] whose evaluation map is non-constant on V (kp).

More precisely: from (a) we get that the condition (p − 1) ∤ ep in Theorem 3.1.1
is necessary; from (b) we get that the inverse of Theorem 3.1.1 does not hold in
general; from (c) we get that the bound in Theorem 3.2.1 is optimal.
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Finally, as already pointed out in the introduction, we recall that in all the
examples of K3 surfaces in which a prime of good reduction plays a role in the
Brauer–Manin obstruction of weak approximation, the corresponding element in
the Brauer group is of transcendental nature, i.e. it does not belong to the
algebraic Brauer group, which is defined as the kernel of the natural map from
Br(V ) to Br(V̄ ), where V̄ is the base change of V to an algebraic closure of k (cf.
Lemma 4.3.4).

Moreover, we prove that if V is a Kummer K3 surface coming from a prod-
uct of elliptic curves defined over Q with good ordinary reduction at the prime
2 and full 2-torsion defined over Q2, then Br(V )[2] = Ev−1Br(V )[2] (cf. Theo-
rem 4.5.6). This theorem proves what was already predict by Ieronymou after
some computational evidence, see [Ier23, Remark 2.6].

4.1 Refined Swan conductor and extension of the base field

Let L be a p-adic field with ring of integers OL, uniformiser π and residue field ℓ.
Let X be a proper, smooth and geometrically integral L-variety having a smooth,
proper model X with geometrically integral fibre. We denote by Y its special fibre:

X X Y

Spec(L) Spec(OL) Spec(ℓ)

(4.1)

In this section we want to analyse what happens to the refined Swan conductor
when we take a field extension L′/L of the base field L. Bright and Newton prove
the following result.

Lemma 4.1.1. Let K ′/K be a finite extension of Henselian discrete valuation
fields of ramification index e. Let π′ be a uniformiser in K ′, F ′ be the residue field
of K ′ and define ā ∈ F ′ to be the reduction of π(π′)−e. Let χ ∈ filnBr(K), and let

res : Br(K)→ Br(K ′)

be the restriction map. Then res(χ) ∈ filenBr(K
′) and if rswn,π(χ) = (α, β), then

rswen,π′(res(χ)) = (ā−n(α+ β ∧ d log(ā), ā−neβ).

Proof. See [BN23, Lemma 2.16].

The aim of this section is to use this result to prove the following Lemma.

Lemma 4.1.2 (Base change). Let L′/L be a finite field extension, with ramifi-
cation index eL′/L. Let π′ be an uniformiser in L′ and ℓ′ its residue field. Let
A ∈ Br(X) and let

res : Br(X)→ Br(XL′)
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be the restriction map. Then res(A) ∈ fileL′/LnBr(XL′) and if rswn,π(A) = (α, β)

with (α, β) ∈ H0(Y,Ω2
Y )⊕H0(Y,Ω1

Y ), then

rsweL′/Ln,π
′(res(A)) = (ā−nα, ā−neL′/Lβ) ∈ H0(Yℓ′ ,Ω

2
Yℓ′

)⊕H0(Yℓ′ ,Ω
1
Yℓ′

)

with ā ∈ ℓ′ reduction of π(π′)−eL′/L .

The refined Swan conductor of an element A ∈ Br(X) is defined through the
refined Swan conductor of its image in the discrete henselian valuation field Kh.
Namely, we have the following commutative diagram

filnBr(X) H0(Y,Ω2
Y )⊕H0(Y,Ω1

Y )

filnBr(K
h) Ω2

F ⊕ Ω1
F .

rswn,π

rswn,π

We recall the construction of Kh: let η be the generic point of Y ⊆ X , then
we define R as henselisation of the discrete valuation ring OX ,η and Kh as the
fraction field of R. The construction of OX ,η (and hence of Kh) is local on X .
From now on we will therefore assume X = Spec(A), with A smooth OL-algebra,
Y = Spec(A/πA); hence η = (π) ∈ Spec(A) and OX ,η = A(π). We can re-write
diagram (4.1) as:

A⊗OL
L A A/πA

L OL ℓ.

(4.2)

Lemma 4.1.3. The uniformiser π is also a uniformiser for Kh. Moreover,
ordKh(p) = ordL(p).

Proof. The uniformiser π is also the generator of the maximal ideal of A(π), hence
of its henselisation R. The equality (p) = (π)e as ideals on OL implies that
p ∈ (π)eR, hence e1 := ordKh(p) ≤ e. The equality between the two orders follows
from the fact that for every m ≥ 1, (π)mR ∩ OL = (π)mOL.

We denote by L′ a finite field extension of L, by OL′ its ring of integers with
uniformiser π′ and residue field ℓ′. Moreover, we denote by X ′, X ′ and Y ′ the base
change of X, X and Y to Spec(L′),Spec(OL′) and Spec(ℓ′) respectively. Let (K ′)h

be the fraction field of R′, where R′ is the henselisation of the discrete valuation
ring OX ′,Y ′ . In this setting

A

πA
⊗ℓ ℓ′ = A⊗OL

ℓ⊗ℓ ℓ′ = A⊗OL
OL′ ⊗OL′ ℓ

′ =
A⊗OL

OL′

(1⊗ π′)
.

Thus, the generic point η′ of Y ′ is the ideal generated by 1⊗π′ and OX ′,Y ′ becomes
the ring (A⊗OL

OL′)(1⊗π′).

Lemma 4.1.4. The field extension (K ′)h/Kh is finite with ramification index
eL′/L.
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Proof. We start by noticing that

OX ′,η′ ≃ OX ,η ⊗OL
OL′ .

We have that OX ,η ⊗OL
OL′ = S−1(A⊗OL

OL′), with S = (A \ (π)) ·A⊗OL
OL′ ,

while OX ′,η′ = T−1(A⊗OL
OL′), with T = (A⊗OL

OL′)\(1⊗π′). The isomorphism
follows from the equality (1 ⊗ π′)eL′/L = (1 ⊗ π) together with the fact that OL′

is a free OL-module with basis {1, π′, . . . , (π′)eL′/L}.
As a second step we show that

R′ ≃ R⊗OL
OL′ .

The discrete valuation ring OL′ is a finite OL-module, hence we get that the
natural map

R→ R⊗OL
OL′

is finite; therefore [Sta, 05WS] implies that R ⊗OL
OL′ is henselian and therefore

by [Sta, 05WP]

R′ = R⊗OL
OL′ .

As a final step, we notice that

(K ′)h = R′
[
1

π′

]
= R′

[
1

π

]
= R

[
1

π

]
⊗L L′ = Kh ⊗L L′.

Proof of Lemma 4.1.2. It follows immediately from the previous lemma together
with Lemma 4.1.1 and the fact that since ā ∈ ℓ′, which is a finite field, d log(ā) =
0.

Corollary 4.1.5. Assume that A ∈ filnBr(X) for some n ≥ 1 is such that
rswn,π(A) = (α, β) with α ̸= 0, then A /∈ Br1(X), i.e. A is a transcendental
element in the Brauer group of X.

Proof. Assume A to be in Br1(X); then by definition of Br1(X) there is a finite
field extension L′/L such that res(A) = 0 in Br(XL′), where res is the restriction
map from Br(X) to Br(XL′). Let eL′/L be the ramification index of the extension,
π′ be a uniformiser of L′ and ℓ′ its residue field. We know from Lemma 4.1.2 that

rswe(L′/L)n,πL′ (res(A)) = (ā−n · α, ā−neL′/L · β)

where ā−n ∈ (ℓ′)×. Hence, rswe(L′/L)n,πL′ (res(A)) ̸= (0, 0) and therefore res(A)
can not be the trivial element.
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4.2 Computations with the Refined Swan conductor on
the p-torsion of the Brauer group

The aim of this section is to collect some results that will allow us to compute later
in this chapter the Swan conductor and the refined Swan conductor of elements
of order p in the Brauer group of K3 surfaces. In this section we work under the
same setting as Section 1.2.3: K is a henselian field of characteristic 0 with ring
of integers OK , uniformiser π and residue field F of positive characteristic p.

We work under the additional assumption that the field K contains a primitive
p-root of unity ζ. It follows from the Merkurjev-Suslin Theorem [GS17, Theorem
8.6.5] that in this case Br(K)[p] is generated by the classes of cyclic algebras. In
order to do computations with the refined Swan conductor, in this section we will
introduce a new filtration on Br(K)[p], defined by Bloch and Kato in [BK86] and
prove that via this filtration it is possible to compute the refined Swan conductor
of cyclic algebras in Br(K)[p].

4.2.1 Cyclic algebras

Let a, b ∈ K×, then the K-algebra (x, y)p defined as

(x, y)p := ⟨a, b | ap = x, bp = y, ab = ζba⟩,

is a central simple algebra, see [GS17, Section 2.5] for more details. With abuse
of notation we will denote by (x, y)p also the corresponding equivalence class in
Br(K)[p]. It is possible to realise (x, y)p also as the cup product of an element χx ∈
H1
p(K) with δ(y), where δ is the boundary map K× → H1(K,Z/pZ(1)) coming

from the Kummer sequence (a proof can be found in the proof of Proposition 4.7.1
[GS17]).

4.2.2 Another filtration

The map from Z/pZ(1) to Z/pZ(2) sending 1 to ζ induces an isomorphism

Br(K)[p] ≃ H2
(
K,Z/pZ(2)

)
=: h2(K). (4.3)

For any two non-zero elements x, y ∈ K we will denote by {x, y} ∈ h2(K) the cup
product of δ(x) with δ(y).

Bloch and Kato [BK86] define a decreasing filtration {Umh2(K)}m≥0 on h2(K)
as follows: U0h2(K) = h2(K) and for m ≥ 1, Umh2(K) is the subgroup of h2(K)
generated by symbols of the form

{1 + πmx, y}, with x ∈ OK and y ∈ K×.

In this section we are going to prove that for any 0 ≤ m ≤ e′ the isomorphism (4.3)
induces an isomorphism

Umh2(K) ≃ file′−mBr(K)[p].
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This isomorphism will be crucial in being able to compute the refined Swan conduc-
tor. In fact, in [BK86] Bloch and Kato describe the graded pieces of the filtration
{Umh2(Kh)}m≥0 on h2(K)

grm :=
Umh2(Kh)

Um+1h2(Kh)

in terms of differential forms on the residue field F . In [Kat89] Kato strongly relate
them to the computation of the refined Swan conductor. We now state the two
main results that show how it is possible to calculate the refined Swan conductor
of elements of order p in Br(K).

Proposition 4.2.1. We have the following description of the graded pieces grm.

(1) Umh2(Kh) = {0} for m > e′; Ue
′
h2(K) coincides with the image of the

injective map

λπ : H
2
p(F )⊕H1

p(F )→ gre
′
= h2(K)

δ1 [x̄ · d log ȳ] 7→ {1 + (ζ − 1)px, y}
δ1 [x̄] 7→ {1 + (ζ − 1)px, π}

where x and y are any lifts of x̄ and ȳ to K.

(2) Let 0 < m < e′ and p ∤ m. Then we have an isomorphism

ρm : Ω1
F

≃−→ grm

x̄ · d log ȳ 7→ {1 + πmx, y}

where x and y are any lifts of x̄ and ȳ to K.

(3) Let 0 < m < e′ with p | m. Then we have an isomorphism

ρm : Ω1
F /Z

1
F ⊕ Ω0

F /Z
0
F

≃−→ grm

([x̄ · d log ȳ] , 0) 7→ {1 + πmx, y}
(0, [x̄]) 7→ {1 + πmx, π}

where x and y are any lifts of x̄ and ȳ to K.

(4) We have an isomorphism

ρ0 : Ω
2
F,log ⊕ Ω1

F,log
≃−→ gr0

(d log ȳ1 ∧ d log ȳ2, 0) 7→ {y1, y2}
(0, d log ȳ) 7→ {y, π}

where y, y1 and y2 are any lifts of ȳ, ȳ1 and ȳ2 to K.

Proof. See [BK86, Section 5]. More precisely, in [BK86, Lemma 5.1] Bloch and
Kato prove 4.2.1.(1). However, instead of λπ (cf. Section 1.2.2.1) they have
the morphism ρe′ , and they just prove afterwards [BK86, equation (5.15.1)] that
ρe′ induces the map λπ. Finally, in [BK86, Lemma 5.2 and 5.3] the rest of the
proposition is proven.
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Note that since by assumption K contains a primitive p-root of unity ζ, the
ramification index e = ordK(p) is divisible by (p− 1) and hence e′ = ep(p− 1)−1

is divisible by p. The key result of this section is the following proposition.

Proposition 4.2.2. For every 0 ≤ m ≤ e′ we have that the isomorphism 4.3
induces an isomorphism

file′−mBr(K)[p] ≃ Umh2(K).

Let c̄ be the reduction modulo π of c := π−e′(ζ − 1)p. For m < e′ the compositions
rswe′−m ◦ ρm are as follows:

rswe′,π(ρ0(α, β)) = (c̄α, c̄β)

rswe′−m,π(ρm(α)) = (c̄dα, (e′ −m)c̄β), if p ∤ m
rswe′−m,π(ρm(α, β)) = (c̄dα, c̄dβ), if p | m

Warning: The proof of Proposition 4.2.2 is quite technical and will occupy the
rest of this section.

4.2.3 Proof of Proposition 4.2.2

We divide the proof into several rather technical lemmas.

Lemma 4.2.3. Let a, b ∈ OK and n,m be non-negative integers, then the symbol
{1 + πna, 1 + πmb} can be rewritten as

−
{
1 + πn+m

ab

1 + πna
, 1 + πmb

}
−
{
1 + πn+m

ab

1 + πna
,−πna

}
.

In particular, it lies in Um+nh2(K).

Proof. This lemma is a reformulation of a special case of [BK86, Lemma 4.1], for
which no proof is provided. We have that

{1 + πna, 1 + πmb}+
{
1 + πn+m

ab

1 + πna
, 1 + πmb

}
=

{1 + πna(1 + πmb), 1 + πmb}.

We also have that,

{1 + πna(1 + πmb), 1 + πmb}+
{
1 + πna(1 + πmb),−πna

}
={

1 + πna(1 + πmb),−(1 + πnb)πna
}
= 0

where the last equality follows from the fact that {x, y} = 0 if x+ y = 1. Finally,
since {1 + πna,−πna} = 0, we have{

1 + πna(1 + πmb),−πna
}
=
{
1 + πna(1 + πmb),−πna

}
− {1 + πna,−πna} ={

1 + πn+m
ab

1 + πna
,−πna

}
.
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Lemma 4.2.4. Let x ∈ OK , y ∈ K× and n,m be two positive integers; then
{(y, 1 + πmx)p, 1 + πnT} can be written as

−

(
χy ∪

{
1 + πn+m

Tx

1 + πnx
, 1 + πnT

}
+ χy ∪

{
1 + πn+m

Tx

1 + πnx
,−πmx

})
.

Proof. As already anticipated at the beginning of this section, we can write (y, 1+
πmx)p as the cup product of χy ∈ H1

p(K) and δ(1 + πmx) with δ boundary map
coming from the Kummer sequence, see [GS17, proof of Proposition 4.7.1]. Hence,

{(y, 1 + πmx)p, 1 + πnT} = χy ∪ {1 + πmx, 1 + πnT}.

The result now follows from Lemma 4.2.3.

Corollary 4.2.5. If m > 0 and m+ n ≥ e′, we get that

{(y, 1 + πmx)p, 1 + πnT} = −χy ∪
{
1 + πn+m

Tx

1 + πnx
,−πmx

}
.

Proof. If follows from the previous lemma together with the fact that by Lemma 4.2.3{
1 + πn+m

Tx

1 + πnx
, 1 + πnT

}
∈ U2m+nh2(K)

and U2m+nh2(K) = 0 from Proposition 4.2.1, since 2m+ n > e′.

Proposition 4.2.6. Let e = ordK(p) and e′ = ep(p − 1)−1. For 0 ≤ m ≤ e′ the
isomorphism of equation (4.3) induces an inclusion

Umh2(K) ⊆ file′−mBr(K)[p].

Proof. This is [Kat89, Lemma 4.3(1)], we include a proof of it here. By definition
Umh2(K) is generated by symbols of the form {1 + πmx, y}, with x ∈ OK and
y ∈ K×. In order to show that the corresponding element in Br(K)[p] lies in
file′−m we need to check that

{1 + πmx, y, 1 + πe
′−m+1T} = 0.

From Corollary 4.2.5 we have that {1 + πmx, y, 1 + πe
′−m+1T} can be written as

χy ∪
{
1 + πe

′+1 xT

1 + πmx
,−xπm

}
=

{
(y,−xπm)p, 1 + πe

′+1 xT

1 + πmx

}
and the latter is zero, since we know that file′Br(K)[p] = Br(K)[p], see Sec-
tion 1.2.3.1.

We will now show how the inclusion appearing in Proposition 4.2.6 is an equal-
ity. We start by recalling the following properties that we proved in Section 1.2.3.1.

Properties 4.2.7. For any m ≥ e′ we have filmBr(K)[p] = Br(K)[p]. Moreover,
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(1) If p ∤ m, then the map

filmBr(K)[p]
rswm,π−−−−→ Ω2

F ⊕ Ω1
F

pr2−−→ Ω1
F

has also kernel equal to film−1Br(K)[p].

(2) If p | m and m < e′, then the map rswm,π takes values in B2
F ⊕B1

F .

(3) If m = e′, then the map multc̄−1 ◦rswe′,π takes values in Ω2
F,log⊕Ω1

F,log, with
c̄ the reduction modulo π of πe

′ · (ζ − 1)−p.

We proceed by induction on m+ 1.

• For m = 0 we have by definition U0h2(k) = h2(K), which implies that the
inclusion U0h2(K) ⊆ file′Br(K)[p] is indeed an equality.

• For m = 1 we have

Ω2
F,log ⊕ Ω1

F,log ≃ gr0h2(K) ⊆ gre′Br(K)[p] ↪→ Ω2
F,log ⊕ Ω1

F,log (4.4)

where the first isomorphism is induced by ρ0, while the inclusion follows from
property 4.2.7(3). Moreover, note that given α = d log x̄ ∧ d log ȳ ∈ Ω2

F,log,
ρ0(α, 0) = {x, y} and

{x, y, 1 + πe
′
T} = {x, y, 1 + (ζ − 1)p(cT )} = λπ

(
δ1 [c̄T d log x̄ ∧ d log ȳ] , 0

)
.

Similarly, if we start with β = d log ȳ ∈ Ω1
F,log, ρ0(0, β) = {y, π} and

{y, π, 1 + πe
′
T} = {y, π, 1 + (ζ − 1)p(cT )} = λπ

(
0, δ1 [c̄T d log ȳ]

)
.

Hence, rswe′,π(ρ0(α, β)) = c̄(α, β) and therefore the chain of maps (4.4) is
the identity and we have that the inclusion of U1h2(K) in file′−1Br(K)[p] is
in fact an equality.

• Inductive step on m+ 1 when p ∤ m and m < e′. In this case we have

Ω1
F ≃ grm ⊆ gre′−m ↪→ Ω1

F

where the first isomorphism is induced by ρm, while the inclusion is the
restriction of the refined Swan conductor to Ω1

F , which is injective because
of property 4.2.7(1). In this case, given α = x̄d log ȳ ∈ Ω1

F , ρm(α) = {1 +
πmx, y}. From corollary 4.2.5

{1 + πmx, y, 1 + πe
′−mT} = −χy ∪

{
1 + πe

′ xT

1 + πmx
,−xπm

}
The latter can be rewritten as

−χy ∪
{
1 + (ζ − 1)p

cxT

1 + πmx
, x

}
+m · χy ∪

{
1 + (ζ − 1)p

cxT

1 + πmx
, π

}
.
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which is equal (using isomorphism (4.3)) to{
1 + (ζ − 1)p

cxT

1 + πmx
, x, y

}
−m

{
1 + (ζ − 1)p

cxT

1 + πmx
, y, π

}
. (4.5)

Note that x
1+πmx is a possible lift of x̄ ∈ F to K. Hence, (4.5) is equal to

λπ
(
c̄T̄ x̄d log x̄ ∧ d log ȳ,mc̄T̄ x̄d log ȳ

)
= λπ

(
c̄T̄ dα,mc̄T̄α

)
.

Thus, in this case the composition

Ω1
F ≃ grm ⊆ gre′−m ↪→ Ω1

F

sends α to mc̄α and therefore we get again the equality between Umh2(K)
and file′−mBr(K)[p]. Finally, using that by induction hypothesis we have an
isomorphism between Umh2(K) and file′−mBr(K)[p], we get that Um+1h2(K)
is isomorphic to file′−(m+1)Br(K)[p].

• Inductive step on m+ 1 when p | m and m < e′. In this case we have

Ω1
F /Z

1
F ⊕ Ω0

F /Z
0
F ≃ grm−1 ↪→ gre′−m ↪→ B2

F ⊕B1
F

where the first isomorphism is induced by ρm, while the inclusion comes
from the refined Swan conductor property 4.2.7(2). Given α = [x̄d log ȳ] in
Ω1
F /Z

1
F , ρm(α, 0) = {1+πmx, y} and again using an argument similar to the

one used above

{1 + πmx, y, 1 + πe
′−mT}

=

{
1 + (ζ − 1)p

cxT

1 + πmx
, x, y

}
−m

{
1 + (ζ − 1)p

cxT

1 + πmx
, y, π

}
=

{
1 + (ζ − 1)p

cxT

1 + πmx
, x, y

}
where the last equality follows from the fact that p | m and that we are
working with groups of order p. Like before, note that x

1+πmx is a possible
lift of x̄ ∈ F to K. Hence,{

1 + (ζ − 1)p
cxT

1 + πmx
, x, y

}
= λπ

(
c̄T̄ dα, 0

)
With very similar computations it is possible to show that starting from
β = [x̄] ∈ Ω0

F /Z
0
F ,

{(1 + πmx, π)p, 1 + πe
′−mT} = λπ(0, c̄T̄ dβ)

Hence, in this case the composition

Ω1
F /Z

1
F ⊕ Ω0

F /Z
0
F ≃ grm ↪→ gre′−m

rswe′−m,π

↪−−−−−−→ B2
F ⊕B1

F

sends (α, β) to (c̄dα, c̄dβ). Finally, using that by induction hypothesis we
have an isomorphism between Umh2(K) and file′−mBr(K)[p], we get an iso-
morphism between Um+1h2(K) and file′−(m+1)Br(K)[p].
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4.3 The case of K3 surfaces

In this thesis examples will always be about K3 surfaces with good reduction, cf.
Section 2.1.3 for the definition and some properties of K3 surfaces. The special
fibre of a K3 surface with good reduction is still a K3 surface, see for example
[BN23, Remark 11.5]. We start by stating the following well known result, of
which we include the proof as we could not find it in standard literature.

Lemma 4.3.1. Let p be a prime number and Y a K3 surface over the finite field
Fpn for some non-negative n. Then Y is ordinary if and only if |Y (Fpn)| ̸≡ 1
mod p.

Proof. The proof is an almost immediate consequence of [BZ09, Section 1]. Let
Ȳ be the base change of Y to an algebraic closure of Fpn and l be a prime dif-
ferent from p. The Frobenius endomorphism F of Ȳ acts by functoriality on
22-dimensional Ql-vector space

H2
ét(Ȳ ,Ql) := H2

ét(Ȳ ,Zl)⊗Zl
Ql.

Let λi with i = 1, . . . , 22 be the corresponding eigenvalues. From the Lefschetz
trace formula [Kat81, Section 1] we get

|Y (Fpn)| =
∑

(−1)iTr(F,Hiét(Ȳ ,Ql) = 1 +

22∑
i=1

λi + p2n. (4.6)

The last equality follows from the fact that for K3 surfaces both the first and the
third Betti numbers are trivial and H0

ét(Ȳ ,Ql) and H4
ét(Ȳ ,Ql) are 1-dimensional

Ql-vector spaces with Frobenius eigenvalue equal to 1 and p2n respectively [Del74,
Theorem 1.6].

It is proven in [BZ09, Lemma 1.1] that a K3 surface Y is ordinary if and only
if
∑22
i=1 λi is not divisible by p. It is therefore clear from (4.6) that

|Y (Fpn)| ≡ 1 +

22∑
i=1

λi ̸≡ 1 mod p.

if and only if Y is ordinary.

If the K3 surface X has good ordinary reduction, then the remark that follows
shows that there is a strong link between global logarithmic 2-forms on Y and
p-torsion elements on X having non-constant evaluation map.

Remark 4.3.2 (K3 surfaces with good ordinary reduction). LetX be a K3 surface
defined over a p-adic field L having absolute ramification index divsible by p − 1
with good ordinary reduction. Assume that there is an element A ∈ Br(X)[p]
that does not belong to fil0Br(X). Then, A ∈ filnBr(X) for some n ≥ 1. From
Section 1.2.3.1 we can assume n ≤ e′ = ep

p−1 = p, since file′Br(K)[p] = Br(K)[p].
Moreover, for n < e′ = p we have from Corollary 1.3.9(1) together with the fact
that for K3 surfaces we do not have non-trivial global 1-forms, filnBr(X)[p] =
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fil0Br(X)[p]. By property 4.2.7(3) we know that there is a constant c̄ ∈ ℓ× such
that

multc̄
(
filpBr(X)[p]

)
⊆ H0(Y,Ω2

Y,log) ⊆ H0(Ȳ ,Ω2
Ȳ ,log).

From Proposition 4.2.2 we know that the class of A in filpBr(Kh)[p]
filp−1Br(Kh)[p]

≃ gr0 has to
be such that

[A] = ρ0(ω, 0)

where ω ∈ Ω2
F,log is the image in Ω2

F of a non-trivial global logarithmic form, i.e.
an element of H0(Y,Ω2

Y,log). Moreover, H0(Ȳ ,Ω2
Ȳ ,log

) is a 1-dimensional Fp-vector
space (cf. (3.2)).

If the K3 surface is defined by an homogeneous polynomial of degree 4, the
following lemma gives us a way to write down explicitly a generator for the ℓ-vector
space of global 2-forms.

Lemma 4.3.3. Let ℓ be a field and f(x0, x1, x2, x3) ∈ ℓ[x0, x1, x2, x3] be a homo-
geneous polynomial of degree 4. Assume that the corresponding projective variety
Y is smooth. Then Y is a K3 surface and the 1-dimensional ℓ-vector space of
global 2-forms is generated by the 2-form

ω =
d
(
x1

x0

)
∧ d
(
x2

x0

)
1
x3
0
· ∂f∂x3

.

Proof. The first part follows from [Huy16, Example 1.3(i)]. For every permutation
{p, q, i, j} of {0, 1, 2, 3} we define Wp,q ⊆ Y as the open subset of Y where xp · ∂f∂xq

does not vanish. We define

ωp,q := (−1)p+q+1 ·
d
(
xi

xp

)
∧ d
(
xj

xp

)
1
x3
p
· ∂f∂xq

∈ H0(Wp,q,Ω
2
Y ).

Since Y is smooth, the open sets {Wp,q} cover it. We are left to show that for
every (p, q) ̸= (p′, q′), ωp,q = ωp′,q′ on Wp,q ∩Wp′,q′ .

It is enough to show the equality in the following two cases (the complete proof
follows from the symmetry among the variables):

• (p, q) = (0, 1) and (p′, q′) = (0, 2).

Let s1 := x1(x0)
−1, s2 := x2(x0)

−1, s3 := x3(x0)
−1 and f0 := f(1, s1, s2, s3).

We can then rewrite ω0,1 and ω0,2 as

ω0,1 =
ds2 ∧ ds3
∂f0/∂s1

and ω0,2 =
ds1 ∧ ds3
∂f0/∂s2

.

From the equation f0 = 0 we get

∂f0
∂s1

ds1 +
∂f0
∂s2

ds2 +
∂f0
∂s3

ds3 = 0.
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In particular,

0 =

(
∂f0
∂s1

ds1 +
∂f0
∂s2

ds2 +
∂f0
∂s3

ds3

)
∧ds3 =

∂f0
∂s1

(ds1∧ds3)+
∂f0
∂s2

(ds2∧ds3).

therefore, on W0,1 ∩W0,2

ω0,1 =
ds2 ∧ ds3
∂f0/∂s1

= (−1) · ds1 ∧ ds3
∂f0/∂s2

= ω0,2.

• (p, q) = (0, 2) and (p′, q′) = (1, 2).

Let t1 := x0(x1)
−1, t2 := x2(x1)

−1, t3 := x3(x1)
−1 and f1 := f(t1, 1, t2, t3).

On W0,2 ∩W1,2 we have

s−1
1 = t1, s2 · s−1

1 = t2 s3 · s−1
1 = t3 s41 · f1 = f0.

In particular,

ω1,2 =
dt1 ∧ dt3
∂f1/∂t2

=
d(s−1

1 ) ∧ d(s3 · s−1
1 )

∂s−4
1 f0/∂(s2 · s−1

1 )
= (−1) · s

−3
1 ds1 ∧ ds3
s−3
1 ∂f0/∂s2

= ω0,2

where the second last equality comes from the equality

∂s−4
1 f0

∂(s2s
−1
1 )

= s−3
1

∂f0
∂s2

.

We point out that in [Ier23, Proposition 2.3] it is proven that for K3 surface
an element A lies in fil0Br(X) if and only if evA : X(L)→ Br(L) is constant. It is
already known from [BN23, Lemma 11.3] that, since for K3 surface H1(Ȳ ,Z/pZ) =
0, then fil0Br(X) = Ev0Br(X) = Ev−1Br(X). Hence, from the result proven by
Ieronymou we know that in order to detect whether A belongs to fil0Br(X) it is
enough to look at the corresponding evaluation map on the L-points, X(L).

Lemma 4.3.4. Let X be a K3 surface and A ∈ Br(X) be such that A /∈ fil0Br(X).
Then A /∈ Br1(X).

Proof. As we just pointed out, if A /∈ fil0Br(X), then the evaluation map attached
to A in non-constant on X(L). The result now follows from the fact that in
[CTS13, Proposition 2.3] Colliot-Thélène and Skorobogatov prove that for every
element in the algebraic Brauer group the associated evaluation map at a prime
with good reduction has to be constant.
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4.4 Example of Chapter 2 revisited

We start with recalling the following example, which is the central result of Chap-
ter 2.

Example 4.4.1 ([Pag22]). Let V ⊆ P3
Q be the projective K3 surface defined by

the equation
x3y + y3z + z3w + w3x+ xyzw = 0. (4.7)

Then V has good ordinary reduction at 2 and the class of the quaternion algebra

A =

(
z3 + w2x+ xyz

x3
,− z

x

)
∈ BrQ(V )

defines an element in Br(V ). The evaluation map evA : V (Q2) → Br(Q2) is non-
constant, and therefore gives an obstruction to weak approximation on X.

In this case, H0(Y,Ω2
Y ) is a one dimensional F2 vector space, let ω be the only

non-trivial element, then C(ω) = 0 or C(ω) = ω. However, Y being ordinary
implies that H0(Y,B2

Y ) = 0, hence by Lemma 1.3.8 and Corollary 1.2.4 C(ω) = ω
and H0(Y,Ω2

Y,log) is a 1-dimensional F2-vector space. From Lemma 4.3.3 we get
that the non-zero global logarithmic 2-form ω can be written (locally) as:

ω =
d
(
z3+w2x+xyz

x3

)
(
z3+w2x+xyz

x3

) ∧ d ( zx)(
z
x

) .
If we denote by f and g the functions z3+w2x+xyz

x3 and z
x seen as element in the

function field F of Y , then we see that the two functions appearing in the definition
of A are lifts to characteristic 0 of f and g, and hence from Proposition 4.2.1

ρ0(ω, 0) =

{z3 + w2x+ xyz

x3
,− z

x

} ∈ gr0.

Using Proposition 4.2.2,

rsw2,π(A) = (ω, 0) ̸= (0, 0)

and A /∈ fil1Br(X)[2] ⊇ Ev−1Br(X)[2].

Note that, by Remark 4.3.2 we already know that since the K3 surface has good
ordinary reduction at 2, the only way for the prime 2 to play a role in the Brauer–
Manin obstruction to weak approximation via an 2-torsion element A ∈ Br(X)[2]
is if A comes from a logarithmic 2-form through ρ0.

4.5 Kummer K3 surfaces over 2-adic fields

In this section we are going to treat Kummer K3 surfaces. As already mentioned
in Section 2.1.3 those surfaces arise as the resolution of singularities of the quotient
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of an abelian surface by its involution map. The details about the construction
for fields of characteristic different from 2 can be found in [B0̆1, Section 10.5].

Let L be a 2-adic field. The recent papers [LS23], [Mat23] allow us to know
whether the Kummer K3 surface attached to an abelian variety A/L with good
reduction is still a K3 surface with good reduction (this was already known for
K3 surfaces over p-adic fields with p ̸= 2). In [SZ12] Skorobogatov and Zarhin
link the transcendental part of the Brauer group of a Kummer K3 surface to the
one of the corresponding abelian variety (cf. Section 4.5.1). All these results
open up the possibility of building examples of K3 surfaces with good reduction
at the prime 2 and for which we are able to study the Brauer group. In this
section, we are going to show that for every pair of elliptic curves E1, E2 over
Q with good ordinary reduction at p = 2 and full 2-torsion defined over Q2, the
2-torsion elements in the Brauer group of the corresponding Kummer K3 surface
X do not play a role in the Brauer–Manin obstruction to weak approximation. In
particular, this shows that the field extension in Theorem 3.1.6 is needed. We will
then use these computations to exhibit an example of a K3 surface over Q2 with
good ordinary reduction and such that Br(X) = Ev−1Br(X), showing that the
inverse of Theorem 3.1.1 does not hold in general.

4.5.1 Kummer K3 surfaces and their Brauer group: generalities

Let A be an abelian surface over a field k of characteristic different from 2 and
V = Kum(A) the corresponding Kummer surface, Skorobogatov and Zarhin [SZ12]
prove that there is a well-defined map

π∗ : Br(V )→ Br(A)

that induces an injection of Br(V )/Br1(V ) into Br(A)/Br1(A). They also prove
that this injection is an isomorphism on the p-torsion for all odd primes, see [SZ12,
Theorem 2.4]. We say that an element A ∈ Br(A) descends to Br(V ) if there
exists C ∈ Br(V ) such that π∗(C) = A.

Lemma 4.5.1. Let V = Kum(A), C ∈ Br(V ) and B := π∗(C) ∈ Br(A). Let p be
a prime in Ok; if the image of C in Br(Vp) lies in Ev−1Br(Vp) then the image of
B in Br(Ap) lies in Ev−1Br(Ap).

Proof. The result follows from the fact that any finite field extension M/kp and
P ∈ A(M) we have

evB(P ) = evπ∗(C)(P ) = evC(π(P )).

Moreover, Skorobogatov and Zarhin [SZ12] show that given two elliptic curves
E1 and E2 with Weierstrass equations

E1 : v21 = u1 · (u1 − γ1,1) · (u1 − γ1,2), E2 : v22 = u2 · (u2 − γ2,1) · (u2 − γ2,2)
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the quotient Br(E1×E2)[2]/Br1(E1×E2)[2] is generated by the classes of the four
Azumaya algebras

Aϵ1,ϵ2 = ((u1 − ϵ1)(u1 − γ1,2), (u2 − ϵ2)(u2 − γ2,2)) with ϵi ∈ {0, γi,1}.

Finally, if M is the matrix

M =


1 γ1,1 · γ1,2 γ2,1 · γ2,2 −γ1,1 · γ2,1

γ1,1 · γ1,2 1 γ1,1 · γ2,1 γ2,1 · (γ2,1 − γ2,2)
γ2,1 · γ2,2 γ1,1 · γ2,1 1 γ1,1 · (γ1,1 − γ1,2)
−γ1,1 · γ2,1 γ2,1 · (γ2,1 − γ2,2) γ1,1 · (γ1,1 − γ1,2) 1


then by [SZ12, Lemma 3.6]:

1. Aγ1,1,γ2,1 descends to Br(V ) if and only if the entries of the first row of M
are all squares;

2. Aγ1,1,0 descends to Br(V ) if and only if the entries of the second row of M
are all squares;

3. A0,γ2,1 descends to Br(V ) if and only if the entries of the third row of M are
all squares;

4. A0,0 descends to Br(V ) if and only if the entries of the last row of M are all
squares.

4.5.2 Product of elliptic curves with good reduction at 2 and
full 2-torsion

In order to use the results summarised in the previous section we need to analyse
what the 2-torsion points of an elliptic curve with good ordinary reduction at
2 look like. Let E/Q be the elliptic curve defined by the minimal Weierstrass
equation

y2 + xy + δy = x3 + ax2 + bx+ c (4.8)

with δ ∈ {0, 1} and a, b, c ∈ Z such that E has good reduction at 2. Assume
furthermore that the 2-torsion of E is defined over Q2, i.e. E(Q2)[2] = E(Q̄2)[2].
Let αi, βi ∈ Q2 be such that E(Q2)[2] = {O, (α1, β1), (α2, β2), (α3, β3)}, with O
the point at infinity of E.

Lemma 4.5.2. Assume that β1, β2, β3 are ordered as

ord2(β1) ≤ ord2(β2) ≤ ord2(β3).

Then ord2(α1) = −2 and α2, α3 ∈ Z2.

Proof. The 2-torsion points on E can be computed through the 2-division poly-
nomial of E, which is ψ2(x, y) = 2y + x+ δ. In particular, αi = −2βi − δ with βi
solution of

Φ(y) := y2 + (−2y − δ)y + δy − ((−2y − δ)3 + a(−2y − δ)2 + b(−2y − δ) + c).
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The polynomial Φ(y) can be rewritten as

Φ(y) = 8y3 − (1− 12δ + 4a)y2 − (−6δ2 + 4aδ − 2b)y + δ3 − aδ2 + bδ − c. (4.9)

Looking at the coefficients of Φ(y) we get that
ord2(β1 + β2 + β3) = ord2(1− 12δ + 4a)− ord2(8)

ord2(β1β2 + β1β3 + β2β3) = ord2(−6δ2 + 4aδ − 2b)− ord2(8)

ord2(β1β2β3) = ord2(δ
3 − aδ2 + bδ − c)− ord2(8).

From the first equation, we get ord2(β1) ≤ −3 that combined with [Sil86, The-
orem VIII.7.1] tells us that ord2(β1) = −3. From the third equation, we get
ord2(β2) + ord2(β3) ≥ 0. Hence, if ord2(β2) = ord2(β3) then β2 and β3 have both
non-negative 2-adic valuation; otherwise, if ord2(β2) < ord2(β3) then, from the
second equation, we get ord2(β2) ≥ 1 which implies again that both β2 and β3
have non-negative 2-adic valuation. The result now follows from the fact that
αi = −2βi − δ, with δ ∈ {0, 1}.

Lemma 4.5.3. The change of variables given by{
u = 4x− 4α1

v = 4(2y + x+ δ)
(4.10)

induces an isomorphism between E and the elliptic curve given by the equation

v2 = u(u− γ1)(u− γ2) (4.11)

where γ1 = 4 · (α2 − α1) and γ2 = 4 · (α3 − α1).

Proof. The change of variables{
u1 = 4x

v1 = 4(2y + x+ δ)

sends the elliptic curve given by the equation

v21 = u31 + (4a+ 1)u21 + (16b+ 8δ)u1 + 16c+ 16δ2 (4.12)

to the elliptic curve given by equation (4.8). Moreover, the 2-division polynomial
of E is given by 2y + x+ δ. Hence the non-trivial 2-torsion points on the elliptic
curve given by equation (4.12) are sent to non-trivial 2-torsion points on E. It is
therefore enough to consider the extra translation u = u1 − 4α1 and v = v1 to get
the desired equation.

Let E1 and E2 be two elliptic curves with equations of the form (4.8). We de-
note by (δi, ai, bi, ci) the parameters that determine the equation attached to Ei, by
(αi,j , βi,j), j ∈ {1, 2, 3} the non-trivial 2-torsion points of Ei and by A the abelian
surface given by the product of E1 with E2. We denote by ⟨Ev−1Br(A)[2],Br1(A)[2]⟩
the subgroup of Br(A)[2] generated by Ev−1Br(A)[2] and Br1(A)[2], where Br1(A)[2]
is the algebraic Brauer group of A.
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Lemma 4.5.4. Assume that ϵ1 and ϵ2 are as in Section 4.5.1; then the class of
the quaternion algebra Aϵ1,ϵ2 lies in ⟨Ev−1Br(A)[2],Br1(A)[2]⟩ if and only if at
least one among ϵ1 and ϵ2 is different from 0.

Proof. We fix π = 2 as a uniformiser and ξ = −1 as a primitive 2-root of unity.
We start by assuming that at least one among ϵ1 and ϵ2 is different from 0. By the
symmetry of the statement, we can assume without loss of generality that ϵ1 ̸= 0.
Then

Aϵ1,ϵ2 = ((u1 − γ1,1) · (u1 − γ1,2) , (u2 − ϵ2) · (u2 − γ2,2)) = (u1, fϵ2(u2))

where fϵ2(u2) = (u2 − ϵ2) · (u2 − γ2,2). The quaternion algebra Aϵ1,ϵ2 corresponds
via the change of variables of Lemma 4.5.3 to

Aϵ1,ϵ2 = (4 · (x1 − α1,1) , fϵ2(4x2 − 4α2,1)) = (x1 − α1,1 , fϵ2(4x2 − 4α2,1)).

We define

gϵ2(x2) :=

{
(x2 − α2,2) · (x2 − α2,3) if ϵ2 = γ2,1;

(x2 − α2,1) · (x2 − α2,3) if ϵ2 = 0.

Then, 16 · gϵ2(x2) = fϵ2(4x2 − 4α2,1). Thus we can rewrite Aϵ1,ϵ2 as

(−α1,1 , gϵ2(x2))⊗ (1 + (−α−1
1,1) · x1 , gϵ2(x2)).

Since (−α1,1 , gϵ2(x2)) lies in Br1(A)[2], we are left to show that the class of the
quaternion algebra (1 + (−α1,1)

−1 · x1 , gϵ2(x2)) lies in Ev−1Br(A)[2]. By Lemma
4.5.2 we know that ord2(α

−1
1,1) = 2 and therefore by Proposition 4.2.2

(1 + (−α−1
1,1) · x1 , gϵ2(x2)) ∈ fil0Br(A)[2].

By [BN23, Theorem C] in order to establish whether (1 + (−α1,1)
−1 · x1 , gϵ2(x2))

belongs to Ev−1Br(A)[2] we need to compute ∂(1 + (−α−1
1,1) · x1 , gϵ2(x2)). We

have that gϵ2(x2) ̸≡ 0 mod 2 and from Proposition 4.2.1.(1) together with Propo-
sition 4.2.2 we get

λπ
(
x̄1 · dlog(ḡϵ2(x̄2)), 0

)
=
(
1 + (−α−1

1,1) · x1 , gϵ2(x2)
)

since 1+ (−α−1
1,1) ·x1 = 1+4 · (s−1 ·x1) with s = −4 ·α1,1 ∈ Z×

2 and hence s−1 ·x1
is a lift to characteristic 0 of x̄1. Therefore, by definition of the residue map ∂, we
get

∂((1 + (−α−1
1,1) · x1 , gϵ2(x2))) = 0

which by Theorem 1.3.1 implies that

(1 + (−α−1
1,1) · x1 , gϵ2(x2)) ∈ Ev−2Br(A)[2] ⊆ Ev−1Br(A)[2].

In order to end the proof we are left to show thatA0,0 /∈ ⟨Ev−1Br(A)[2],Br1(A)[2]⟩.
The change of variables of Lemma 4.5.3 sends the class of the quaternion algebra

A0,0 = (u1 · (u1 − γ1,2) , u2 · (u2 − γ2,2)) = (u1 − γ1,1 , u2 − γ2,1)



4.5. Kummer K3 surfaces over 2-adic fields 87

to the class of the quaternion algebra

(4 · (x1 − α1,2) , 4 · (x2 − α2,2)) = (x1 + 2β1,2 + δ , x2 + 2β2,2 + δ).

From Proposition 4.2.1(d) the latter is such that

ρ0

(
d(x̄1 + δ)

x̄1 + δ
∧ d(x̄2 + δ)

x̄2 + δ

)
=
[{
x1 + 2β2,1 + δ, x2 + 2β2,2 + δ

}]
∈ gr0.

In fact, x1 +2β2,1 + δ, x2 +2β2,2 + δ and x2 +2β2,2 + δ are lifts to characteristic 0

of x̄1+ δ and x̄2+ δ respectively. Note that, d(x̄1+δ)
x̄1+δ

∧ d(x̄2+δ)
x̄2+δ

comes from a global
2-form on the special fibre Y of A and hence it is non-zero in its function field.
Finally, using Proposition 4.2.2 we get that

rsw2,π((x1 + 2β2,1 + δ, x2 + 2β2,2 + δ)) =

(
d(x̄1 + δ)

x̄1 + δ
∧ d(x̄2 + δ)

x̄2 + δ
, 0

)
̸= (0, 0)

and hence (x1+2β1,2+δ, x2+2β2,2+δ) /∈ fil1Br(A)[2] ⊇ Ev−1Br(A)[2]. Moreover,
as a consequence of Corollary 4.1.5 we get that A0,0 /∈ ⟨Ev−1Br(A)[2],Br1(A)[2]⟩.
In fact, otherwise, there would be an element A1 ∈ Ev−1Br(A)[2] such that A0,0⊗
A1 ∈ Br1(A)[2], but A0,0 ⊗A1 has the same refined Swan conductor as A0,0.

Remark 4.5.5. We will later use a slightly stronger statement of the theorem
above. Let L/Q2 be any field extension and res the natural map from Br(A)[2]
to Br(AL)[2]. Then, res(Aϵ1,ϵ2) ∈ ⟨Ev−1Br(AL)[2],Br1(AL)[2]⟩ if and only if
at least one among ϵ1 and ϵ2 is different from 0. We clearly have that Aϵ1,ϵ2
in ⟨Ev−1Br(A)[2],Br1(A)[2]⟩ implies res(Aϵ1,ϵ2) in ⟨Ev−1Br(AL)[2],Br1(AL)[2]⟩.
Moreover, we have proven that the first component of rsw2,π(A0,0) is different
from 0, and hence using Lemma 4.1.2 we get that rsweL′/L2,π(res(A0,0)) ̸= (0, 0)

and therefore in particular res(A0,0) /∈ ⟨Ev−1Br(AL)[2],Br1(AL)[2]⟩

4.5.3 No Brauer–Manin obstruction from 2-torsion elements in
Kum(A)

In this section, we show how, from the results of the previous section, we can deduce
information on the 2-torsion elements in the Brauer group of the corresponding
Kummer surface V = Kum(AQ). We denote by A and X the base change of the
abelian surface AQ and the corresponding Kummer surface X to Q2. By Section
4.5.1 we know that A0,0 descends to X if and only if[

−γ1,1 · γ2,1, γ2,1(γ2,1 − γ2,2), γ1,1(γ1,1 − γ1,2), 1
]
∈ (Q×2

2 )4.

By construction, γ1,1 = 4 · (α1,2 − α1,1) = 8β1,1 − 8β1,2 and therefore

γ1,1 ≡ 8β1,1 ≡ 1− 12δ1 + 4a1 ≡ 1− 4(3δ1 − a1) mod 8.

In fact, from Lemma 4.5.2 and more precisely from equation (4.9) we know that
8β1,1 + 8β1,2 + 8β1,3 = 1 − 12δ1 + 4a1 and both ord2(β1,2) and ord2(β1,3) are
non-negative. Similarly,

γ2,1 ≡ 8β2,1 ≡ 1− 12δ2 + 4a2 ≡ 1− 4(3δ2 − a2) mod 8.
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In particular, both γ1,1 and γ2,1 are either 1 or 5 modulo 8; hence −γ1,1 · γ2,1 is
either −1 or 3 and therefore it is never a square. Summing up: we have shown
A0,0 never descends to Br(X). We are ready to prove the main theorem of this
section.

Theorem 4.5.6. Let X = Kum(A), where A = E1 × E2 is as in Section 4.5.1;
then Br(X)[2] = Ev−1Br(X)[2].

Proof. We recall that if Aϵ1,ϵ2 descends to Br(X)[2], we denote by Cϵ1,ϵ2 the corre-
sponding element in Br(X)[2], i.e. Cϵ1,ϵ2 is such that π∗(Cϵ1,ϵ2) = Aϵ1,ϵ2 . We need
to prove that if Aϵ1,ϵ2 descends to Br(X), then Cϵ1,ϵ2 lies in Ev−1Br(X). Since we
have already shown at the beginning of this section that A0,0 never descends to
Br(X) we are left to show it for (ϵ1, ϵ2) ̸= (0, 0).

Let L/Q2 be such that all elements appearing in the matrix M of Section 4.5.1
are squares, i.e. the injective map

π∗ :
Br(X)[2]

Br1(X)[2]
↪→ Br(A)[2]

Br1(A)[2]

is an isomorphism.
With abuse of notation, we denote by res both

res : Br(A)→ Br(AL) and res : Br(X)→ Br(XL).

We denote by (Cϵ1,ϵ2)L the pre-image of res(Aϵ1,ϵ2) ∈ Br(AL)[2].
From [LS23, Theorem 2] we know that the reduction of X is an ordinary K3

surface. Let e be the ramification index of L/Q2 and πL the an uniformiser of OL;
then we have filnBr(XL)[p] = fil0Br(XL)[p] = Ev−1Br(XL)[p] if n < e′ := 2e and
file′Br(X)[p] = Br(XL)[p], see Remark 4.3.2. Hence, using Corollary 1.3.9(3) we
have an injection

multc ◦ rswe′,πL
:

Br(XL)[2]

Ev−1Br(XL)[2]
↪→ H0(Yℓ,Ω

2
Yℓ,log

)

where ℓ is the residue field of L.
Since X (and hence all its base change) has good ordinary reduction, we know

that H0(Ȳ ,Ω2
Ȳ ,log

) ⊗F2
ℓ̄ is a one dimensional ℓ̄-vector space (cf. equation (3.2))

and hence Br(XL)[2]/Ev−1Br(XL)[2] is a vector space of dimension at most 1 over
F2.

From Lemma 4.5.4 we know thatA0,0 /∈ fil1Br(A)[2]. Applying Lemma 4.1.2 we
get that res(A0,0) /∈ fileBr(AL)[2] and by Lemma 4.5.1 (C0,0)L /∈ Ev−1Br(XL)[2].
Therefore

⟨[(C0,0)L]⟩ =
Br(XL)[2]

Ev−1Br(XL)[2]
.

Assume that there exists (ϵ1, ϵ2) ̸= (0, 0) such that Aϵ1,ϵ2 descends to Br(X)
and the corresponding element Cϵ1,ϵ2 does not lie in Ev−1Br(X)[2]. By Lemma
4.1.2 res(Cϵ1,ϵ2) does not lie in Ev−1Br(XL)[2] and therefore, since the quotient
Br(XL)[2]/Ev−1Br(XL)[2] is a 1-dimensional F2-vector space, we have that also
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the product res(Cϵ1,ϵ2) ⊗ (C0,0)L lies in Ev−1Br(X)[2]. This implies that also
the corresponding element in Br(AL)[2], res(Aϵ1,ϵ2 ⊗ A0,0) lies in Ev−1Br(AL).
However, since by Remark 4.5.5 res(Aϵ1,ϵ2) lies in ⟨Ev−1Br(XL)[2],Br1(XL)[2]⟩,
we get that also res(A0,0) has to lie in ⟨Ev−1Br(AL)[2],Br1(AL)[2]⟩ which gives
us the desired contradiction.

Finally, we give an example of a K3 surface over Q with good ordinary reduction
at 2 and such that Br(X) = Ev−1Br(X). The existence of such an example shows
that the converse of Theorem 3.1.1 is not true, i.e. it is not enough to have that
p− 1 | e in order to find an element in Br(X) that does not lie in Ev−1Br(X).

Example 4.5.7. Let A = E × E, where E is the elliptic curve given by the
minimal Weierstrass equation

y2 + xy + y = x3 − 7 · x+ 5.

Then, with the same notation as in the previous sections β1 = −11/8, β2 = −1
and β3 = 1. Hence

α1 = 7/4, α2 = 1, α3 = −3 and γ1 = −3, γ2 = −21.

The matrix M is of the form
1 3 · 21 3 · 21 −9

3 · 21 1 9 −3 · 18
3 · 21 9 1 −3 · 18
−9 −3 · 18 −3 · 18 1

 .

In particular, all the rows of M have at least one term which does not lie in Q×2
2 .

Moreover, using [SZ12, Proposition 3.7] we can compute the dimension as an F2-
vector space of the quotient of Br(X)[2] by Br(Q2)[2] and in this case particular
example:

dimF2

(
Br(X)[2]

Br(Q2)[2]

)
= 0.

We want to show that Br(X){2} = Br(Q2){2}. We work by induction on n; let A
be in Br(X)[2n], then

A⊗2n−1

∈ Br(X)[2] = Br(Q2)[2].

In particular, given P ∈ X(Q2), we have that

(A⊗ evA(P ))
⊗2n−1

= A⊗2n−1

⊗ evA⊗2n−1 (P ) = 0

henceA⊗evA(P ) ∈ Br(X)[2n−1], and by induction hypothesis thatA ∈ Br(Q2)[2
n].
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4.5.4 Examples of Brauer–Manin obstruction

We continue this section by giving new examples of primes of good reduction that
plays a role in the Brauer–Manin obstruction to weak approximation in the case
p = 3 and p = 5.

Example 4.5.8. Let L = Q3(ζ) with ζ primitive 3-root of unity. Let π be a
uniformiser of OL; then e = e(L/Q3) = 2 and the residue field ℓ is equal to F3.

We define X to be the Kummer K3 surface over L attached to the abelian
surface A = E × E, with E the elliptic curve over L defined by the Weierstrass
equation

y2 = x3 + 4 · x2 + 3 · x+ 1.

The elliptic curve E (and hence A andX) has good ordinary reduction at the prime
p = (π). We will denote by {x, y, z} and {u, v, w} the variables corresponding to
the embedding of respectively the first and the second copy of E in P2

L. We define
the cyclic algebra

A :=

(
v − u
w

,
y − x
z

)
ζ

∈ Br(L(A))[3].

Claim 1: A belongs to Br(A)[3].

Proof. First of all, notice that from y2z = x3 + 4x2z + 3xz2 + z3 we get

z(y − x)(y + x) = (x+ z)3 and z(y2 − 4x2 − 3xz − z2) = x3.

Then:

- if z = 0, then x = 0 and therefore y2 − 4x2 − 3xz − z2 ̸= 0 and x ̸= y and
from the equation above A is equivalent to(

v − u
(v2 − 4u2 − 3uw − w2)−1

,
y − x

(y2 − 4x2 − 3xz − z2)−1

)
ζ

;

- if x = y, then x ̸= −y and z ̸= 0 (since z = 0 implies x ̸= y) and from the
equation above A is equivalent to(

w

v + u
,

z

x+ y

)
ζ

.

Thus, we see that along all the divisors over which A is not well defined we are
able to find an equivalent Azumaya algebra which on those divisors is well defined.
Hence, A defines an element in Br(A)[3].

Claim 2: A and does not lie in Ev−1Br(A)[3].
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Proof. The regular global 1-form on the reduction of E modulo p is given by the
(local) formula

dx

2y
= −1

2
· dx · (x− y)
y(y − x)

= −1

2
·
dx · xy − dx
y − x

=
d(y − x)
y − x

where the last equality follows from the fact that on the special fibre dx
y = dy

x and
since we are in characteristic 3, 1

2 = −1. Hence, if we denote by Y the reduction
modulo p of A, we have that the global 2-form on Y is given by

ω =
d
(
v−u
w

)(
v−u
w

) ∧ d
(
y−x
z

)
(
y−x
z

) .

Finally, ρ0(ω, 0) =
[{

v−u
w , y−xz

}]
and hence again by Proposition 4.2.2 we get

that
rsw3,π(A) ̸= (c̄−1 · ω, 0)

and therefore A /∈ fil2Br(A)[3] ⊇ Ev−1Br(A)[3].

Claim 3: The cyclic algebra A in Br(A)[3] is not algebraic, i.e. A /∈ Br1(A)[3].

Proof. If follows directly from Corollary 4.1.5.

Finally, from [SZ12, Theorem 2.4] the map

π∗ :
Br(X)[3]

Br1(X)[3]
↪→ Br(A)[3]

Br1(A)[3]

is an isomorphism. Let B ∈ Br(X)[3] be such that π∗(B) = A ∈ Br(A)[3]. Then,
from Lemma 4.5.1 we get that B /∈ Ev−1Br(X)[3], namely (since for K3 surfaces
Ev0Br(X) = Ev−1Br(X), see Section 4.3) the corresponding evaluation map on
X(L) is non-constant.

Before proceeding with the next example we need a lemma that shows how
the evaluation map behaves under base change without the assumption of good
reduction for X.

Lemma 4.5.9. Let X be a variety over a p-adic field L, not necessarily having good
reduction, and let A ∈ Br(X){p} be such that evA : X(L)→ Br(L) is non-constant.
Then for every field extension L′/L with degree co-prime to p we have that res(A) ∈
Br(XL′) has also a non-constant evaluation map evres(A) : XL′(L′)→ Br(L′).

Proof. Let P,Q ∈ X(L) be such that

evA(P ) ̸= evA(Q).
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Denote by P ′ and Q′ the base change of P and Q to L′, i.e. we have the following
commutative diagrams

XL′ X0

Spec(L′) Spec(L)

ψ

φ

Spec(L′) XL′

Spec(L) X

φ

P ′

ψ

P

Spec(L′) XL′

Spec(L) X.

φ

Q′

ψ

Q

Then

evres(A)(P
′) = Br(P ′)(Br(ψL)(A0)) = Br(φL)Br(P )(A) = Br(φL)(evA(P )).

Finally since L′/L has degree co-prime to p the map Br(φ) : Br(L) → Br(L′) is
injective on elements of p-order; hence

evres(A)(P
′) ̸= evres(A)(Q

′).

Example 4.5.10. Let X be the diagonal quartic surface over Q5 defined by the
equation:

5x4 − 4y4 = z4 + w4.

Skorobogatov and Ieronymou prove [IS15, Theorem 1.1], [IS15, Proposition 5.12]
that there exists an element A ∈ Br(X)[5] with surjective evaluation map. Let
L = Q5(

4
√
5), e(L/Q5) = 4 and α ∈ L be such that α4 = 5. Then the change of

variables:

(x, y, z, w) 7→
(
x1
α
, y1, z1, w1

)
sends XL to the diagonal quartic X̃/L given by the equation

x41 − 4y41 = z41 + w4
1.

The surface X̃ has good ordinary reduction over L. Finally, by Lemma 4.5.9 we
know that res(A) ∈ Br(XL′) = Br(X̃) has non-constant evaluation map.

Note that, at this point we have not write the algebra A as a cyclic algebra,
and hence we are not able to show explicitly the link with the global logarithmic
2-forms on the special fibre and hence compute the refined Swan conductor of A,
even if from Remark 4.3.2 we know that A ∈ filpBr(X)[5].

4.6 Family of examples

We end this thesis by giving an example of a family of K3 surfaces.
Let α ∈ Q̄ be such that α2 ∈ Z and let Vα be the K3 surface over k := Q(α)

defined by the equation

x3y + y3z + z3w − w4 + α2 · xyzw − 2 · α−1 · xzw2 = 0. (4.13)
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Lemma 4.6.1. The class of the quaternion algebra

A :=

(
z2 + α2 · xy

z2
,− z

x

)
∈ Br(k(Vα))

lies in Br(Vα)[2].

Proof. Let f := z2 + α2xy and Cx,Cz,Cf be the closed subsets of Vα defined by
the equations x = 0, z = 0 and f = 0 respectively. The quaternion algebra A
defines an element in Br(U), where U := Vα \ (Cx ∪Cz ∪Cf ). The purity theorem
for the Brauer group [CTS21, Theorem 3.7.2], assures us of the existence of the
exact sequence

0→ Br(Vα)[2]→ Br(U)[2]
⊕∂D−−−→

⊕
D

H1(k(D),Z/2) (4.14)

where D ranges over the irreducible divisors of Vα with support in X \U and k(D)
denotes the residue field at the generic point of D.

In order to use the exact sequence (4.14) we need to understand what the prime
divisors of Vα with support in Vα \ U = Cx ∪ Cz ∪ Cf look like. Using MAGMA
[BCP97] it is possible to check the following:

• Cx has one irreducible component D1 defined by the equations {x = 0, y3z+
z3w + w4 = 0};

• Cz has one irreducible component D2, defined by the equations {z = 0, x3y−
w4 = 0};

• Cf has one irreducible component D3, defined by the equations {α2xy+z2 =
0, x3z2+y2z3+2αx2zw2+α2xw4 = 0, α2y3z−x2z2−2αxzw2−α2w4 = 0}.

Therefore, we can rewrite (4.14) in the following way:

0→ Br(Vα)[2]→ Br(U)[2]
⊕∂Di−−−→

3⊕
i=1

H1(k(Di),Z/2). (4.15)

Moreover, we have an explicit description of the residue map on quaternion alge-
bras: for an element (a, b) ∈ Br(U)[2] we have

∂Di
(a, b) =

[
(−1)νi(a)νi(b) a

νi(b)

bνi(a)

]
∈ k(Di)

×

k(Di)×2
≃ H1(k(Di),Z/2) (4.16)

where νi is the valuation associated to the prime divisor Di. This follows from the
definition of the tame symbols in Milnor K-theory together with the compatibility
of the residue map with the tame symbols given by the Galois symbols (see [GS17],
Proposition 7.5.1).

We can proceed with the computation of the residue maps ∂Di
for i = 1, . . . , 3:
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1. ν1(x) = 1 and ν1(f) = ν1(z) = 0. Hence,

∂D1

(
f

z2
,− z

x

)
=

[(
f

z2

)−1
]
= 1 ∈ k(D1)

×

k(D1)×2

where the last equality follows from the fact that x = 0 on D1, thus f |D1
=

z2.

2. ν2(z) = 1 and ν2(f) = ν2(x) = 0. Hence,

∂D2

(
f

z2
,− z

x

)
=

[(
f

z2

)(
− z
x

)2
]
=

[
f

x2

]
= 1 ∈ k(D2)

×

k(D2)×2

where the last equality follows from the fact that z = 0 and x3y = w4 on

D2, thus f |D2= α2xy and α2y
x = α2

(
w
x

)4
=
(
αw

2

x2

)2
.

3. ν3(f) = 1 and ν3(x) = ν3(z) = 0. Hence,

∂D3

(
f

z2
,− z

x

)
=

[
− z
x

]
=

(α3x

z3

(
w2 +

xz

α

))2
 = 1 ∈ k(D3)

×

k(D3)×2

where the last equality follows from the following equalities on D3:

• y3z = w4 + 2
αxzw

2 + x2z2

α2 =
(
w2 + xz

α

)2;
• xy = − 1

α2 z
2 implies that y3z = (xy)3 zx

1
x2 = − z

x

(
z2

α2

)3
1
x2 = −z

x

(
z3

α3x

)2
Therefore, ∂Di

(A) = 0 for all i ∈ {1, 2, 3}, hence A ∈ Br(Vα).

Let p be a prime above 2 and Op be the valuation ring of kp. We have that
2 · α−1 ∈ Op if and only if α2 ̸≡ 0 mod 8; we can define Xα to be the Op-scheme
defined by equation (4.13). If α2 ̸≡ 0 mod 8, then Xα is smooth and hence Vα
has good reduction at p, we denote by Xα the base change of Vα to kp.

Theorem 4.6.2. Assume that α2 ̸≡ 0 mod 8. Then, Xα has good ordinary re-
duction if and only if α2 ≡ 1 mod 2. The evaluation map attached to A

evA : Xα(kp)→ Q/Z

is non-constant if and only if

α2 ̸≡ 0 mod 4.

Proof. Recall that we know that for K3 surfaces the evaluation map attached to
A is non-constant if and only if A /∈ fil0Br(Xα) (cf.Section 4.3).
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• If α2 ≡ 1 mod 2, then the special fibre Yα is defined by the equation

x3y + y3z + z3w + w4 + xyzw.

From Lemma 4.3.1 we get that Yα is an ordinary K3 surface. From Lemma 4.3.3
we know that a generator (as k(p)-vector space) of H0(Yα,Ω

2
Yα

) is given by
the global 2-form ω that can be written (locally) as

d
(
y
x

)
∧ d
(
z
x

)
z3+xyz
x3

=
x2

z2 + xy
d

(
y

x

)
∧ d
(
z

x

)
x

z
=(

x2

z2 + xy

)
· d

(
z2 + xy

x2

)
∧
(
x

z

)
· d
(
z

x

)
where the last equality follows from d

(
z2+xy
x2

)
∧d
(
z
x

)
= d

(
y
x

)
∧d
(
z
x

)
. Hence,

we can write ω as df
f ∧

dg
g , with f = z2+xy

x2 , g = z
x . Finally, we see that, by

Proposition 4.2.1

[A] =

{z2 + α2 · xy
z2

,− z
x

} =

{z2 + α2 · xy
x2

,− z
x

} = ρ0(ω, 0)

since z2+α2·xy
x2 and − z

x are lifts to characteristic 0 of f and g, respectively.
Hence, using Proposition 4.2.2 we get that rswe′,π(A) ̸= (0, 0) and A /∈
file′−1Br(Xα) ⊇ fil0Br(Xα).

• If α2 ≡ 2 mod 4, then the special fibre Yα is defined by the equation

x3y + y3z + z3w + w4

From Lemma 4.3.1 we get that Yα is a non-ordinary K3 surface over k(p).
From Lemma 4.3.3 we know that H0(Yα,Ω

2
Yα

) is generated (as a k(p)-vector
space) by the 2-form ω that can be written (locally) as

d
(
y
x

)
∧ d
(
z
x

)
z3

x3

=

(
x2

z2

)
· d
(
y

x

)
∧
(
x

z

)
· d
(
z

x

)
= d

(
xy

z2

)
∧
(
x

z

)
· d
(
z

x

)
where the last equality follow from the fact that, since we are working over a
field of characteristic 2,

(
x
z

)2
d
(
y
x

)
= d

(
xy
z2

)
. Hence, in this case we can write

ω as d
(
f · dgg

)
, with f = xy

z2 , g = z
x . Since α2 ≡ 2 mod 4, the prime ideal

(2) is ramified in the field extension Q2(α)/Q2 and π = α is a uniformiser.
From Proposition 4.2.1 we get that{z2 + α2 · xy

z2
,− z

x

} =

[{
1 + α2xy

z2
,− z

x

}]
= ρ2

(
f · dg

g

)
since xy

z2 and − z
x are two lifts to characteristic 0 of f and g, respectively.

Hence, by Proposition 4.2.2 rsw2,π(A) ̸= (0, 0) and hence A /∈ fil1Br(Xα)
and thus A /∈ fil0Br(Xα) ⊆ fil1Br(Xα).
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• If α2 ≡ 0 mod 4, then the special fibre Yα is defined by the equation

x3y + y3z + z3w + w4 + xzw2.

Again, from Lemma 4.3.1 we get that Yα is a non-ordinary K3 surface over
k(p). If Q2(α)/Q2 is unramified then we are done by Theorem 3.2.1. If
the field extension is ramified and π is a uniformiser, then since α2 ≡ 0
mod 4 and α2 ̸≡ 0 mod 8, we have that α2 = π4β with β ∈ O×

p . Hence,
if we look at the corresponding element in k2(Kh) via the isomorphism of
equation (4.3), we have that

A 7→

{
z2 + α2 · xy

z2
,− z

x

}
=

{
1 + π4 · β · xy

z2
,− z

x

}
∈ U4k2(Kh).

Hence, using again Proposition 4.2.2, A ∈ fil0Br(Xα)[2].

Remark 4.6.3. The case α2 ≡ 2 mod 4 proves that the bound appearing in The-
orem 3.2.1 is optimal. In fact, we are able to find examples of K3 surface V over
a quadratic field extensions of Q such that there is a prime above 2 whose ramifi-
cation index is e(p/2) = 2 and that plays a role in the Brauer–Manin obstruction
to weak approximation.

Finally, note that when α2 ≡ 0 mod 4 and e(p/2) = 1, we know from Theo-
rem 3.2.1 that there is an equality Ev−1Br(Xα) = Br(Xα). However, if e(p/2) = 2,
we just showed that the element A of the previous theorem lies in Ev−1Br(Xα)[2]
and not that Br(Xα) = Ev−1Br(Xα).




