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CHAPTER1
The Brauer–Manin obstruction

and the refined Swan
conductor

The Brauer–Manin obstruction was introduced by Manin [Man71] in the 1970s to
explain the failure of the local-global principle.

Let V be a variety over a number field k. For any place ν ∈ Ωk we have a
natural inclusion V (k) ↪→ V (kν). In particular, we have that

V (k) ̸= ∅ ⇒ V (kν) ̸= ∅ for all ν ∈ Ωk.

We say that V/k satisfies the local-global principle if

V (kν) ̸= ∅ for all ν ∈ Ωk ⇒ V (k) ̸= ∅.

The Hasse-Minkowski Theorem gives a family of varieties for which it is enough
to check the local solubility to determine if an equation admits a solution over k.

Theorem 1.0.1 (Hasse-Minkowski). Let k be a number field and V ⊆ Pnk be a
hypersurface defined by a single homogeneous equation of degree 2. Then V (k) ̸= ∅
if and only if V (kν) ̸= ∅ for every place ν of k.

Proof. See [Ser73, Theorem IV.8].

It is well known that if we increase the degree of the polynomial or the number
of equations defining V , then we might have a failure of the local-global principle.
Here we mention some examples in this direction.
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Example 1.0.2.

1. Lind and Reichardt showed independently that the system of equations{
u2 − 17w2 = 2z2

uw = v2

admits a non-trivial solution over Qν for all places ν ∈ ΩQ but does not
admit a non-trivial rational solution.

2. Selmer showed that the following homogeneous equation of degree 3

3X3 + 4Y 3 + 5Z3 = 0

admits a non-trivial solution over Qν for all places ν ∈ ΩQ but does not
admit a non-trivial rational solution.

3. Iskovskikh showed that equation

y2 + z2 = (3− x2)(x2 − 2).

defining a smooth affine surface over Q, admits a non-trivial solution over
Qν for all places ν ∈ ΩQ but does not admit a non-trivial rational solution.

In all the examples the failure of the local-global principle can be explained by
the Brauer–Manin obstruction.

Manin’s idea was to use the Brauer group of a variety to construct a closed
subset  ∏

ν∈Ωk

V (kν)

Br

⊆
∏
ν∈Ωk

V (kν)

that contains the k-points of V .
A crucial role in the construction of the Brauer–Manin set is played by the

so-called evaluation maps attached to elements A in Br(V ). We will see that
for any element A ∈ Br(V ) and for every place ν ∈ Ωk we can define a map, the
evaluation map

evA : V (kν)→ Q/Z.

To detect which values these maps can take is one of the crucial steps in the study
of the Brauer–Manin obstruction.

In this thesis we focus attention on the behaviour of the evaluation map at
finite places of good reduction.

Definition 1.0.3. We say that a prime p of k is of good reduction for V if there
exists a smooth proper Op-scheme X whose base change to kp is isomorphic to the
base change of V to kp.
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In Section 1.1.3 we will see that if p is a finite place of good reduction for
V with residue characteristic p and A ∈ Br(V ) has order prime to p, then the
behaviour of the evaluation map can be studied via the so-called residue map,
that links the prime to p part of the Brauer group of the base change of V to kp to
the cohomology of the special fiber of a model. This is no longer possible when p is
a finite place of good reduction of residue characteristic p and A ∈ Br(V ){p}, i.e.
A is a p-power element in the Brauer group of V . However, in [BN23] Bright and
Newton use the refined Swan conductor to control the behaviour of the evaluation
map also in this case.

In the first part of this chapter we introduce the notion of weak approximation
and Brauer–Manin obstruction to weak approximation on a variety. In the second
part of the chapter we introduce the notion of refined Swan conductor [Kat89].
Following Bright and Newton’s recent work [BN23] we explain how this notion can
be used to study the Brauer–Manin obstruction to weak approximation. Some
original results are presented in this chapter: in particular, Lemma 1.2.24 and
Corollary 1.3.9 are part of [Pag23].

1.1 The Brauer–Manin obstruction

Let k be a number field and V a proper k-variety. We want to study the set of
k-points on V via the diagonal embedding

V (k) ↪→
∏
ν∈Ωk

V (kν).

For every place ν ∈ Ωk, the ν-adic topology on kν allows us to equip V (kν) with
a topology, called the analytic topology, see [Con12, Proposition 3.1].

From now on we will think about
∏
ν∈Ωk

V (kν) as a topological space with re-
spect to the product topology induced by the analytic topology on each component
V (kν).

Definition 1.1.1. We say that V satisfies weak approximation if the image of
the diagonal map

V (k) ↪→
∏
ν∈Ωk

V (kν)

is dense.

For proper k-varieties it is possible to get the product
∏
ν∈Ωk

V (kν) as the set
of Ak-points on V , where Ak is the ring of adèles of the number field k.

Definition 1.1.2. We define the ring of adèles of k as the restricted product
of the completions of k with respect to the subgroups given by the ring of integers
Oν ⊆ kν , i.e. :

Ak :=
∏
ν∈Ωk

(kν ,Oν) =
{
(xν) ∈

∏
kν : xν ∈ Oν for almost all ν ∈ Ωk

}
.
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The following proposition is well known; we include the proof because we are
unable to find it in the literature.

Proposition 1.1.3. Let R be an integral domain and let k be its function field.
Suppose that V is a scheme of finite presentation over k. Then there exist a dense
open subscheme U ⊆ Spec(R) and a scheme V of finite presentation over U such
that Vk ≃ V.

Proof. Let {Vi}i∈I ⊆ V be a finite affine covering of V . Then, for every i ∈ I the
description of Vi involves only finitely many polynomials over k. Let R′ be the
localisation of R obtained by adjoining the inverse of all the denominators that
appear either in the polynomials describing Vi or in the gluing morphisms between
the opens Vi and Vj . Then, we can define Vi as the R′-scheme defined by the same
equations of Vi and obtain V by gluing the Vi’s together.

Given a k-scheme of finite type V , we can always find a finite set of finite places
S ⊆ Ωk such that there exists an Ok,S -scheme of finite type VS whose base change
to k is isomorphic to V (i.e. a model of V over Ok,S). Then, the set of adelic
points V (Ak) can be described as

V (Ak) =
∏
ν∈Ωk

(V (kν),VS(Oν)), [Con12, Theorem 3.6]

In particular, if V is proper

V (Ak) =
∏
ν∈Ωk

V (kν).

1.1.1 Obstructions arising from functors

Let
F: Schoppk → Set

be a functor. In this section we are going to show how it is possible, starting from
F, to build subsets V (Ak)

F of V (Ak) that contains V (k).

Let R be a k-algebra, then every x ∈ V (R) induces a map F(x) : F(V )→ F(R).
For every A ∈ F(V ), we can define the map

evA : V (R)→ F(R)

x 7→ F(x)(A).

In particular, we have the following commutative diagram:

V (k) V (Ak)

F(k) F(Ak)

evA evA (1.1)
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We define

V (Ak)
A := {x ∈ V (Ak) : evA(x) ∈ im(F(k)→ F(Ak))}.

By the commutativity of the diagram above V (k) ⊆ V (Ak)
A. We define

V (Ak)
F :=

⋂
A∈F(V )

V (Ak)
A.

Definition 1.1.4. If V (Ak)
F is a proper closed subset of V (Ak) we say that there

is an F-obstruction to weak approximation on V .

In particular, we see that in order to understand the set V (Ak)
F we need to

be able to understand both F(V ) and for elements in F(V ) the corresponding
evaluation map.

In this thesis we focus the attention on the Brauer-Manin obstruction, more
about obstructions attached to other functors (in particular about descent ob-
structions) can be found in [Poo17a, Section 8.4, 8.5, and 8.6].

1.1.2 The Brauer group and the Brauer–Manin obstruction

The Brauer–Manin obstruction is defined as the obstruction associated to the
functor F := Br(−), where Br(−) = H2

ét(−,Gm) is the cohomological Brauer
group (for an introduction to étale cohomology see [Mil80]).

In this section we will explain how it is possible to describe both the Brauer
group of V and the evaluation map attached to an element A ∈ Br(V ).

1.1.2.1 The Brauer group of a variety

For a smooth, proper and geometrically integral variety V over a number field k
there is an exact sequence [Č19, (6.4.4)]

0→ Br(V )→ Br(k(V ))
(rv)−−→

⊕
v∈V (1)

H1
ét(k(v),Q/Z) (1.2)

where V (1) is the set of points v ∈ V such that the local ring OV,v is one dimen-
sional. Since by assumption V is smooth, OV,v is a regular noetherian ring of
dimension 1 and hence a discrete valuation ring. Let k(v) be the residue field of
OV,v, then we have a map

rv : Br(k(V ))→ H1(k(v),Q/Z)

see [Poo17b, Section 6.8]. In particular, the Brauer group of the variety can be
described in terms of the cohomology of the fields k(V ) and k(v) for v ∈ V (1).

Given a field K, according to the definition given above, the Brauer group of
K is defined as

Br(K) := H2(Spec(K)ét,Gm).
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It is well known that for fields étale cohomology coincide with Galois cohomology,
see [Mil80, Theorem 1.9, Chapter 1]. In particular, since Galois cohomology groups
are torsion [CTS21, Corollary 1.3.6] we get that Br(V ) is a torsion abelian group.

For fields it is possible to give an explicit construction of the Brauer group
in terms of equivalence classes of central simple algebras. A finite-dimensional
algebra A over K is called simple if it has no (two sided) ideals other than 0 and
itself; it is called central if Z(A) = K. Two central simple K-algebras A and A′

are called Brauer equivalent if

A⊗K Mn(K) ≃ A′ ⊗K Mn′(K), for some n, n′ > 0.

Theorem 1.1.5. The set of the equivalence classes of finite dimensional central
simple K-algebras, with the group structure given by the tensor product, is isomor-
phic to Br(K).

Proof. [GS17, Section 4.4].

1.1.2.2 Quaternion algebras

In the examples presented in this thesis we are mainly working with elements in
the Brauer group represented by quaternion algebras.

Definition 1.1.6. Assume the characteristic of K to be different from 2, then
given a, b ∈ K×, we define the quaternion algebra (a, b) as the 4-dimensional
K-algebra with basis 1, i, j, ij with

i2 = a, j2 = b, ij = −ji.

It is possible to prove that quaternion algebras are central simple algebras and
that operations with quaternion algebras inside the Brauer group are quite simple.
Indeed, if we pick a, b, c ∈ K× we have an isomorphism

(a, b)⊗k (a, c)
∼−→ (a, bc)⊗K M2(K).

Given a, b ∈ K×, with abuse of notation we will denote by (a, b) also the class of
the quaternion algebra in Br(K).

As mentioned before, the Brauer group of a variety is a torsion abelian group,
hence it is enough to study for every n the exact sequence on the n-torsion induced
by equation (1.2)

0→ Br(V )[n]→ Br(k(V ))[n]
(rv)−−→

⊕
v∈V (1)

H1
ét(k(v),Q/Z))[n]. (1.3)

From the short exact sequence 0→ Z/nZ→ Q/Z n−→ Q/Z→ 0 we get an isomor-
phism

H1
ét(k(v),Z/nZ) ≃ H1

ét(k(v),Q/Z)[n].
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We have an explicit description of the residue map rv on quaternion algebras
in Br(k(V )): for an element (a, b) ∈ Br(k(V )) and a point v ∈ V (1) we have

rv(a, b) =

[
(−1)valv(a)valv(b) a

valv(b)

bvalv(a)

]
∈ k(v)×

k(v)×2
≃ H1(k(v),Q/Z)[2] (1.4)

where valv is the discrete valuation on k(V ) coming from the discrete valuation ring
OV,v. The description of the residue map given above follows from the definition
of the tame symbols in Milnor K-theory together with the compatibility of the
residue map rv with the tame symbols given by the Galois symbols, see [GS17,
Proposition 7.5.1]. The last isomorphism follows from the isomorphism between
µ2 and Z/2Z together with the one coming from the Kummer sequence between
k(v)×/k(v)×2 and H1

ét(k(ν), µ2).

1.1.2.3 The evaluation map

Let ν ∈ Ωk be a finite place. Using local class field theory one can prove that there
exists an isomorphism, called invariant map,

invν : Br(kν)
∼−→ Q/Z. (1.5)

A proof can be found in Section 1 and 2, Chapter III of [Mil20]. Moreover, if
ν ∈ Ωk is an archimedean place, then kν is either isomorphic to R or to C, for
which

Br(R) ≃ Z/2Z and Br(C) = {0}, [CTS21, Section 1.2.1].

Hence, for archimedean places we can define

invν : Br(kν) ↪→ Q/Z

as the map sending the non-trivial element of Br(kν) to the class of 1/2 in Q/Z.
Finally, from global class field theory [Mil20, Chapter VII, VIII] we have the
following short exact sequence:

0→ Br(k)→
⊕
ν∈Ωk

Br(kν)
∑

ν invν−−−−−→ Q/Z→ 0.

Since it is possible to show that

Br(Ak) ≃
⊕
ν∈Ωk

Br(kν), [Č19, Theorem 2.13]

diagram (1.1) becomes

V (k) V (Ak)

0 Br(k) Br(Ak) ≃
⊕

ν∈Ωk
Br(kν) Q/Z 0.

evA evA ∑
invν

(1.6)
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Putting everything together, we get that for every A ∈ Br(V )

V (Ak)
A =

(xν) ∈ V (Ak) such that
∑
ν∈Ω

invν(evA(xν)) = 0

 .

Remark 1.1.7. From now on, with abuse of notation, we will denote by evA also
the composition of the evaluation map evA : V (kν) → Br(kν) with the invariant
map invν : Br(kν) ↪→ Q/Z.

The following result allows us to use the Brauer–Manin set to study weak
approximation on V .

Proposition 1.1.8. For any A ∈ Br(V ), the set V (Ak)
A is open and closed in

V (Ak).

Proof. See [Poo17a, Corollary 8.2.11].

The set V (Ak)
Br is therefore closed in V (Ak) and we have the following chain

of inclusions

V (k) ⊆ V (k) ⊆ V (Ak)
Br ⊆ V (Ak).

Definition 1.1.9. We say that there is a Brauer–Manin obstruction to weak
approximation on V if the Brauer–Manin set V (Ak)

Br is a proper subset of
V (Ak).

Assume V (Ak) ̸= ∅. Let ω ∈ Ωk be such that there exists A ∈ Br(V ) with

evA : V (kω)→ Q/Z

non-constant. Then, we can take two points (xν), (yν) ∈ V (Ak) such that xν = yν
for all ν ̸= ω and evA(xω) ̸= evA(yω). These two points are such that∑

ν∈Ωk

evA(xν) ̸=
∑
ν∈Ωk

evA(yν).

Hence, at least one of the two points does not belong to the Brauer–Manin set
V (Ak)

Br and thus there is a Brauer–Manin obstruction to weak approximation on
V . Based on this observation we give the following definition.

Definition 1.1.10. We say that a place ω ∈ Ωk plays a role in the Brauer–
Manin obstruction to weak approximation on V if there exists A ∈ Br(V ) such
that evA : V (kω)→ Q/Z is non-constant.
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1.1.3 The prime to p part

In order to study the role of a prime p in Brauer–Manin obstruction, we need to
understand, for a given A ∈ Br(V ), the behaviour of the corresponding evaluation
map

evA : V (kp)→ Q/Z.
If we denote by res : Br(V ) → Br(Vp) the natural restriction map form Br(V ) to
Br(Vp), then for every point P ∈ V (kp) we have a corresponding point Pp ∈ Vp(kp)
and

evres(A)(Pp) = evA(P ).

Hence, if the evaluation map attached to A is non-constant on V (kp), then the
element res(A) ∈ Br(Vp) is such that the evaluation map on Vp(kp) is also non-
constant. By what we just said together with the fact that we are interested in
primes of good reduction, we will work under the setting described below.

p-adic setting: Let p be a prime number and L a finite field extension of
Qp, with ring of integers OL, uniformiser π and residue field ℓ. Let X be a
smooth and geometrically irreducible L-variety having good reduction (i.e. there
exists a smooth proper OL-scheme X whose generic fiber is isomorphic to X). We
assume furthermore the special fiber Y := X ×Spec(OL) Spec(ℓ) to be geometrically
irreducible,

X X Y

Spec(L) Spec(OL) Spec(ℓ).

j i

(1.7)

It is well known that if n is a positive integer prime to p, then we have the following
exact sequence

0→ Br(X )[n]→ Br(X)[n]
∂−→ H1(Y,Z/nZ) (1.8)

see [CTS21, Chapter 3, equation (3.17)].

Theorem 1.1.11. The evaluation map attached to A is constant and trivial over
all finite field extensions L′/L if and only if A ∈ Br(X ).

Proof. One of the two implication is quite straightforward, in fact if we start by
A ∈ Br(X ), then the evaluation map factors as

X (OL) Br(OL)

X(L) Br(L)
evA

(1.9)

but Br(OL) = {0}.
The other implication was proved by Colliot-Thélène and Saito [CTS96] using

zero-cycles on X. The group of zero-cycles C0(X) is defined as the group of formal
sums ∑

i

niPi with ni ∈ Z, Pi closed point of X.
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The evaluation map A on a zero-cycle
∑
i niPi is defined as∑

i

nicoresL(Pi)/L

(
evresL(Pi)/L

(A)(Pi)
)
.

For the definition of the restriction and co-restriction maps we refer to [GS17,
Section 3.3]. In particular, they proved that evA is trivial on C0(X) if and only
if A ∈ Br(X )[n]. In particular, if A has constant and trivial evaluation map on
all the closed points of X, then it has also constant and trivial evaluation map on
zero-cycles.

In general, as explained in [Bri15, Section 5.1] the evaluation map attached
to an element A ∈ Br(X)[n] with n prime to p factors through the special fiber
Y , i.e. if two points P1, P2 ∈ X(L) = X (OL) have the same image in Y (ℓ) then
the evaluation map on them coincide. Finally, the residue map appearing in (1.8)
controls whether the evaluation map attached to an element A ∈ Br(X)[n] is
constant: A has constant evaluation map if and only if ∂(A) ∈ H1(ℓ,Z/nZ).

From the Purity Theorem [Č19, Theorem 1.2] we know that Br(X ) is equal
to Br(X) ∩ Br(OX ,Y ), with the intersection taking place inside Br(k(X)). Hence,
in order to understand whether A has trivial evaluation map it is enough to un-
derstand if the image of A in Br(k(X)) lies in Br(OX ,Y ). Let Kh be the field of
fraction of the henselianisation of the discrete valuation ring OX ,Y , if n is prime
to p, then

Br(Kh)[n] = ker(Br(Kh)→ Br(Kh
un))[n], [CTS21, Proposition 1.4.5].

This can be used to construct the following diagram

0 Br(OX ,Y )[n] Br(k(X))[n] H1(F,Z/nZ)

0 Br(OhX ,Y )[n] Br(Kh)[n] H1(F,Z/nZ)

∂

∂

(1.10)

where the rows form exact sequences, see [CTS21, Theorem 3.6.1]. In particular,
from diagram (1.10) we get that it is enough to compute the residue of the image
of A in Br(Kh)[n] in order to detect whether the element A has trivial evaluation
map.

If we start with an element A ∈ Br(X)[pm] for some m, then it is no longer true
that its image in Br(Kh) is split by an unramified extension. However, Bright and
Newton [BN23] recently proved that the behaviour of the evaluation map attached
to A on the kp-points of X is still determined by the value of some maps on the
image of A in Br(Kh)[pm]. In this case the description of Br(Kh)[pm] becomes
more involved. Bright and Newton use the concept of refined Swan conductor,
introduced by Kato in [Kat89], to give a filtration on Br(Kh) that captures the
behaviour of the evaluation maps.
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1.2 The refined Swan conductor

Set-up: Let K be a henselian discrete valuation field of mixed characteristic,
whose residue field is not necessarily perfect. We denote by:

• OK ⊆ K the ring of integers of K with uniformiser π and maximal ideal m;

• F the residue field of characteristic p.

The aim of this section is to introduce the notion of the refined Swan conductor
and gather some of the main results around it that will be crucial in the rest
of the thesis. The main references for this section are [Kat89, BN23]. In this
section, instead of working just with the Brauer group, we will look at the Galois
cohomology group Hq(K) defined in the next section. We will see how these
cohomology groups are related to the differential forms of the residue field F .

1.2.1 The group Hq(R)

Let R be a ring over Q or a smooth ring over a field of characteristic p > 0. Let
n be a non-negative integer and r ∈ Z. If n is invertible on R, then we denote by
Z/nZ(r) the usual Tate twist of the constant sheaf Z/nZ on Rét. If R is smooth
over a field of characteristic p and n = psm with (p,m) = 1, we define

Z/nZ(r) := Z/mZ(r)⊕WsΩ
r
R,log[−r].

For the definition of WsΩ
r
R,log see Definition 1.2.7. For n ̸= 0, we denote by

Hqn(R) := Hq(Rét,Z/nZ(q − 1)) and Hq(R) := lim−→
n

Hqn(R).

Note that:
H2(K) = lim−→

n

H2(Két,Z/nZ(1)) = Br(K).

We have an exact triangle

Z/nZ(1)→ Gm
(−)n−−−→ Gm,

where the prime to the characteristic case comes from the Kummer sequence,
while the p-part in characteristic p follows from [Ill79, Proposition I.3.23.2]. For
a ∈ R×, let {a} ∈ H1(Rét,Z/nZ(1)) be the image of a under the connecting map
R× → H1(Rét,Z/nZ(1)). For a1, . . . , ar ∈ R× and χ ∈ Hqn(R) we denote by

{χ, a1, . . . , ar} := χ ∪ {a1} ∪ · · · ∪ {ar} ∈ Hq+rn (R).

The symbol {χ, a1, . . . , ar} is anti-symmetric and {χ, a1, . . . , ar} = 0 if there exist
i, j with i ̸= j such that ai + aj = 1 or 0.

In order to describe the groups Hq(R) in the positive characteristic case, we
will use the Cartier operator on differential forms.
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1.2.1.1 The Cartier operator

Let ℓ be a perfect field of characteristic p > 0 and R be an ℓ-algebra. Let

ZqR := ker(d : ΩqR → Ωq+1
R ) and BqR := im(d : Ωq−1

R → ΩqR).

Lemma 1.2.1 (Inverse Cartier operator). Assume R to be regular; then there
exists a unique morphism of groups

C−1
R : Ω1

R → Ω1
R/B

1
R

satisfying

• C−1
F (da) = ap−1da mod B1

F for all a ∈ F ;

• C−1
R (λω) = λpC−1

R (ω) for all λ ∈ R;

• d ◦ C−1
R = 0.

Moreover, C−1 induces an isomorphism from Ω1
R to Z1

R/B
1
R.

Proof. See [BK05, Theorem 1.3.4].

Remark 1.2.2. The subgroup B1
R has a natural structure of R-module, which is

given by α ·dβ = αpdβ = d(αpβ). If we denote by pΩ1
R the R-module structure on

Ω1
R given by α · ω = αpω, then the condition C−1

R (λω) = λpC−1
F (ω) is equivalent

to asking that C−1
R : Ω1

R → pΩ1
R/

pB1
R is a morphism of R-modules.

We can extend the definition of C−1
R to higher differential forms by setting

C−1
R (ω1 ∧ · · · ∧ ωq) := C−1

R (ω1) ∧ · · · ∧ C−1
R (ωq).

Theorem 1.2.3. Let R be regular; then the morphism

C−1
R : ΩqR → ZqR/B

q
R

is an isomorphism for all q ≥ 0. We will denote by CR its inverse, which is called
the Cartier operator.

Proof. See [BK05, Theorem 1.3.4].

The following corollary gives a way to characterise exact differential forms in
terms of the Cartier operator.

Corollary 1.2.4. Let R be regular. A q-form ω ∈ ΩqR is exact if and only if
d(ω) = 0 and CR(ω) = 0.

The last object we need to define is the subgroup of logarithmic q-differential
forms on R, which will play a crucial role in this thesis.

Definition 1.2.5. The logarithmic q-differential forms on R, denoted by ΩqR,log,
are defined as the kernel of the map

C−1
R − id : ΩqR → ΩqR/B

q
R.



1.2. The refined Swan conductor 19

The following result gives a way to write down logarithmic differential forms
explicitly in the case in which R is a field.

Theorem 1.2.6. Let F be a field, finitely generated over a perfect field ℓ. The
logarithmic differential q-forms ΩqF,log is the subgroup of ΩqF generated by elements
of the form

dy1
y1
∧ · · · ∧ dyq

yq
, with yi ∈ F×.

Proof. It follows from surjectivity in the Bloch–Gabber–Kato Theorem [GS17,
Theorem 9.5.2].

Finally, in [Ill79], Illusie defines a projective system {WmΩqR}m≥0 equipped
with the Frobenius and the Verschiebung maps

F : Wm+1Ω
q
R →WmΩqR and V : WmΩqR →Wm+1Ω

q
R

for every m ≥ 0. This projective system has transition maps given by the projec-
tion maps Rm+1 : Wm+1Ω

j
R →WmΩjR.

In [Ill79, Page 569, Proposition 3.3] Illusie generalises the inverse Cartier op-
erator to WsΩ

q
R:

C−1
R : WsΩ

q
R →WsΩ

q
R/dV

s−1Ωq−1
R

Definition 1.2.7. Given two positive integers q, s, the logarithmic subgroup WsΩ
q
R,log

of WsΩ
q
R is defined as the kernel of

C−1
R − id : WsΩ

q
R →WsΩ

q
R/dV

s−1Ωq−1
R .

If R is smooth over a field of positive characteristic and n = ps, we can identify
Hqn(R) = H1(Rét,WsΩ

r
R,log) with the cokernel of

C−1
R − 1: WsΩ

q−1
R →WsΩ

q−1
R /dV s−1Ωq−2

R ,

see [Kat89, Section 1.3]. We denote by δs both the map from WsΩ
q−1
R /dV s−1Ωq−2

R

to Hqn(R) and its composition with the natural map Hqn(R) → Hq(R). We then
have a commutative diagram

WsΩ
q−1
R Ws+1Ω

q−1
R

Hq(R)

δs

V

δs+1

and the following relation [Kat89, Section 1.3]

δs(ω ∧ d log(a1) ∧ · · · ∧ d log(ar)) = {δs(ω), {a1, . . . , ar}} in Hq+rn (R). (1.11)
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1.2.1.2 Description of Hqp(F [T ])

In this section we are following [Kur88]. We are interested in describing the groups
Hq+1
p (F [T ]). We recall that these groups fit in the following exact sequence

ΩqF [T ]

C−1−id−−−−−→ ΩqF [T ]/B
q
F [T ]

δ1−→ Hq+1
p (F [T ])→ 0. (1.12)

Lemma 1.2.8. Every element ω ∈ ΩqF [T ] can be written (in a unique way) as

n∑
i=0

ωiT
i +

m∑
j=1

ηjT
j ∧ d log T

with ωi ∈ ΩqF and ηj ∈ Ωq−1
F .

Proof. Consider the following diagram

Z Z[T ]

F Z[T ]⊗Z F = F [T ].

π1

π2

We know by the Künneth formula [Sta, 01V1] that

ΩqF [T ] =
⊕
i+j=q

π∗
1Ω

i
Z[T ] ⊗F [T ] π

∗
2Ω

j
F

where π∗
1 and π∗

2 are just the base change to F [T ] maps. Since ΩiZ[T ] = 0 if i ≥ 2,
we get that

ΩqF [T ] =
(
F [T ]⊗F ΩqF

)
⊕
(
F [T ] · dT ⊗F Ωq−1

F

)
which proves the result.

We define increasing filtrations on Hq+1
p (F [T ]) and Hq+1

p (F [T, T−1]) such that
filn is the group generated by elements of the form

δ1

[
T kω1 + Tmω2 ∧ d log T

]
where ω1 ∈ ΩqF and ω2 ∈ Ωq−1

F and k,m ≤ n. For n ≥ 0 we define a morphism

ρn : Ω
q
F ⊕ Ωq−1

F → Hq+1
p (F [T ])

(ω1, ω2) 7→ δ1 [T
nω1 + Tnω2 ∧ d log T ] .

Similarly, we define the same morphisms with image in Hq+1
p (F [T, T−1]). It follows

from the definitions and the description given in Lemma 1.2.8 that for n ≥ 1, the
morphism ρn induces a surjective map on

grn :=
filnH

q+1
p (F [T ])

filn−1H
q+1
p (F [T ])

=
filnH

q+1
p (F [T, T−1])

filn−1H
q+1
p (F [T, T−1])

.

From now on, for n ≥ 1, we denote by ρn also the composition of ρn with the
quotient map to grn.
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Lemma 1.2.9. Let n ≥ 1 be prime to p. Then the map ρn induces an isomorphism

ΩqF ≃ grn

Proof. By construction grn is generated by the elements of the form

δ1 [T
nω1 + Tnω2 ∧ d log T ] .

If n is prime to p, then we have

Tnω2 ∧ d log T = d

(
ω2
Tn

n

)
− d(ω2)

Tn

n
.

Since δ1 is zero on exact forms, we get that

ρn(ω1, ω2) = δ1

[
Tn
(
ω1 −

dω2

n

)]
= ρn

(
ω1 −

dω2

n
, 0

)
.

This proves that the restriction of ρn to ΩqF is still surjective.
We are left to show injectivity. Let ω ∈ ΩqF be such that ρn(ω, 0) = 0. Then,

there exist ω0, . . . ωn1
∈ ΩqF and η1, . . . , ηn−1 ∈ Ωq−1

F such that

δ1 [ωT
n] + δ1

n−1∑
i=0

T iωi +

n−1∑
j=1

ηjT
j ∧ d log T

 = 0 in Hqp(F [T ]).

Hence, by equation (1.12) we get the following equality in Ωq−1
F [T ]/B

q−1
F [T ]

ωTn+

n−1∑
i=0

T iωi+

n−1∑
j=1

ηjT
j∧d log T = (C−1−id)

∑
i≥0

αiT
i +
∑
j≥1

βjT
j ∧ d log T

 .

The right hand side of the identity can be re-written (using the properties of the
inverse Cartier operator) as

n∑
i=0

C−1(αi)T
pi +

n∑
j=1

C−1(βj)T
pj ∧ d log T −

n∑
i=0

αiT
i −

n∑
j=1

βjT
j ∧ d log T.

In particular,

ωTn = −αnTn modulo Bq−1
F [T ] and C−1(αnT

n) = C−1(αn)T
pn = 0.

Hence, since C−1 is an isomorphism, αnTn = 0 and ωTn ∈ Bq−1
F [T ]. Hence,

ωTn = d

∑
i≥0

γiT
i +
∑
j≥1

θjT
j−1 ∧ dT


which implies that

d(γn)T
n = ωTn and (nγn − dθn)Tn−1 ∧ dT = 0.

Therefore nγn = dθn and ω = d(γn) = 0.
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Remark 1.2.10. In particular, the isomorphism induced by ρ1 factors as follows

ΩqF → fil1H
q+1
p (F [T ])→ gr1.

This implies that the map

ΩqF → Hq+1
p (F [T ])

α 7→ δ1[Tα]

is injective.

Lemma 1.2.11. Let n ≥ 1 be such that n = pn1. Then the map ρn induces an
isomorphism

ΩqF /Z
q
F ⊕ Ωq−1

F /Zq−1
F ≃ grn

Proof. Let (ω1, ω2) ∈ ZqF ⊕Z
q−1
F , then there exists (θ1, θ2) ∈ ΩqF ⊕Ωq−1

F such that

(C−1(θ1), C
−1(θ2)) = (ω1, ω2), in ZqF /B

q
F ⊕ Z

q−1
F /Bq−1

F

Hence, using the properties of the inverse Cartier operator

Tnω1 + Tnω2 ∧ d log T = C−1(θ1T
n
1 + θ2T

n
1 ∧ d log T ).

We know from equation (1.12) that the image via δ1 of

(C−1 − id) [θ1T
n1 + θ2T

n1 ∧ d log T ]

is zero. Therefore, δ1 [Tnω1 + Tnω2 ∧ d log T ] is equal to

δ1 [θ1T
n1 + θ2T

n1 ∧ d log T ] .

The latter is zero in grn, since n1 ≤ n− 1.
We are left to show that the kernel of ρn is contained in ZqF ⊕ Z

q−1
F . Assume

that (ω1, ω2) ∈ Ωq−1
F ⊕ Ωq−2

F is such that

ρn(ω1, ω2) = δ1 [T
nω1 + Tnω2 ∧ d log T ] = 0.

An argument analogous to the one used in the previous lemma gives that there
exist αn1,p ∈ ΩqF and βn1,p ∈ Ωq−1

F such that

ω1 = C−1(αn1,p) and ω2 = C−1(βn1,p), mod Bq−1
F ⊕Bq−2

F .

The result now follows from the fact that the image of the inverse Cartier operator
lies in the group of closed forms modulo exact forms.

Let g1, g2, h : F [T ]→ F [T1, T2] be the F -morphisms defined by

g1(T ) = T1, g2(T ) = T2, and h(T ) = T1 + T2.

We denote in the same way the induced maps from H∗
p (F [T ]) to H∗

p (F [T1, T2]).
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Lemma 1.2.12. Let ω ∈ Hqp(F [T ]) and assume that ω is such that

(1) g1(ω) + g2(ω) = h(ω);

(2) the element {ω, T} in Hq+1
p (F (T )) is equal to the image of an element τ in

Hq+1
p (F [T ]) such that g1(τ) + g2(τ) = h(τ).

Then, there exists α ∈ Ωq−1
F such that

ω = δ1(Tα).

Proof. A proof, that uses the previous two lemmas, can be found in [Kur88,
Lemma 3.3.1].

1.2.2 Definition of Swan conductor

We recall that we work in the following setting: K is a henselian discrete valuation
field of mixed characteristic, whose residue field is not necessarily perfect. We
denote by:

• OK ⊆ K the ring of integers of K with uniformiser π and maximal ideal m;

• F the residue field of characteristic p.

Let A be a ring over OK , R := A/mA, and i, j the inclusions of the special and
generic fibers into Spec(A):

Spec(A⊗OK
K) Spec(A) Spec(R).

j i

We define
V qn (A) := Hq

(
Rét, i

∗Rj∗Z/nZ(q − 1)
)

and V q(A) := lim−→n
V qn (A). In particular, Hq(K) = V q(OK). The natural map in

Db(Aét)
Rj∗Z/nZ(q − 1)→ i∗i

∗Rj∗Z/nZ(q − 1)

induces a natural map Hqn(A⊗OK
K)→ V qn (A) for all n, q. Gabber [Gab94] proved

that this map is an isomorphism if (A,mA) is henselian. In this case, using the
Kummer map (A ⊗OK

K)× → H1(A ⊗OK
K,Z/nZ(1)) and the cup product, we

define a product

V qn (A)×((A⊗OK
K)×)⊕r → V q+rn (A)

(χ,a1, . . . , ar) 7→ {χ, a1, . . . , ar}.

For a general A, the isomorphism

V qn (A) ≃ V qn (A(h)) (1.13)

allows to extend the product above. This isomorphism follows from the following
remark.
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Remark 1.2.13. One can check that the sheaves i∗Rj∗Z/nZ(q− 1), with i and j
such that

Spec(A⊗OK
K) Spec(A) Spec(R).

j i

and (i(h))∗R(j(h))∗Z/nZ(q − 1) with i(h) and j(h) such that

Spec(A(h) ⊗OK
K) Spec(A(h)) Spec(R).

j(h)
i(h)

have the same stalks, and hence coincide on Rét.

From now on we will identify V qn (A) and V qn (A
(h)). In particular, note that

if A = OK [T ], then all the polynomials of the form 1 + πnp(T ) are invertible in
A(h), see [Sta, 0EM7] for an overview on henselianisation of (not necessarily local)
rings.

Definition 1.2.14. The increasing filtration {filnHq(K)}n≥0 on Hq(K) is defined
by

χ ∈ filnH
q(K)⇔ {χ, 1 + πn+1T} = 0 in V q+1(OK [T ]).

We say that an element χ in Hq(K) has Swan conductor n, if χ ∈ filnH
q(K)

and χ /∈ filn−1H
q(K).

The following lemma implies that it is possible to define the Swan conductor
of every element of Hq(K).

Lemma 1.2.15. We have

Hq(K) =
⋃
n≥0

filnH
q(K).

Proof. This lemma is [Kat89, Lemma 2.2], we are adding some details in the
proof. Let A := (OK [T ])h be the henselisation of OK [T ] with respect to the ideal
mOK [T ]. Then, by equation (1.13) V qn (A) ≃ V qn (OK [T ]). Let χ ∈ Hq(K), then
there exists s ≥ 1 such that χ ∈ Hqs(K). If n ≥ 0 is such that 1 + πn+1T ∈ (A×)s,
then

{χ, 1 + πn+1T} = {χ, as} = {s · χ, a} = 0

which implies that χ ∈ filnH
q(K). The result now follows from [Kat89, Lemma 2.4],

in which Kato proves that for any s ≥ 1 there exists some n ≥ 0 such that the set
1 + πn+1A is contained in (A×)s

Remark 1.2.16. Kato defines the Swan conductor also for henselian discrete
valuation fields of equal characteristic. In particular, it is possible to relate the
Swan conductor filtration to the filtration on Hqp(F [T ]) defined in Section 1.2.1.2. If
we take K = F

(
(T )
)

then the map F [T ]→ F
(
(T )
)

sending T to T−1 allows us to
pull-back the Swan conductor filtration on Hqp(F [T ]); from [Kat89, Theorem 3.2(1)]
we see that the filtration that we get in this way on Hqp(F [T ]) coincides with the
one defined in Section 1.2.1.2.
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1.2.2.1 Elements with Swan conductor equal to zero

In [Kat89] and [BN23] some maps λπ : Hqn(R) ⊕ Hq−1
n (R) → V qn (A) are defined

under additional assumptions on the OK-algebra A. We give an overview of these
maps that, since they are compatible with each other, we will always call λπ.

• In [Kat89, Section 1.4] Kato defines for every n an injective map

λπ : H
q
n(F )⊕Hq−1

n (F )→ Hqn(K).

This collection of maps induces an injective map

λπ : H
q(F )⊕Hq−1(F )→ Hq(K).

• In [Kat89, Section 1.9] Kato extends the definition of λπ from Hqp(F ) ⊕
Hq−1
p (F ) to Hqp(K) to any smooth OK-algebra A. In particular, he defines a

map
λπ : H

q
p(R)⊕Hq−1

p (R)→ V qp (A).

• In [BN23, Section 2.2] Bright and Newton generalise the previous map by
defining

λπ : H
q
pr (R)⊕Hq−1

pr (R)→ V qpr (A)

for any r ≥ 1.

It is proven in [Kat89, Proposition 6.1] that the image of

λπ : H
q
n(F )⊕Hq−1

n (F )→ Hqn(K)

coincides with fil0H
q
n(K).

We state here a technical lemma proven by Bright and Newton that we will
use several times in this thesis.

Lemma 1.2.17. Let Kh be the fraction field of the henselisation of A with respect
to the ideal generated by π. Let r ≥ 1 and q ≥ 2. Let χ be an element of
fil0H

q
pr (K

h) and write χ = λπ(α, β) with (α, β) ∈ Hqpr (F )⊕ Hq−1
pr (F ). If χ lies in

the image of V qpr (A), then (α, β) lies in the image of Hqpr (R)⊕Hq−1
pr (R).

Proof. [BN23, Lemma 3.5]

Following [Kat89] and [BN23] we sometimes use λπ also to denote the compo-
sition

WrΩ
q
R ⊕WrΩ

q−1
R

δr−→ Hqpr (R)⊕Hq−1
pr (R)

λπ−−→ V qpr (A).
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1.2.3 Construction of the refined Swan conductor

The aim of this section to define the refined Swan conductor of an element χ in
filnH

q(K). The key result we need is the following theorem, [Kat89, Theorem 5.1]

Theorem 1.2.18. Let χ ∈ filnH
q(K), with n ≥ 1; then there exists a unique pair

(α, β) in ΩqF ⊕ Ωq−1
F such that

{χ, 1 + πnT} = λπ(Tα, Tβ) in V q+1
p (OK [T ]). (1.14)

Remark 1.2.19. The pair (α, β) in the theorem above depends on the choice of
a uniformiser π in OK . However, we will mainly be interested in the vanishing of
such a pair, and this is independent on the choice of the uniformiser. Let π′ be
another uniformiser and a = π/π′ ∈ O×

K , then we can define the map

ma : OK → OK
x 7→ ax.

We denote byma also the induced automorphism onOK [T ]. Then [BN23, Lemma 2.13]
tells us that

λπ′(āT (α+ β ∧ d log ā), āTβ) = m∗
aλπ(Tα, Tβ).

with ā reduction of a in F and m∗
a automorphism induced by ma on Hq(K).

The refined Swan conductor of an element A ∈ filnH
q(K) is defined as the

element (α, β) ∈ ΩqF ⊕ Ωq−1
F such that

{χ, 1 + πnT} = λπ(Tα, Tβ).

Note that: we have that χ ∈ filn−1H
q(K) if and only if {χ, 1+πnT} = 0 and since

λπ is injective, this happens if and only if (Tα, Tβ) = 0. By Remark 1.2.10 this
is equivalent to (α, β) = (0, 0). Hence, for every n ≥ 1 we get an injective map,
called refined Swan conductor

rswn,π :
filnH

q(K)

filn−1Hq(K)
↪→ ΩqF ⊕ Ωq−1

F .

The rest of this section is devoted to the proof of Theorem 1.2.18. We start
with the following lemma, [Kat89, Lemma 5.3].

Lemma 1.2.20. Assume χ ∈ filnH
q(K) for n ≥ 1. Then:

(1) {χ, 1 + πnT} ∈ V q+1(OK [T ]) is annihilated by p;

(2) {χ, 1 + πnT1, 1 + πT2} = 0 in V q+2(OK [T1, T
−1
1 , T2]);

(3) {χ, 1 + πn(T1 + T2)} = {χ, 1 + πnT1}+ {χ, 1 + πnT2} in V q+1(OK [T1, T2]);

(4) {χ, 1 + πnT, T} = −{χ, 1 + πnT,−πn} in V q+2(OK [T, T−1]).
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Proof. Note that χ ∈ filnH
q(K) implies, by functoriality of V q(−), that

{χ, 1 + πn+1b} = 0 in V q(B) (1.15)

for all OK-algebras B and all b ∈ B.

1. We have

p · {χ, 1 + πnT} = {χ, (1 + πnT )p} = {χ, 1 + πn+1q(T )} = 0

with q(T ) =
∑p
s=1

(
p
s

)
1

πn+1 (π
nT )s ∈ OK [T ]. The last equality follows from

equation (1.15).

2. Let M be the fraction field of the henselisation of the local ring OK [T1](π).
By [Kat89, (1.8.1)] we know that the for any s ≥ 0 the map

V qps(OK [T1, T2])→ V qps(OM [T2])

is injective. Hence, it is enough to prove the equality in V q+2(OM [T2]). Note
that, for every a ∈ OM

{χ, 1 + πnT + πn+1a} = {χ, 1 + πnT} in V q(OM ). (1.16)

In fact, 1 + πnT ∈ O×
M and

{χ, 1 + πnT + πn+1a} − {χ, 1 + πnT} =
{
χ, 1 + πn+1 a

1 + πnT

}
= 0.

Using equation (1.16) we see that

{χ, 1 + πnT1, 1 + πT2}
= {χ, 1 + πnT1(1 + πT2), 1 + πT2}
⋆
= −{χ, 1 + πnT1(1 + πT2),−πnT1}
⋆
= −{χ, 1 + πnT1(1 + πT2),−πnT1} − {χ, 1 + πnT1,−πnT1}

= −
{
χ, 1 + πn+1 T1T2

1 + πnT1
,−πnT1

}
= 0.

where in ⋆
= we are using that {χ, a, b} = 0 if a+ b = 1.

3. We have

{χ, 1 + πnT1}+ {χ, 1 + πnT2} − {χ, 1 + πn(T1 + T2)}

=

{
χ,

(1 + πnT1)(1 + πnT2)

1 + πn(T1 + T2)

}
=

{
χ, 1 + π2n T1T2

1 + πn(T1 + T2)

}
= 0.

4. This follows immediately from {χ, a, b} = 0 if a+ b = 1.
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Proof of Theorem 1.2.18. Let χ ∈ filnH
q(K). Then, by Lemma 1.2.20(1) we know

that
θ := {χ, 1 + πnT} lies in V q+1

p (OK [T ]).

From Lemma 1.2.20(2) we have {θ, 1+ πT2} = 0, hence θ satisfies the assumption
of Lemma 1.2.17 with A = OK [T ] and R = F [T ]. Hence, there exists (ω, σ) in
Hq+1
p (F [T ])⊕Hqp(F [T ]) such that λπ(ω, σ) = θ. We are left to show that ω and σ

satisfy the conditions of Lemma 1.2.12. For any a ∈ O×
K(T ) we have the following

commutative diagram

Hqpr (F (T ))⊕Hq−1
pr (F (T )) Hq+1

pr (F (T ))⊕Hqpr (F (T ))

Hqpr (K(T )) Hq+1
pr (K(T ))

λπ

(∪(−1)q−1{ā},∪(−1)q{ā})

λπ

(∪{a})

see the proof of [BN23, Lemma 2.12]. Thus, we get

λπ(ω ∪ (−1)q−1{T}, σ ∪ (−1)q{T}) = {θ, T}.

As {θ, T} ∈ V q+2
p (OK [T ]), from Lemma 1.2.17 we get that {ω, T} and {σ, T} lie in

Hq+2
p (F [T ]) and Hq+1

p (F [T ]) respectively. We denote by G1, G2 and H the maps
from OK [T ] to OK [T1, T2] defined by

G1(T ) = T1, G2(T ) = T2, and H(T ) = T1 + T2

and the corresponding maps from V •
p (OK [T ]) to V •

p (OK [T1, T2]). Since λπ is
injective, in order to show that ω and σ satisfy the assumption of Lemma 1.2.12
it is enough to show that G1 + G2 = H on θ and {θ, T}. This is an immediate
consequence of Lemma 1.2.20(3) and 1.2.20(4).

We end this section by giving the definition of the residue map ∂ from Br(K) to
H1(F ), which also uses the map λπ (cf. [BN23, Section 2.5], [Kat89, Section 7.5]).

Definition 1.2.21. The residue map

∂ : fil0Br(K)→ H1(F )

is defined as the projection on the second component of the inverse of the isomor-
phism λπ from H2(F )⊕H1(F ) to fil0Br(K).

1.2.3.1 Image of the refined Swan conductor

We are now ready to state and prove some properties about the image of the
refined Swan conductor. We denote by e := ordK(p) the absolute ramification
index of K and by e′ := ep(p− 1)−1. We start with the following lemma.

Lemma 1.2.22. Let χ be an element in filnH
q(K) with

rswn,π(χ) = (α, β) ∈ Ω2
F ⊕ Ω1

F .

Then dα = 0 and dβ = (−1)qnα.
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Proof. See [BN23, Lemma 2.17].

Remark 1.2.23. We get that:

(1) if p | n, then dα = 0 and dβ = 0, meaning that (α, β) ∈ ZqF ⊕ Z
q−1
F ;

(2) if p ∤ n, then α = n̄−1dβ, meaning that the composition

filnH
q(K)

rswn,π−−−−→ ΩqF ⊕ Ωq−1
F

pr2−−→ Ωq−1
F

has also kernel equal to filn−1H
q(K).

In [BN23, Lemma 2.19] Bright and Newton are able to link the refined Swan
conductor of an element χ ∈ filnH

q(K) with the refined Swan conductor of p · χ,
whenever n ≥ e′. More precisely, assume that rswn,π(χ) = (α, β) and let ū be the
reduction modulo π of p · π−e, then p · χ ∈ filn−eH

q(K) and

rswn−e,π(p · χ) =

{
(ūα, ūβ) if n > e′;

(ūα+ C(α), ūβ + C(β)) if n = e′.
(1.17)

In the following lemma we prove a result analogous to the one proven by Bright
and Newton for elements χ ∈ filnpH

q(K), when np < e′.

Lemma 1.2.24. Let χ ∈ filnpH
q(K), with np < e′. Then p · χ ∈ filnBr(K) and if

rswnp,π(A) = (α, β), then dα = 0, dβ = 0 and

rswn,π(p · χ) = (C(α), C(β)).

Proof. From Remark 1.2.23(1) we know that (α, β) ∈ ZqF ⊕ Z
q−1
F , since clearly

p | np. The condition e′ > np implies p
p−1 · (e− np+ n) > 0, which implies

e− np+ n > 0. (1.18)

Let u ∈ O×
K be such that p = u · πe.

{p · χ, 1 + πn+1T} = {χ, (1 + πn+1T )p} = {χ, 1 + πnp+1b(T )}

where

b(T ) =
(1 + πn+1T )p − 1

πnp+1
.

We can rewrite b(T ) as

p−1∑
k=1

πe+(n+1)k−(np+1)akT
k + πp(n+1)−(np+1)T p.

Note that, for every 1 ≤ k ≤ p, we have that from equation (1.18)

e+ (n+ 1)k − np− 1 = (e− np) + (n+ 1)k − 1 ≥ 0.
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Therefore, b(T ) ∈ OK [T ]. Now, since by assumption χ ∈ filnpH
q(K), we have that

{χ, 1 + πnp+1b(T )} = 0 for all b(T ) ∈ OK [T ], thus p · χ ∈ filnH
q(K). In a similar

way,
{p · χ, 1 + πnT} = {A, (1 + πnT )p} = {χ, 1 + πnpc(T )}

where
c(T ) =

(1 + πnT )p − 1

πnp
.

We can rewrite c(T ) as
p−1∑
k=1

πe+nk−npakT
k + T p.

In this case, again equation 1.18 together with 1 ≤ k ≤ p−1, implies e+nk−np > 0.
Therefore, c(T ) ∈ OK [T ] and its reduction modulo π is equal to T p. It follows
from [Kat89, (6.3.1)] that

{χ, 1 + πnpc(T )} = λπ(c̄(T )α, c̄(T )β) = λπ(T
pα, T pβ) = λπ(TC(α), TC(β))

where the last equality follows from [BN23, Lemma 2.18(2)].

Remark 1.2.25. For every non-negative integer d, we denote by filnH
q
d(K) the

intersection of filnH
q(K) with Hqd(K). Kato proves that for every non-negative

integer d prime to p, Hqd(K) = fil0H
q
d(K), see [Kat89, Proposition 6.1]. We will

now prove some useful properties of the refined Swan conductor on p-power order
elements.1

(1) The filtration filnH
q
pm(K) is finite.

Assume first e′ to be an integer, i.e. (p − 1) | e. For m = 1 it is proven
in [Kat89, Proposition 4.1] that Hqp(K) = file′H

q
p(K). This is equivalent to

saying that for all n > e′ and χ ∈ filnH
q
p(K), we have rswn,π(χ) = (0, 0).

Assume that m > 1, χ ∈ filnH
q
pm(K) with n > e′+(m−1)e and rswn,π(χ) =

(α, β). From equation (1.17) we know that rswn−e,π(p ·χ) = (ūα, ūβ), hence
working on induction on m we get that rswn,π(χ) = (0, 0). Note that, this
result was essentially already proved in [Ier22, Proposition 17].

If e′ is not an integer, then we take a primitive p-root of unity ζ and we
consider the field extension K(ζ)/K with ramification index eK(ζ)/K . We
denote by eK and eK(ζ) the absolute ramification indexes of K and K(ζ)
respectively and by e′K and e′K(ζ) the products eK · p · (p− 1)−1 and eK(ζ) ·
p · (p − 1)−1 respectively. Let n > e′K + (m − 1) · eK and χ ∈ filnH

q
pm(K),

then
eK(ζ)/K · n > e′K(ζ) + (m− 1)eK(ζ).

Since (p− 1) | e′K(ζ), we get (from what we said above) that

rsweK(ζ)/K ·n,π(res(χ)) = (0, 0)

1Parts (b) and (c) are already mentioned by Kato in [Kat89, Sections 4 and 5], however in
Chapter 4 we are going to use parts (b) and (c) to prove [Kat89, Lemma 4.3] for which no proof
is provided in literature.
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where res is the natural map from Hqpm(K) → Hqpm(K(ζ)). It follows from
[BN23, Lemma 2.16] that

rsweK(ζ)/K ·n,π(res(χ)) = (ā−n(α+ β ∧ d log ā), ā−neK(ζ)/Kβ)

with ā invertible in the residue field of K(ζ) (cf. Section 4.1). Hence, since
p ∤ eK(ζ)/K we can conclude that rswn,π(χ) = (0, 0).

(2) Let χ ∈ filnpH
q
p(K) with np < e′ and rswnp,π(χ) = (α, β). We know from

Lemma 1.2.24 that (α, β) ∈ ZqF ⊕ Z
q−1
F and since χ has order p

(C(α), C(β)) = rswn,π(p · χ) = (0, 0)

Equivalently, from Corollary 1.2.4 we get that for np < e′, the refined Swan
conductor on the p-torsion takes image in BqF ⊕B

q−1
F .

(3) Assume e′ to be an integer, χ ∈ file′H
q
p(K) and rswe′,π(χ) = (α, β). From

equation (1.17) we get that

−ūα = C(α) and − ūβ = C(β).

Let ζ be a primitive p-root of unity and c = (ζ − 1)pπ−e′ , then c = (c1)
p,

with c1 = (ζ − 1)π−e/(p−1). By the properties of the Cartier operator

C(c̄α) = c̄1C(α) = −ūc̄1α.

Since (ζ − 1)p−1 ≡ −p mod πe+1 2, (ζ − 1)p−1 = −p + πe+1v for some
v ∈ OK . Hence

c =
(ζ − 1)p

πe′
=

ζ − 1

πe/(p−1)
· (ζ − 1)p−1

πe
= c1 ·

(
−p+ πe+1v

πe

)
= c1 · (−u+πv).

Thus c̄ = −ūc̄1 and hence

multc̄ ◦ rswe′,π(Hqp(K)) ⊆ ΩqF,log ⊕ Ωq−1
F,log

where multc̄ is the map from ΩqF to ΩqF sending a q-form ω to c̄ · ω.

1.3 Refined Swan conductor and Brauer–Manin
obstruction

We are ready to state some of the main results in [BN23].

We are working in the same setting as Section 1.1.3: p is a prime number
and L a finite field extension of Qp, with ring of integers OL, uniformiser π and

2In fact, 1 = ((ζ − 1) + 1)p = (ζ − 1)p + p(ζ − 1)p−1 +
(p
2

)
(ζ − 1)p−2 + · · ·+ p · (ζ − 1) + 1.

Since ζ ̸= 1 we get (ζ − 1)p−1 + p(ζ − 1)p−2 +
(p
2

)
(ζ − 1)p−3 + · · ·+ p = 0. Now the congruence

follows from the fact that val((ζ − 1) · p) ≥ 1 + e.
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residue field ℓ. Let X be a smooth and geometrically irreducible L-variety having
good reduction (i.e. there exists a smooth OL-scheme X whose generic fiber is
isomorphic to X). We assume furthermore the special fiber, Y := X ×Spec(OL)

Spec(ℓ) to be geometrically irreducible,

X X Y

Spec(L) Spec(OL) Spec(ℓ).

j i

Let Kh be the field of fractions of the henselisation of the discrete valuation
ring OX ,Y . Bright and Newton [BN23] define the filtration {filnBr(X)}n≥0 on
Br(X) as the pull-back via the natural map Br(X) → Br(Kh) of the filtration
{filnBr(Kh)}n≥0 on Br(Kh) defined in Section 1.2.2. Therefore it is possible to
extend the definition of the residue map and the refined Swan conductor to el-
ements in Br(X) simply as the residue map and refined Swan conductor of the
image of A in Br(Kh). A priori these maps take values in H1(F ) and Ω2

F ⊕ Ω1
F

respectively. However, Bright and Newton prove that the residue map of an
element in fil0Br(X) takes values in H1(Y,Q/Z) ⊆ H1(F ) (see [BN23, Propo-
sition 3.1(1)]) and that the refined Swan conductor on filnBr(X) has image in
H0(Y,Ω2

Y ) ⊕ H0(Y,Ω1
Y ) ⊆ Ω2

F ⊕ Ω1
F (a proof following [Kat89, Theorem 7.1] can

be found in [BN23, Theorem B]).
The aim of this section is to transfer the results we got in Section 1.2.3.1 on the

refined Swan conductor on Br(Kh) to the refined Swan conductor on Br(X). In
[BN23] Bright and Newton define the following filtration, called the Evaluation
filtration, on the Brauer group of X. Let L′/L be a finite field extension with ring
of integer OL′ and uniformiser π′; for r ≥ 1 and P ∈ X (OL′), let B(P, r) be the
set of points Q ∈ X (OL′) such that Q has the same image as P in X (OL′/(π′)r).
Then:

EvnBrX := {B ∈ Br(X) | ∀L′/L finite, ∀P ∈ X (OL′)

evB is constant on B(P, eL′/L(n+ 1))}, (n ≥ 0)

Ev−1BrX := {B ∈ Br(X) | ∀L′/L finite, evB is constant on X (OL′)}
Ev−2BrX := {B ∈ Br(X) | ∀L′/L finite, evB is zero on X (OL′)}

For every positive integerm we denote by EvnBr(X)[m] the restriction of EvnBr(X)
to Br(X)[m], i.e. EvnBr(X)[m] := EvnBr(X) ∩ Br(X)[m]. If (m, p) = 1 Colliot-
Thélène and Skorobogatov [CTS13] and Bright [Bri15] proved that Ev0Br(X)[m] =
Br(X)[m]. Moreover, the residue map ∂m

0→ Br(X )[m]→ Br(X)[m]
∂m−−→ H1(Y,Z/mZ) (1.19)

is such that

Ev−1Br(X)[m] = {A ∈ Br(X)[m] | ∂m(A) ∈ H1(ℓ,Z/mZ)}
Ev−2Br(X)[m] = {A ∈ Br(X)[m] | ∂m(A) = 0}.
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Cf. the end of Section 1.1.3.
In order to give a description of the the Evaluation filtration also on the p-

power torsion part of Br(X), Bright and Newton use the filtration {filnBr(X)}n≥0

on Br(X). The interaction between the two filtrations is described in the theorem
that follows.

Theorem 1.3.1 (Theorem A, Bright and Newton). We have the following de-
scription of the Evaluation filtration

(1) fil0Br(X) coincides with Ev0Br(X);

(2) Ev−1Br(X) = {A ∈ Br(X) | ∂(A) ∈ H1(ℓ,Q/Z)};

(3) Ev−2Br(X) = {A ∈ Br(X) | ∂(A) = 0};

(4) For every n ≥ 1

EvnBr(X) =
{
A ∈ filn+1Br(X) | rswn+1,π(A) ∈ H0(Y,Ω2

Y )⊕ 0
}
.

Proof. This is a reformulation of [BN23, Theorem A].

It is clear at this point that in order to understand the evaluation filtration on
the Brauer group of X we need to understand the residue map ∂ and the refined
Swan conductor maps rswn,π.

1.3.1 Cartier operator on varieties and image of the refined
Swan conductor

It is possible to generalise the definition of inverse Cartier operator and Cartier
operator to the sheaf of q-forms on a smooth and proper variety Y defined over a
perfect field ℓ of positive characteristic. Following Illusie [Ill79], we will denote by
FY the absolute Frobenius endomorphism of Y and by Y (p) the base change of Y
via the absolute Frobenius σℓ of the base field ℓ, namely

Y Y (p) Y

Spec(ℓ) Spec(ℓ)

FY/ℓ W

σℓ

whereW ◦FY/ℓ = FY ; we call FY/ℓ the relative Frobenius of Y over ℓ. Furthermore,
we denote by Ω•

Y/ℓ the De Rham complex of Y/ℓ.

Remark 1.3.2. We are following [Ill79, Section 0.2]. In his paper, Illusie works
more generally with S-schemes, where the base S is a scheme of positive charac-
teristic. In this thesis, we are only interested in varieties over perfect fields. In
this case, the absolute De Rham complex Ω•

Y coincides with the relative De Rham
complex Ω•

Y/ℓ (since ℓ being perfect implies Ωqℓ = 0).
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We define for every q ≥ 0

ZqY := ker(d : ΩqY → Ωq+1
Y ) and BqY := im(d : Ωq−1

Y → ΩqY ).

For every q ≥ 0, the differential d : ΩqY → Ωq+1
Y is OY (p) -linear, hence the sheaves

(FY/ℓ)∗Z
q
Y and (FY/ℓ)∗B

q
Y

are OY (p) -modules and the abelian sheaf Hq((FY/ℓ)∗Ω•
Y ) is also a sheaf of OY (p) -

modules.

Definition 1.3.3 (Inverse Cartier operator). For every q ≥ 0 there is a morphism
of OY -modules, called the inverse Cartier operator

C−1
Y : ΩqY →W∗Hi((FY/ℓ)∗Ω•

Y ).

Remark 1.3.4. Since Ωq
Y (p) =W ∗ΩqY , by adjunction we get a morphism of OY (p) -

modules
C−1
Y/ℓ

: Ωq
Y (p) → Hq((FY/ℓ)∗Ω•

Y ).

Theorem 1.3.5. If Y is a smooth variety over ℓ, then C−1
Y/ℓ is an isomorphism.

Proof. See [Ill79, Theorem 0.2.1.9].

From now on we are assuming that Y is a smooth and proper variety over ℓ.
In this case, we denote by CY/ℓ the inverse of C−1

Y/ℓ. We are ready to define the
sheaf of logarithmic forms on Y .

Definition 1.3.6 (Logarithmic forms). For every non-negative integer q, we de-
note by

ΩqY,log := ker(W ∗ − CY/ℓ : ZqY → Ωq
Y (p)).

The sheaf ΩqY,log is called the sheaf of logarithmic q-forms on Y .

The following theorem is the analogue of Theorem 1.2.6 for fields of positive
characteristic.

Theorem 1.3.7. The sheaf ΩqY,log is the subsheaf of ΩqY generated étale-locally by
the logarithmic differentials, i.e. the sections of the form

dy1
y1
∧ · · · ∧ dyq

yq
with yi ∈ O∗

Y .

Proof. See [Ill79, Theorem 0.2.4.2].

The Cartier operator induces an exact sequence

0→ H0(Y,BqY )→ H0(Y,ZqY )
CY−−→ H0(Y,ΩqY )

The following lemma describes the interaction between global differential forms on
Y and their image in ΩqF .
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Lemma 1.3.8. Let ω ∈ H0(Y,ΩqY ), then:

(1) ω ∈ H0(Y,ΩqY,log) if and only if the image of ω in ΩqF lies in ΩqF,log;

(2) ω ∈ H0(Y,BqY ) if and only if the image of ω in ΩqF lies in BqF .

Proof. For all non-negative integers q, we have natural inclusions of H0(Y,ΩqY )
in ΩqF . These inclusions are compatible with the differential maps and with the
Cartier operator. The proof of the first part of the lemma follows from the defi-
nition of logarithmic forms, while the second part is an immediate consequence of
Corollary 1.2.4.

Corollary 1.3.9 (On the image of rswn,π). Let u = pπ−e ∈ O×
L ; then one of the

following cases occurs:

(1) If p ∤ n, then
pr2 ◦ rswn,π : filnBr(X)→ H0(Y,Ω1

Y )

has kernel equal to filn−1Br(X).

(2) If p | n and n < e′ we write n = mp, then (α, β) lies in H0(Y,Z2
Y )⊕H0(Y,Z1

Y )
and the following diagram

filnBr(X) H0(Y, Z2
Y )⊕H0(Y,Z1

Y )

filmBr(X) H0(Y,Ω2
Y )⊕H0(Y,Ω1

Y ).

(−)⊗p

rswn,π

C

rswm,π

commutes.

(3) If n = e′, then (α, β) lies in H0(Y,Z2
Y )⊕H0(Y, Z1

Y ) and the following diagram

file′Br(X) H0(Y,Z2
Y )⊕H0(Y,Z1

Y )

file′−eBr(X) H0(Y,Ω2
Y )⊕H0(Y,Ω1

Y ).

(−)⊗p

rswn,π

multū+C

rswn−e,π

commutes. Moreover, let c̄ ∈ ℓ× be the reduction of c = (ζ − 1)pπ−e′ ∈ O×
L ,

then c̄ is such that

multc̄
(
rswe′,πfile′Br(X)[p]

)
⊆ H0(Y,Ω2

Y,log)⊕H0(Y,Ω1
Y,log).

(4) If p | n and n > e′, then (α, β) lies in H0(Y,Z2
Y ) ⊕ H0(Y,Z1

Y ) and the
following diagram

filnBr(X) H0(Y,Z2
Y )⊕H0(Y,Z1

Y )

filn−eBr(X) H0(Y,Ω2
Y )⊕H0(Y,Ω1

Y ).

(−)⊗p

rswn,π

multū

rswn−e,π

commutes.
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Proof. All these properties are a consequence of Section 1.2.3.1. More precisely:
1. follows from Remark 1.2.23(2); 2. follows from Lemma 1.2.24; 3. and 4. are a
direct consequence of [BN23, Lemma 2.19].




