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Introduction

The focus of this thesis is on the study of rational points on varieties. This kind
of problem stems from the desire to be able to describe the rational solutions of a
polynomial equation, i.e. given a polynomial f(x0, . . . , xn) ∈ Q[x0, . . . , xn], what
can we say about

Z(f)(Q) := {(α0, . . . , αn) ∈ Qn+1 | f(α0, . . . , αn) = 0}?

A first way to study this set is by looking at the equation over the real numbers. In
fact, if there is no (α0, . . . , αn) ∈ Rn+1 such that f(α0, . . . , αn) = 0 then Z(f)(Q) is
also the empty set. The real numbers are a complete field, which makes the study
of the zeros of functions defined over it much more accessible. However, R is just
one of the possible completions of Q, the one with respect to the Euclidean metric.
The p-adic metrics give for every prime p a field, Qp, which is also a complete field
that contains Q. Putting all of these together gives a natural inclusion

Z(f)(Q) ↪→
∏

p prime

Z(f)(Qp)× Z(f)(R).

The sets Z(f)(Qp) and Z(f)(R) are subsets of Qn+1
p and Rn+1, hence they inherit

a topology coming from the topology on Qp and R respectively. We are partic-
ularly interested in understanding the closure of the set Z(f)(Q) in the product∏
p prime Z(f)(Qp)× Z(f)(R).

In the language of algebraic geometry, the polynomial f defines a variety and
the set Z(f)(Q) can be recovered as the set of morphisms from Spec(Q) to the
variety (similarly for Qp and R). In particular, we work in the following setting:

Q ⇝ k number field;
Z(f) ⇝ V proper, smooth and geometrically integral k-variety;∏
pQp × R ⇝ Ak, the ring of adèles of k.

As we will see in Chapter 1, the ring of adèles encodes the information about all
completions of k with respect to the places ν of the number field k. Moreover,
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if V is a proper variety, then we will see that the Ak-points on V coincide with∏
ν∈Ωk

V (kν).

Definition 1. We say that V satisfies weak approximation if the image of V (k)
in V (Ak) is dense.

In 1970 Manin [Man71] introduced the use of the Brauer group of a variety V ,
defined in Chapter 1, to study the image of V (k) in V (Ak). In particular, he used
the Brauer group to build an intermediate set V (Ak)

Br such that

V (k) ⊆ V (Ak)
Br ⊆ V (Ak).

Using class field theory it is possible to prove that for every place ν ∈ Ωk and for
every element A ∈ Br(V ), there is a map, called the evaluation map

evA : V (kν)→ Q/Z

such that

V (Ak)
Br :=

(xν) ∈ X(Ak) | ∀A ∈ Br(V ),
∑
ν∈Ωk

evA(xν) = 0

 (1)

is a closed subset of V (Ak) that contains the set of k-points V (k).

Definition 2. We say that there is a Brauer–Manin obstruction to weak ap-
proximation on V if V (Ak)

Br is a proper subset of V (Ak).

As we will see in more detail in Section 1.1.2.3 from equation (1) we get that
if for a place ν there is an element A ∈ Br(V ) such that evA : V (kν) → Q/Z is
non-constant, then V (Ak)

Br ⊊ V (Ak). In this case we say that the place ν plays
a role in the Brauer–Manin obstruction to weak approximation on V .

Let k̄ be an algebraic closure of k and V̄ be the base change of V to k̄, i.e.
V̄ := V ×k k̄. The results of this thesis are inspired by the following question:

Question 3. Assume Pic(V̄ ) to be torsion-free and finitely generated. Which
places can play a role in the Brauer–Manin obstruction to weak approximation on
V ?

This question is a reformulation of a question that was originally asked by
Swinnerton–Dyer; he asked whether under the assumption of Question 3 the only
places that can play a role in the Brauer–Manin obstruction to weak approximation
are the archimedean ones and the ones of bad reduction for the variety. The
necessity of having such a condition on the geometric Picard group Pic(V̄ ) is a
consequence of work of Harari [Har00], see Section 2.1.1.

It turns out that under the assumption of Question 3 if a prime of good reduc-
tion plays a role, then the corresponding element A in the Brauer group cannot be



3

algebraic, i.e. it cannot lie in the kernel of Br(V ) → Br(V̄ )1. In [CTS13] Colliot-
Thélène and Skorobogatov showed that, if the transcendental Brauer group is
finite, then the only places that can play a role are the archimedean places, the
places of bad reduction and the places whose residue characteristic divides the or-
der of the transcendental Brauer group, see [CTS13]. Using this result, they give
several examples of varieties for which the answer to Swinnerton-Dyer’s question
is positive.

For curves and surfaces with negative Kodaira dimension we have all the ele-
ments in the Brauer group are algebraic, i.e. Br(V ) = Br1(V ). Hence, K3 surfaces
are one of the first example of varieties where the transcendental Brauer group
is potentially non-trivial. However, this is not always the case: for example in
[ISZ11] the authors show that, under certain conditions, the whole Brauer group
of a diagonal quartic surface over Q is algebraic. The first example of a transcen-
dental element in the Brauer group of a K3 surface defined over a number field was
given by Wittenberg in [Wit04]. In particular, Wittenberg constructed a 2-torsion
transcendental element that obstructs weak approximation on the surface. Other
examples of 2-torsion transcendental elements that obstruct weak approximation
can be found in [HVAV11] and [Ier10]. In all these articles, the obstruction to weak
approximation comes from the fact that the transcendental quaternion algebra has
non-constant evaluation at the place at infinity. With a construction similar to the
one used in [HVAV11], Hassett and Várilly-Alvarado [HVA13] have also built an
example of a 2-torsion element on a K3 surface that obstructs the Hasse principle.

Furthermore, there are examples of transcendental elements of order 3 on K3
surfaces that obstruct weak approximation (for example, see [Pre13], [New16] and
[BVA20]). In all these cases, the evaluation map at the place at infinity has to
be trivial, since Br(R) does not contain elements of order 3, and the obstruction
to weak approximation comes from the evaluation map at the prime 3, which in
every example is a prime of bad reduction for the K3 surface taken into account.
Therefore, none of the examples mentioned above can be used to give a negative
answer to the question formulated by Swinnerton-Dyer.

After Colliot-Thélène and Skorobogatov’s work the main remaining difficulty
was to control the evaluation map of a p-power element in the Brauer group on the
V (kp)-points, where p is a prime of good reduction with residue characteristic p. In
2020 Bright and Newton [BN23] developed new techniques that allow one to control
also the behaviour of the evaluation map in this case. Roughly speaking, they use
work of Kato [Kat89] to introduce a new filtration on the Brauer group which they
prove to be strongly related to the behaviour of the evaluation map attached to
elements in Br(V ). The first chapter of this thesis is devoted to introducing these
new techniques and extending some results of Bright and Newton.

Bright and Newton also prove that if we start with a variety V with non-trivial
H0(V,Ω2

V ), then for primes p having good ordinary reduction we can always find a
finite field extension k′/k and a prime above p playing a role in the Brauer–Manin
obstruction to weak approximation: see [BN23, Theorem C] or Chapter 2 for the

1Elements in the Brauer group that are not algebraic are called transcendental.
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precise statement.

Hence, if we take a variety V such that:

- the geometric Picard group Pic(V̄ ) is torsion-free and finitely generated,

- H0(V,Ω2
V ) is non-trivial,

- there is a prime p of good ordinary reduction,

then up to a base change to a finite field extension k′/k we can always find a prime
of good (ordinary) reduction that plays a role in the Brauer–Manin obstruction
to weak approximation on Vk′ . Since K3 surfaces satisfy all the properties listed
above, Bright and Newton’s result leads to a negative answer to the question asked
by Swinnerton-Dyer. In Chapter 3 we will improve this theorem for K3 surfaces.

Theorem 4. Let V be a K3 surface over a number field k and p be a prime of
good ordinary reduction for V . Then there exist a finite field extension k′/k and
an element A ∈ Br(Vk′)[p] that obstructs weak approximation on Vk′ .

In particular, in Bright and Newton’s result the element A ∈ Br(Vk′) giving
an obstruction to weak approximation has order a p-power, where p is the residue
characteristic of the prime p having good ordinary reduction. We prove that for
K3 surfaces, you can always find an element of order exactly p that gives an
obstruction to weak approximation.

However, neither result says anything about how large the field extension k′/k
can be. In particular, they do not say whether it is possible to find already
over Q a Brauer-Manin obstruction arising from a prime of good reduction. The
aim of Chapter 2 is to build a K3 surface over the rational numbers for which
a prime of good reduction is involved in the Brauer–Manin obstruction to weak
approximation. This is the first example of a K3 surface (defined over Q) for which
a prime of good reduction plays a role in the Brauer–Manin obstruction to weak
approximation.

Theorem 5. Let V ⊆ P3
Q be the projective K3 surface defined by the equation

x3y + y3z + z3w + w3x+ xyzw = 0. (2)

The class of the quaternion algebra

A =

(
z3 + w2x+ xyz

x3
,− z

x

)
∈ BrQ(V )

defines an element in Br(V ). The evaluation map evA : V (Q2)→ Br(Q2) is non-
constant. Moreover, V (Q) is not dense in V (Q2).

This theorem proves that the field extension appearing in Theorem 4 is not
always needed.

At this point some natural questions arise:
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Question 6.

1. When is the field extension k′/k appearing in Bright and Newton’s result
needed?

2. Is the ordinary condition necessary?

Answering these two questions is the aim of Chapter 3. In particular, we prove
the following results.

Theorem 7. Let p be a prime of good ordinary reduction for V of residue char-
acteristic p. Assume that the special fibre at p, V(p) has no non-trivial global
1-forms, H1(V(p),Z/pZ) = 0 and (p − 1) ∤ ep. Then the prime p does not play a
role in the Brauer–Manin obstruction to weak approximation on V .

Theorem 8. Let V be a K3 surface and p be a prime of good non-ordinary re-
duction for V with ep ≤ (p − 1). Then the prime p does not play a role in the
Brauer–Manin obstruction to weak approximation on V .

Finally, in the last chapter of this thesis we will show that the conditions in
Theorem 7 and Theorem 8 are optimal. Part of the chapter is devoted to the proof
of the following theorem.

Theorem 9. Let A be the abelian surface given by the product of two elliptic
curves E1 and E2 defined over Q. Assume that both E1 and E2 have good ordinary
reduction at the prime 2 and full two torsion defined over Q2. Let V = Kum(A) be
the corresponding Kummer K3 surface. Then, V has good ordinary reduction at 2
and every element A ∈ Br(V )[2] has constant evaluation map evA : V (Q2)→ Q/Z.

In particular, this proves that the field extension appearing in Theorem 4 is in
general needed. Moreover, starting from this theorem we will build an example
for which 2 is a prime of good ordinary reduction but does not play a role in
the Brauer–Manin obstruction, even though the ramification index (which is 1)
is divisible by p − 1. This shows that the condition (p − 1) ∤ ep in Theorem 7 is
sufficient but not necessary. Moreover, we will also produce an example of a K3
surface for which there is a prime of good non-ordinary reduction p that plays a
role in the Brauer–Manin obstruction to weak approximation and for which ep = p.
The latter example shows that the bound appearing in Theorem 8 is optimal.
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Notation and conventions

We include here some notation and conventions that we will follow throughout
this thesis. Most of the notation will be introduced once again in the thesis when
needed, however we include them here as well for convenience.

Varieties over number fields

We denote by k any number field and Ok its ring of integers. Let Ωk be the set of
places of k, then for any place ν ∈ Ωk we denote by kν the completion of k at ν.
We call places corresponding to archimedean valuation archimedean, while places
corresponding to non-archimedean valuation will be called finite. For ν ∈ Ωk
archimedean, we define Oν := kν . If ν is a finite place we will often denote it by p,
where p is the corresponding prime ideal in Ok and we denote by Op (sometimes
by Oν) its ring of integers and by k(p) (sometimes by k(ν)) its residue field. For
any finite set of places S ⊂ Ωk we define Ok,S as the intersection in k of the local
rings Oν for ν ∈ S.

Finally, we denote by V any proper, smooth and geometrically integral variety
over k. We refer to [Liu02] for an introduction to schemes and their properties. Let
V be an Ok,S-scheme of finite type such that there exists an isomorphism between
V ×Ok,S

Spec(k) and V (i.e. V is an Ok,S model for the scheme V ); for any finite
place p not in S, we denote by V(p) the special fibre at p, i.e. the base change of
V to Spec(k(p)), by Vp the base change of V to Op and by Vp the base change of
V to kp.

Varieties over p-adic fields

Let p be a prime number. We denote by L any p-adic field (i.e. a finite field
extension of the field of p-adic numbers Qp), with ring of integers OL and residue
field ℓ, which is a finite field of positive characteristic. We denote by X any smooth
and geometrically integral variety over L and by X any smooth model over OL
with geometrically integral fibre, i.e. X is such that there exists an isomorphism
between X ×OL

Spec(L) and X. Moreover, we denote by Y the special fibre of
X , which is the base change of X to ℓ and is a smooth, proper and geometrically
integral variety over the finite field ℓ, since both being smooth and proper are
stable under base change.

Remark 10. In particular, for any finite place p of k, the completion of k at p,
kp, is a p-adic field with residue field k(p) of positive characteristic p. Hence, the
base change Vp of V to kp is a variety over a p-adic field and the special fibre at p,
V(p) is a variety over the finite field k(p), which is the residue field of the p-adic
field kp.




