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CHAPTER2
An example of Brauer–Manin

obstruction coming from a
prime of good reduction

2.1 Swinnerton-Dyer’s question

This chapter is based on [Pag22]. The main result of this chapter gives an answer,
over the rational numbers, to the following question, asked by Swinnerton-Dyer to
Colliot-Thélène and Skorobogatov [CTS13, Question 1].

Question 2.1.1 (Swinnerton-Dyer). Let k be a number field and let S be a finite
set of places of k containing the archimedean places. Let V be a smooth projective
Ok,S-scheme with geometrically integral fibres, and let V/k be the generic fibre.
Assume that Pic(V ) is finitely generated and torsion-free. Swinnerton-Dyer asks
if there is an open and closed Z ⊆

∏
ν∈S V (kν) such that

V (Ak)
Br = Z ×

∏
ν /∈S

V (kν).

If V (Ak)
Br is non-empty and can be described as in Swinnerton-Dyer’s ques-

tion, then for any ω /∈ S, and for any A ∈ Br(V ) the corresponding evaluation map
evA : V (kω)→ Q/Z has to be constant. In fact, for any (xν) ∈ Z×

∏
ν /∈S∪{ω} V (kν)

we have that, for any yω, ỹω ∈ V (kω)∑
ν∈Ωk\{ω}

evA(xν) + evA(yω) =
∑

ν∈Ωk\{ω}

evA(xν) + evA(ỹω) = 0.
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This is because, from the description of the Brauer–Manin set:

(xν)ν ̸=ω ∪ (yω), (xν)ν ̸=ω ∪ (ỹω) ∈ V (Ak)
Br

That is, all the places ω /∈ S do not play a role in the Brauer–Manin obstruction
to weak approximation on X (cf. Definition 1.1.10).

We can therefore reformulate Swinnerton-Dyer’s question in the following way:
is it true that under the assumption of the question asked above the only places
that can play a role in the Brauer–Manin obstruction to weak approximation are
the places of bad reduction and the archimedean places?

2.1.1 Torsion in the geometric Picard group

The aim of this section is to briefly explain why the assumption on the torsion
of the geometric Picard group is needed. This is a consequence of work of Harari
[Har00] and Skorobogatov [Sko01]. In their work they use abelian descent obstruc-
tion, which arise from torsors (for an introduction to torsors we refer to [Sko01,
Chapter 2]).

Let V be a smooth, proper and geometrically integral variety over a number
field k. In 1989 Minchev [Min89] has shown that the existence of an étale mor-
phism of geometrically integral varieties implies the failure of weak approximation
on V (he proved the failure of strong approximation, which for proper varieties
coincide with weak approximation). In particular, if Pic(V̄ ) has torsion, then we
immediately get that the étale fundamental group (cf. [Mil80, Chapter I, Section
5]) π1

ét(X) is non-trivial and, by a result of Harari [Har00, proof of Lemma 5.2(1)],
there exists a geometrically integral étale morphism. However, if we want to link
the obstruction arising from this morphism to the Brauer–Manin obstruction, we
need the covering to be abelian, which is something we can guarantee up to en-
larging the base field k.

The argument in this section is divided into three parts: in the first part, it
is shown how the obstruction coming from an abelian Galois covering is linked
to the Brauer-Manin obstruction; in the second, it is shown how the presence of
torsion in the geometric Picard group implies the existence of a non-trivial abelian
Galois covering defined over a field extension of the base field k; in the third, it
is shown how the existence of a non-trivial Galois covering implies the presence of
an obstruction to weak approximation.

Following Colliot-Thélène and Sansuc [CTS87], in [Sko01, Section 6.1] Sko-
robogatov proves how it possible to describe the algebraic Brauer–Manin obstruc-
tion using torsors of multiplicative type. Let G be a k-group of multiplicative type
with dual group M , then there exists a natural map

type: H1(V,G)→ HomΓk
(M,Pic(V̄ )). (2.1)

Any element γ ∈ M = Hom(G,Gm) induces a map γ∗ : H1(V̄ , G) → H1(V̄ ,Gm),
and the type of f ∈ H1(V,G) is defined as the map sending γ to γ∗(f).
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Given a torsor f : W → V under G, we define

V (Ak)
f :=

⋃
σ∈H1(k,G)

fσ(Wσ(Ak)).

For σ ∈ H1(k,G), fσ : Wσ → V is defined as the twist of the torsor f , see [Sko01,
Section 2.2, Example 2]. In general, fσ is a Gσ-torsor, where Gσ is the Galois
twist of G by σ, [Sko01, Section 2.1] and if G is abelian, then Gσ = G.

Remark 2.1.2. The torsor f under G represents an element of H1(V,G); the set
V (Ak)

f coincide with the set defined in Chapter 1, Section 1.1.1 with respect to
the functor F := H1(−, G), see [Sko01, Section 5.3].

Skorobogatov proved the following theorem.

Theorem 2.1.3. Let M be a Γk-module of finite type, S its dual group of multi-
plicative type and λ ∈ HomΓk

(M,Pic(V̄ )). Then

(a) there are only finitely many isomorphism classes of torsors f : W → V of
type λ such that W (Ak) ̸= ∅;

(b) there exists a subgroup Brλ(V ) ⊆ Br1(V ) such that

V (Ak)
Brλ =

⋃
type(W,f)=λ

f(W (Ak)).

Proof. A proof can be found in [Sko01, Section 6.1]. In particular, note that since
V is proper and smooth, we always have k̄[V ]∗ = k̄∗.

We want to show that, up to enlarging the base field k, there is a type λ for
which the corresponding Brauer–Manin setX(Ak)

Brλ is not of the shape appearing
in Swinnerton-Dyer’s question.

Assume that there is torsion in Pic(V̄ ), then up to enlarging the base field, we
can assume that there is torsion already defined over the base field k. By Kummer
theory there exists n such that f ∈ H1(V, µn) does not become trivial in H1(V̄ , µn).
Moreover, again up to (possibly) enlarging the base field, we can assume that it
contains a primitive n-root of unity and hence to have an isomorphism

H1(V, µn) ≃ H1(V,Z/nZ) ≃ π1(V,Z/nZ).

We denote by ρ : W → V the Galois covering with Galois group Z/nZ correspond-
ing to the µn-torsor f : W → V . In [Har00] Harari proves the following result for
Galois coverings.

Lemma 2.1.4. Let W ρ−→ V be a geometrically non-trivial Galois covering, with
V geometrically connected of positive dimension. Then there exists a finite field
extension k′/k such that, for almost all places ν which are totally split for k′/k,
there exists a kν point xν of V such that xν ∈ V (kν) but xν /∈ ρ(W (kν)).
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Proof. This is a reformulation of [Har00, Lemma 2.3] with g = id.

We know that there exists at least one geometrically non-trivial µn-torsor
f : W → V . We denote by λ its type. Then, there exists f1, . . . , fr torsors under
µn of type λ such that

V (Ak)
Brλ =

r⋃
i=1

fi(Wi(Ak)).

Let S be any finite set of places. Then from Lemma 2.1.4 we know that for any
i ∈ {1, . . . , r} there exists a finite field extension ki/k and infinitely many places
νi that are totally split for ki/k such that there is a point (xνi) ∈ V (kνi) but
(xνi) /∈ fi(Wi(kνi)). If we pick the places νi all different from each other and not
in S, then any point (xν) ∈ V (Ak) such that

xνi /∈ fi(Wi(kνi)) for i = 1, . . . , r

does not belong to V (Ak)
Brλ .

However, if there exists a finite set of places S such that

V (Ak)
Br = Z ×

∏
ν /∈S

V (kν) ⊆ V (Ak)
Brλ

then for every z ∈ Z and every (xν) ∈
∏
ν /∈S V (kν), the point z ∪ (xν) has to lie

in V (Ak)
Brλ .

2.1.2 Previous works

In this section we give an overview of the main results that have been proved in
the attempt to answer the question asked by Swinnerton-Dyer.

The question appears for the first time in [CTS13], paper in which Colliot-
Thélène and Skorobogatov prove some results around it. In particular, they work
under the following setting: L is a p-adic field and X → Spec(OL) is a smooth
proper model with geometrically integral fibres of a variety X defined over L.
In [CTS13] Colliot-Thélène and Skorobogatov prove the following result [CTS21,
Proposition 10.4.3].

Proposition 2.1.5. Let q be a prime, q ̸= char(ℓ). Assume that the closed geo-
metric fibre Y of X has no connected unramified cyclic covering of degree q. Then
Br(X){q} is generated by the images of Br(X ){q} and Br(L){q}.

The condition on the closed geometric fibre is equivalent to the vanishing of the
étale cohomology group H1(Ȳ ,Z/qZ). This condition holds if there is no q-torsion
in the geometric Picard group of the generic fibre, see [BN23, Lemma 11.4].

In [CTS13] Colliot-Thélène and Skorobovatov prove also that if the Picard
group is torsion free and finitely generated, then

Br1(X) = ker
(
Br(X)→ Br(Xun)

)
, [CTS21, Proposition 10.4.2]
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where Xun is the base change of X to the maximal unramified extension Lun of
L. Moreover, they prove that the map

Br(L)⊕ ker
(
Br(X )→ Br(Xun)

)
→ ker

(
Br(X)→ Br(Xun)

)
is surjective. Combining these two results with diagram (1.9) we get that every
element A ∈ Br1(X) has constant evaluation map. Putting everything together
they get the following theorem, for varieties over number fields.

Theorem 2.1.6. Let k be a number field. Let S be a finite set of places of k
containing the archimedean places, and let Ok,S be the ring of S-integers of k. Let
V over OS be a smooth and proper scheme with geometrically integral generic fibre
V . Assume that

1. Pic(V̄ ) is torsion free and finitely generated;

2. the transcendental Brauer group Br(V )/Br1(V ) is a finite abelian group of
order invertible in Ok,S.

Then V (Ak)
Br = Z ×

∏
ν /∈S V (kν), where Z ⊆

∏
v∈S V (kν) is an open and closed

subset.

Proof. This is [CTS21, Theorem 13.3.15]. Note that in their result Colliot-Thélène
and Skorobogatov split the assumption on the geometric Picard group in two
assumptions: the vanishing of H1(V,OV ) and the torsion freeness of the geometric
Neron-Severi group NS(V̄ ).

This theorem shows that under the finiteness assumption on the transcendental
Brauer group, up to enlarging the set S, the question asked by Swinnerton-Dyer
has a positive answer. Some years later Bright and Newton [BN23] were able to
prove another result in the same direction, but without any assumption on the
transcendental Brauer group, using the notion of refined Swan conductor.

Theorem 2.1.7. Let k be a number field. Assume V to be a smooth, proper
and geometrically integral k-variety. Assume Pic(V̄ ) to be torsion free and finitely
generated. Let S be the following set of places:

1. Archimedean places;

2. places of bad reduction for V ;

3. places p satisfying ep ≥ p− 1, with p residue characteristic of p;

4. places p with H0(V(p),Ω1
V(p)) non-trivial, for any smooth integral model V →

Spec(Op), where V(p) is the special fibre at p.

Then the set S is finite and there exists Z ⊆
∏
ν∈S V (kν) open and closed such

that V (Ak)
Br = Z ×

∏
ν /∈S V (kν).

Proof. [BN23, Theorem D].
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On the other hand, in [BN23] Bright and Newton prove also a result showing
that after a finite field extension primes of good ordinary reduction always play
a role in the Brauer–Manin obstruction to weak approximation (for the definition
of good ordinary reduction see Chapter 3, Definition 3.1.2).

Theorem 2.1.8. Let V be a smooth, proper and geometrically integral variety over
a number field k such that H0(V,Ω2

V ) ̸= 0. Let p be a finite place of k at which
V has good ordinary reduction, with residue characteristic p. Then there exist a
finite extension k′/k, a place p′ of k′ over p and an element A ∈ Br(Vk′){p} such
that the evaluation map evA : V (k′p′)→ Q/Z is non-constant.

In particular, this proves that in general the question asked by Swinnerton-Dyer
has a negative answer.

The rest of this chapter is devoted to build the first example of a variety
satisfying the assumption of Swinnerton-Dyer’s question for which a prime of good
reduction plays a role in the Brauer–Manin obstruction to weak approximation.
This example consist of a K3 surface over the rational numbers, proving that the
question asked by Swinnerton-Dyer has a negative answer already over Q.

Before proceeding with the main result of this chapter, we give a short overview
of K3 surfaces and explain why they form the natural playground in trying to build
counterexample to Swinnerton-Dyer’s question.

2.1.3 K3 surfaces

Let k be any field, we will work just with algebraic K3 surfaces. For a smooth
variety, we write ωX for the canonical sheaf of X.

Definition 2.1.9. An algebraic K3 surface is a smooth projective 2-dimensional
variety over a field k such that ωX ≃ OX and H1(X,OX) = 0.

In this thesis the examples will always be of these two kinds (see [Huy16,
Section 1.1] for more details):

1. X smooth quartic surface in P3
k;

2. X = Kum(A), where A is an abelian surface over a field of characteristic
different from 2 and X is obtain by resolving singularities from the quotient
A/ι, with ι : A→ A involution given by x 7→ −x.

The de Rham cohomology of K3 surfaces over algebraically closed fields can be
summarised in the Hodge diamond, which looks like this
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h0,0 1

h1,0 h0,1 0 0

h2,0 h1,1 h0,2 1 20 1

h2,1 h1,2 0 0

h2,2 1

where hi,j = dimkH
i(X,ΩjX).

As mentioned before, K3 surfaces are the natural playground to build examples
of varieties that satisfy both the assumption in Swinnerton-Dyer’s question and
in Bright and Newton Theorem 2.1.8. The Picard group is finitely generated
and torsion free, see [Huy16, Section 1.2]. If we start with a K3 surface over a
number field k then, since the canonical bundle is trivial by definition, we get that
H0(X,Ω2

X) has dimension 1 as a k-vector space. Moreover, Bogomolov and Zarin
[BZ09] prove that there exists a finite field extension k′/k and a density 1 set of
finite places Σ of k′ such that Xk′ has ordinary good reduction at every place
ν ∈ Σ.

We are ready to state the main theorem of this chapter and of [Pag22].

Theorem 2.1.10. Let V ⊆ P3
Q be the projective K3 surface defined by the equation

x3y + y3z + z3w + w3x+ xyzw = 0. (2.2)

The class of the quaternion algebra

A =

(
z3 + w2x+ xyz

x3
,− z

x

)
∈ BrQ(V )

defines an element in Br(V ). The evaluation map evA : V (Q2)→ Br(Q2) is non-
constant, and therefore gives an obstruction to weak approximation on V . Finally,
V (Q) is not dense in V (Q2), with respect to the analytic topology.

2.2 Proof of Theorem 2.1.10

In the first part of the proof we will show that the element A ∈ Br(k(V )) lies in
Br(V ). Next, we will exhibit two points P1, P2 ∈ V (Q2) such that

evA(P1) ̸= evA(P2).

Finally, we will prove that, for every place ν different from 2, the evaluation map

evA : V (Qν)→ Q/Z

is constant.
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Proof of Theorem 2.1.10. Let f := z3 + w2x + xyz and Cx,Cz,Cf be the closed
subsets of V defined by the equations x = 0, z = 0 and f = 0 respectively. The
quaternion algebra A defines an element in Br(U), where U := V \ (Cx∪Cz ∪Cf ).
The purity theorem for the Brauer group [CTS21, Theorem 3.7.2], assures us the
existence of the exact sequence

0→ Br(V )[2]→ Br(U)[2]
⊕∂D−−−→

⊕
D

H1(k(D),Z/2) (2.3)

where D ranges over the irreducible divisors of X with support in X \U and k(D)
denotes the residue field at the generic point of D.

In order to use the exact sequence (4.14) we need to understand what the prime
divisors of V with support in X \ U = Cx ∪ Cz ∪ Cf look like. It is possible to
check the following:

• Cx has as irreducible components D1 and D2, defined by the equations {x =
0, z = 0} and {x = 0, y3 + z2w = 0} respectively;

• Cz has as irreducible components D1 and D3, where D3 is defined by the
equations {z = 0, x2y + w3 = 0};

• Cf has as irreducible components D1, D4 and D5, where D4 and D5 are
defined by the equations {z3 + xw2 = 0, y = 0} and {y3z − x2z2 + y2w2 =
0, x3 + y2z = 0, xyz + z3 + xw2 = 0} respectively.

Therefore, we can rewrite (4.14) in the following way:

0→ Br(V )[2]→ Br(U)[2]
⊕∂Di−−−→

5⊕
i=1

H1(k(Di),Z/2). (2.4)

Moreover, we have an explicit description of the residue map on quaternion alge-
bras: for an element (a, b) ∈ Br(U)[2] we have

∂Di
(a, b) =

[
(−1)νi(a)νi(b) a

νi(b)

bνi(a)

]
∈ k(Di)

×

k(Di)×2
≃ H1(k(Di),Z/2) (2.5)

where νi is the valuation associated to the prime divisor Di. This is already
explained in Chapter 1, (1.4).

We can proceed with the computation of the residue maps ∂Di for i = 1, . . . , 5:

1. ν1(f) = ν1(x) = ν1(z) = 1. Hence,

∂D1

(
f

x3
,− z

x

)
=

[(
− z
x

)2
]
= 1 ∈ k(D1)

×

k(D1)×2
.

2. ν2(x) = 1 and ν2(f) = ν2(z) = 0. Hence,

∂D2

(
f

x3
,− z

x

)
=

[
−
(
f

x3

)−1(
− z
x

)3
]
=

[
z3

f

]
= 1 ∈ k(D2)

×

k(D2)×2
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where the last equality follows from the fact that x = 0 on D2, thus we have
f |D2

= z3.

3. ν3(x) = ν3(f) = 0 and ν3(z) = 1. Hence,

∂D3

(
f

x3
,− z

x

)
=

[(
f

x3

)]
=

[(
w

x

)2
]
= 1 ∈ k(D3)

×

k(D3)×2

where the last equality follows from the fact that z = 0 on D3, thus we have
f |D3

= w2x.

4. ν4(x) = ν4(z) = 0 and ν4(f) = 1. Hence,

∂D4

(
f

x3
,− z

x

)
=

[(
−x
z

)]
=

[(
w

z

)2
]
= 1 ∈ k(D4)

×

k(D4)×2

where the last equality follows from the fact that z3 + w2x = 0 on D4, thus
−xz =

(
w
z

)2.
5. ν5(x) = ν5(z) = 0 and ν5(f) = 1. Hence,

∂D5

(
f

x3
,− z

x

)
=

[(
−x
z

)]
=

[(
y

x

)2
]
= 1 ∈ k(D5)

×

k(D5)×2

where the last equality follows from the fact that x3 + y2z = 0 on D5, thus
−xz =

(
y
x

)2
.

Therefore, ∂Di
(A) = 0 for all i ∈ {1, . . . , 5}, hence A ∈ Br(X).

We now show that the element A obstructs weak approximation on V . Let
V ⊆ P3

Z be the projective scheme defined by the equation

x3y + y3z + z3w + w3x+ xyzw = 0. (2.6)

V is a Z-model for V and has good reduction at the prime 2.

Let P1 := (1 : 0 : 1 : 0) ∈ V(Z2); then P1 is such that evA(P1) = (1,−1).
Therefore evA(P1) is the trivial class in Br(Q2). Moreover, Hensel’s lemma assures
us of the existence of a solution P2 = (1 : 2 : 1 : d) ∈ V(Z2) whose reduction
modulo 8 is (1 : 2 : 1 : 2). Hence,

evA(P2) = (f(P2),−1) with f(P2) ≡ 7 (mod 8).

Therefore, we get that evA(P2) defines a non-trivial element in the Brauer group
of Q2 [Ser73, Theorem 3.1]. The existence of such points implies that there is a
Brauer–Manin obstruction to weak approximation arising from A.

In order to conclude the proof of the theorem we investigate the behaviour of
the evaluation map at the other primes and at infinity. For every prime p let Vp
be the base change of V to Zp. We distinguish the following cases.
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Case p /∈ {3, 5, 17,∞}. In this case, V has good reduction at p. Therefore, we
can use [CTS21, Proposition 10.4.3] to conclude that the evaluation map

evA : V(Zp)→ Q/Z

is constant. Moreover, P = (1 : 0 : 1 : 0) ∈ X (Zp) and

evA(P ) = (1,−1)

which is trivial in Br(Qp); hence the evaluation map is trivial on the whole V(Zp),
which coincides with V (Qp).

Case p ∈ {3, 5, 17}. Under this assumption, Vp/Zp is not smooth. In these
three cases, we want to show that the evaluation map is trivial on V(Zp) by
showing that it factors through Br(Zp).

The special fibre V(p) := Vp×ZpSpec(Fp) is a non-smooth Fp-scheme. However,
V(p) is an irreducible Fp-scheme, with just isolated singularities. The Zp-points
of Vp are all smooth. In fact, V(p) contains just one singular point defined over
Fp that does not even lift to a Z/p2Z-point. Let U be the smooth locus of Vp;
because of what we have just said we have

V (Qp) = V(Zp) = U(Zp).

Let U be the base change of U to Spec(Qp). The purity theorem on U [CTS21,
Theorem 3.7.1] gives us the exact sequence

Br(U)[2]→ Br(U)[2]
∂Dp−−→ H1(k(Dp),Z/2Z)

where Dp is the divisor associated to the special fibre (Dp is the smooth locus of
V(p)). We just need to show that ∂Dp

(A) = 0. Let νp be the valuation correspond-
ing to the prime divisor Dp; then

νp

(
f

x3

)
= 0 and νp

(
− z
x

)
= 0.

Indeed, the point (1 : 0 : 1 : 0) ∈ V(p)(Fp) is smooth, hence it lies in Dp. Moreover

f

x3
(1 : 0 : 1 : 0) = 1 and − z

x
(1 : 0 : 1 : 0) = −1.

Therefore both f
x3 and − z

x do not vanish on Dp, which implies that ∂Dp(A) = 0.
Therefore, A lies in Br(U) ⊆ Br(Vp) and the evaluation map factors as

U(Zp) Br(Qp).

Br(Zp)

|A|
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Since Br(Zp) is trivial, the evaluation map has to be constant and trivial.

Case p =∞. The evaluation map

evA : V (R)→ Q/Z

is constant and equal to 0.
We will show that it is constant on the dense open subset

W := {P ∈ X(R) : x(P ), z(P ), f(P ) ̸= 0} ⊆ V (R).

Indeed, from the continuity of the evaluation map it follows that it has to be
constant also on the whole of V (R). Let P = (α : β : γ : δ) ∈ W , thus γ ̸= 0.
First, assume that − γ

α > 0. Then

evA(P ) =

(
f(P )

x(P )3
,− z(P )

x(P )

)
=

(
f(P )

α3
,−γ

α

)
is trivial in Br(R). Now, suppose that − γ

α < 0. Without loss of generality, we can
assume that both α and γ are positive. We want to show that in this case f(P )
has to be positive:

• if δ = 0, then P ∈ V (R) implies that β(α3 + β2γ) = 0. Therefore β = 0,
since α3 + β2γ ≥ α3 > 0. Hence, f(P ) = γ3 > 0;

• if δ ̸= 0 then P ∈ V (R) implies

f(P ) = −β
δ
(α3 + β2γ).

Hence, since α3 + β2γ > 0,

f(P ) > 0 if and only if − β

δ
> 0.

Equivalently, β, δ do not have the same sign. Hence, we just need to show
that there is no point P ∈W with α, γ positive and β, δ with the same sign.
First, we observe that β, δ can not be both positive, since otherwise

α3β + β3γ + γ3δ + δ3α+ αβγδ > 0.

On the other hand β, δ cannot also be both negative. Indeed, we have that
P ∈ V (R) if and only if

α3(−β) + (−β)3γ + γ3(−δ) + (−δ)3α = α(−β)γ(−δ).

Without loss of generality we may assume that α ≥ max{−β, γ,−δ}; but if
α,−β, γ,−δ are all positive, then

α3(−β) + (−β)3γ + γ3(−δ) + (−δ)3α > α(−β)γ(−δ).

Hence, (α : β : γ : δ) /∈ V (R).
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2.2.1 Remark on the quaternion algebra A

By what we said before Theorem 2.1.6, since 2 is a prime of good reduction and A
is obstructing weak approximation, A is not an algebraic element. In this section
we give a rough idea of the strategy behind the construction of the quaternion
algebra A, more details will be provided in Chapter 4.

Let X and X be the base change of V and V to Q2 and Z2 respectively. Let
Y be the special fibre of X ,

X X Y

Spec(Q2) Spec(Z2) Spec(F2).

j i

(2.7)

Let π be a uniformiser in Z2. By Corollary 1.3.9(3) we know that there is a non-
zero constant c̄ in the residue field (that in this case is 1, since the residue field is
F2) such that

multc̄
(
rsw2,π(Br(X)[2])

)
⊆ H0(Y,Ω2

Y,log)⊕H0(Y,Ω1
Y,log)

Moreover, the special fibre of a K3 surface having good reduction is still a K3 sur-
face, see for example [BN23, Remark 11.5]. Hence, H0(Y,Ω2

Y ) is a one dimensional
F2-vector space. We will prove in Chapter 4, using the results of Section 4.3, that
2 is a prime of good ordinary reduction for X and the only non-trivial two form
ω is logarithmic. Finally, in Chapter 4 we will developed the techniques needed
to compute the refined Swan conductor on p-torsion elements in the Brauer group
and show that A ∈ fil2Br(V )[2] and rsw2,π(A) = (ω, 0) ̸= (0, 0). In particular, this
implies that A /∈ Ev−1Br(X)[p]. See Section 4.4 for the details.

2.3 A family of K3 surfaces with the same property

In this section we will show that the first part of Theorem 2.1.10 can be easily
generalised to a family of K3 surfaces that share some properties with our K3
surface V .

Let a, b, c, d, e be odd integers, α = (a, b, c, d, e) and Vα be the K3 surface in
P3
Q associated to the equation

a · x3y + b · y3z + c · z3w + d · w3x+ e · xyzw = 0. (2.8)

Let Vα be the projective scheme over Z defined by the polynomial equation (2.8).
Then Vα is a Z-model of Vα. Moreover, since a, b, c, d, e are all odd integers,
all these varieties have the same reduction, which we will denote by Y , modulo
the prime 2. A natural question that arises at this point is if also for all these
K3 surfaces there exists an element A ∈ Br(Vα)[2] such that the corresponding
evaluation map on Vα(Q2) is non-constant, i.e. that obstruct weak approximation.
The following theorem gives a partial answer to the question.
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Theorem 2.3.1. Assume that ∆ := abcd ∈ Q×2. Then, the class of the quaternion
algebra

A =

(
d · c · z

3 + d · w2x+ e · xyz
x3

,−(cd) · z
x

)
∈ Br(Q(Vα))

defines an element in Br(Vα). The evaluation map evA : Vα(Q2) → Q/Z is non-
constant, and therefore gives an obstruction to weak approximation on V .

Proof. The proof is very similar to the first part of the proof of Theorem 2.1.10.
We denote by f the polynomial c · z3 + d · w2x + e · xyz. Also in this case, let
Cx, Cz, Cf be the closed subsets of Vα defined by the equations x = 0, z = 0 and
f = 0 respectively. Let U be the open subset of Vα defined as the complement of
Cx ∪ Cz ∪ Cf . Clearly, A ∈ Br(U). Moreover,

• Cx consists of two irreducible components, D1 = {x, z} and D2 = {x, b ·y3+
c · z2w}.

• Cz consists of two irreducible components, D1 and D3 = {z, a ·x2y+d ·w3}.

• Cf consists of three irreducible components, D1, D4 = {y, c · z3 + d · w2x}
and D5 = {f, a · x3 + b · y2z, be · y3z − ac · x2z2 + bd · y2w2}.

In order to show that the quaternion algebra A lies in the Brauer group of Vα we
will use the exact sequence (4.15) coming from the purity theorem and the explicit
description of the residue map given in equation (4.16). We will denote by νi the
valuation associated to the prime divisor Di.

1. ν1(f) = ν1(x) = ν1(z) = 1, and so ν1
(
f
x3

)
= −2 and ν1

(
− z
x

)
= 0. Hence

∂D1
(A) =

[
(−1)0

(
d · f

x3

)0(
− 1

cd
· x
z

)−2
]

=

[(
1

cd
· z
x

)2
]
= 1 ∈ k(D1)

×

k(D1)×2
.

2. ν2(f) = ν2(z) = 0 and ν2(x) = 1, and so ν2
(
f
x3

)
= −3 and ν2

(
− z
x

)
= −1.

Hence

∂D2
(A) =

[
(−1)3

(
d · f

x3

)−1(
− 1

cd
· x
z

)−3
]

=

( (cd)3

d

x3

c · z3
· z

3

x3

) = 1 ∈ k(D2)
×

k(D2)×2

where the second equality follows from the fact that f |D2
= c · z3.
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3. ν3(f) = ν3(x) = 0 and ν3(z) = 1, and so ν3

(
f
x3

)
= 0 and ν3

(
− z
x

)
= 1.

Hence

∂D3
(A) =

[
(−1)0

(
d · f

x3

)1(
− 1

cd
· x
z

)0
]
=

[
d · f

x3

]
= 1 ∈ k(D3)

×

k(D3)×2

where the last equality follows from the fact that f |D3
= d · w2x.

4. ν4(f) = 1 and ν4(x) = ν4(z) = 0, and so ν4

(
f
x3

)
= 1 and ν4

(
− z
x

)
= 0.

Hence

∂D4(A) =

[
(−1)0

(
d · f

x3

)0(
− 1

cd
· x
z

)1
]
=

[
1

cd
· c
d

]
= 1 ∈ k(D4)

×

k(D4)×2

where the second equality follows from the fact that − z
x = d

c

(
w
z

)2 on D4.

5. ν5(f) = 1 and ν5(x) = ν5(z) = 0, and so ν5

(
f
x3

)
= 1 and ν5

(
− z
x

)
= 0.

Hence

∂D5(A) =

[
(−1)0

(
d · f

x3

)0(
− 1

cd
· x
z

)1
]
=

[
b

acd

]
= 1 ∈ k(D5)

×

k(D5)×2

where the last equality follows from the fact that − z
x = a

b

(
x
y

)2
on D5 and

the assumption that abcd is a square in Q.

The above computations together with the purity theorem show indeed that A lies
in Br(Vα). Finally, we need to show that the evaluation map on the Q2-points of
Vα is non-constant. Let

P1 := (1 : 0 : 1 : 0) ∈ Vα(Q).

Then, P1 is such that evA(P1) = (dc,−dc), which is trivial in Br(Q2). Further-
more, let

P2 :=

(
cd : y : 1 : −2 · acde

2c+ cd

)
∈ Vα(Q2)

be such that the reduction modulo 8 of y is equal to 2 · de. Then

f(P2) ≡ c+ d · 4 · (cd) + e · (cd) · 2 · ed ≡ 7 · c mod 8

and therefore evaluation map at P2 is

evA(P2) =

(
d · f(P2)

(cd)3
,−cd 1

cd

)
= (g(P2),−1) with g(P2) ≡ 7 mod 8.

Thus, evA(P2) defines a non-trivial element in Br(Q2). Hence, the element A ∈
Br(Vα) gives an obstruction to weak approximation on Vα.
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A natural question that arises at this point is what happens if ∆ := abcd is
not a square in Q. Note that, in this case we can repeat the same computations
that we did in the proof of Theorem 2.3.1. That is, for every divisor D ̸= D5 we
get ∂D(A) = 1, while for D5 we have

∂D5
(A) = [∆] ∈ k(D5)

×

k(D5)×2
.

Hence, in this case, A defines an element in the Brauer group of the base change of
Vα to Q(

√
∆). With an argument similar to the one sketched in Section 2.2.1, also

in this case we expect to be able to find two points P1, P2 defined over Q2(
√
∆)

such that evA(P1) ̸= evA(P2).

2.3.1 Final considerations

The results of this chapter arise from the wish to use Theorem 2.1.8 in order to
produce example of varieties in which primes of good reduction play a role in the
Brauer–Manin obstruction to weak approximation.

In our example,

V = Proj
(

Q[x, y, z, w]

x3y + y3z + z3w + w3x+ xyzw

)
⊆ P3

Q

is a smooth projective variety defined over the number field Q.
Since V is a K3 surface, the hypotheses of Theorem 2.1.8 are satisfied. In this

example, we were able to construct an elementA that satisfies Theorem 2.1.8 which
is already defined over the rational numbers and the corresponding evaluation map
is non-constant on the 2-adic points. Moreover, A does not just lie in the 2-primary
part of the Brauer group of X, it has order exactly 2.

The next two chapters are devoted to the investigation on whether one can
hope to extend this strategy to a more general setting.




