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Abstract 

Higher-level cognitive functions are mediated via complex oscillatory activity patterns and 

its analysis is dominating cognitive neuroscience research. However, besides oscillatory 

(period) activity, also aperiodic activity constitutes neural dynamics, but its relevance for 

higher-level cognitive functions is only beginning to be understood. The present study 

examined whether the broadband EEG aperiodic activity reflects principles of metacontrol. 

Metacontrol conceptualizes whether it is more useful to engage in more flexible processing 

of incoming information or to shield cognitive processes from incoming information 

(persistence-heavy processing). We examined EEG and behavioral data from a sample of 

N=191 healthy participants performing a Simon Go/Nogo task that can be assumed to induce 

different metacontrol states (persistence-biased vs. flexibility-biased). Aperiodic activity was 

estimated using the FOOOF toolbox in the EEG power spectrum. There was a higher 

aperiodic exponent and offset in Nogo trials compared to Go trials, in incongruent (Go) trials 

compared to congruent (Go) trials. Thus, aperiodic activity increases during persistence-

heavy processing, but decreases during flexibility-heavy processing. These findings link 

aperiodic features of the EEG signal and concepts describing the dynamics of how cognitive 

control modes are applied. Therefore, the study substantially extends the importance of 

aperiodic activity in understanding cognitive functions. 

 

Keywords: Aperiodic neural activity; Neural noise; EEG; Cognitive control; Persistence; 

Flexibility. 
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Introduction 

Higher-level cognitive functions are mediated via complex oscillatory activity patterns 

(Buzsáki, 2006; Fries, 2005; Ward, 2003), and the analysis of these patterns has been 

dominating cognitive neuroscience research using electrophysiological methods (e.g., using 

the EEG) for decades. Crucially, such EEG power spectra are comprised of two components: 

the periodic component (also known as neural oscillations) and the aperiodic component (He, 

2014; Voytek & Knight, 2015). Neural oscillations are identified as recurring patterns of brain 

activity with a particular temporal frequency and have been linked to a wide variety of 

cognitive processes and behaviors.  

The aperiodic component is often described as background activity or “scale-free” 

broadband activity, which follows a 1/f-like distribution with decreasing spectral power across 

increasing frequency (Donoghue et al., 2020; He, 2014; Pritchard, 1992). This component can 

be described by a 1∕ 𝑓# function, where f represents frequency and x reflects an exponent that 

determines the steepness of the decrease in power across frequencies (Donoghue et al., 2020; 

K. J. Miller et al., 2009; Voytek & Knight, 2015). The aperiodic component of the EEG power 

spectrum is characterized by the aperiodic exponent (x, 1/f slope) and aperiodic offset. The 

aperiodic exponent is analogous to the negative slope of the log-log transformed power 

spectrum, reflecting the steepness (or slope) of the decay of power across frequencies 

(Donoghue et al., 2020). The aperiodic offset denotes the broadband shift in power across 

frequencies. 

The aperiodic component was traditionally treated either as noise or a nuisance 

variable to be neglected or corrected for (Groppe et al., 2013; Gyurkovics et al., 2021). 

Generally, the topic of “noise” in neural activity and its relevance for human (cognitive) brain 

function has attracted considerable importance in recent years (Nakao et al., 2019; Wolff et al., 

2022; Zhang & Northoff, 2022). The neurophysiological origin and functional significance of 

the aperiodic component of the EEG spectrum are currently not fully understood. However, 

there is accumulating evidence for a cognitive importance of the aperiodic component, as well 

as its developmental and clinical relevance (Adelhöfer, Paulus, et al., 2021; Donoghue et al., 

2020; Gyurkovics et al., 2022; He et al., 2010; Hill et al., 2022; Huang et al., 2017; Merkin et 

al., 2023; Münchau et al., 2021; Ostlund et al., 2021; Pertermann, Bluschke, et al., 2019; 

Shuffrey et al., 2022; Virtue-Griffiths et al., 2022; Voytek et al., 2015; Wainio-Theberge et al., 
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2021). Of particular interest, recent studies have shown aperiodic activity to be modulated by 

the behavioral state (Podvalny et al., 2015), task performance (He et al., 2010), arousal level 

(Lendner et al., 2020), working memory (Donoghue et al., 2020; Virtue-Griffiths et al., 2022), 

and cognitive control processes, such as response inhibition (Pertermann, Mückschel, et al., 

2019). Recent work showed a steeper 1/f slope (i.e., increased exponent) during the controlled 

inhibition of a prepotent response (Pertermann, Bluschke, et al., 2019). More recently, it has 

been suggested that 1/f slope in EEG signals may serve as a marker of “neural variability,” 

which enables the brain to dynamically adjust its neural activity to meet the demands of a 

given situation (Waschke et al. 2021b). Both the findings that 1/f activity may reflect a process 

enabling the brain to dynamically adjust its neural activity to meet the demands of a given 

situation, and findings underlining the relevance of 1/f activity in cognitive control 

(Pertermann, Bluschke, et al., 2019; Pertermann, Mückschel, et al., 2019) suggest that 1/f 

activity may be relevant for the understanding of how the brain dynamically adjust the 

processing mode/style in higher-level cognitive functions. 

The cognitive-control style people prefer or engage in when facing a particular 

situation has been referred to as “metacontrol” (Hommel, 2015). Situations or so-called control 

dilemmas do not just call for cognitive functions to operate, but to operate in particular ways. 

For instance, some situations require or call for a persistent, focused control style—like when 

facing distracting but irrelevant information, while others require or call for a more flexible, 

open and associative control style— like when acting under uncertainty. The fact that people 

can deal with both kinds of situations suggests that they can adjust their control style (to some 

degree) between extreme persistence and extreme flexibility (Beste et al., 2018; Goschke, 

2000; Goschke & Bolte, 2014; Hommel & Colzato, 2017c). A strong bias toward persistence 

is assumed to imply a strong focus on the current goal and the processing of task-relevant 

information only, whereas a strong bias toward flexibility should involve a broader focus and 

openness even to currently task-irrelevant information (Hommel, 2015). 

The Metacontrol State Model (MSM: Hommel, 2015) assumes that cognitive control 

styles reflect metacontrol states that emerge from (or are represented by) the interplay of 

functional/neural systems promoting persistence on the one hand and flexibility on the other. 

A persistence bias is characterized by the increased top-down impact of the current goal and 

stronger competition between alternatives, which makes it easier to stick with goal-consistent 
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actions and suppress irrelevant information. In contrast, a flexibility bias is characterized by a 

reduced impact of the goal and irrelevant alternatives, which facilitates the switch to other 

options. Interestingly, metacontrol biases not only show systematic individual differences, but 

also vary with task demands (Hommel & Colzato, 2017c; Mekern et al., 2019; Zhang et al., 

2022). Aperiodic neural activity explains variance in human cognitive control (i.e., response 

inhibition) (Pertermann, Bluschke, et al., 2019; Pertermann, Mückschel, et al., 2019). If this 

variance reflects differences in metacontrol states, metacontrol may thus be reflected by 

aperiodic activity. This will considerably broaden the conceptual relevance of this aspect of 

neurophysiological activity. This possibility would also fit with considerations that situational 

noise (i.e., the presence of distracting information) may be an important parameter to adjust 

metacontrol biases toward more flexibility or persistence (Goschke 2000; Goschke and Bolte 

2014; Hommel and Colzato 2017). 

Aperiodic activity, as estimated by the slope of the 1/f noise function (Dave et al., 

2018; He, 2014; He et al., 2010; Voytek & Knight, 2015) (for critique see Touboul & Destexhe, 

2017), is determined by the level of neuronal population spiking activity (Voytek & Knight, 

2015). This activity contributes to local field potentials which constitute large parts of the EEG 

signal (Katzner et al., 2009; Musall et al., 2014). Synchronized neuronal spiking activity is 

associated with reduced neuronal noise. In contrast, asynchronous spiking, related to increased 

neural noise levels, is associated with a flatter slope (Podvalny et al., 2015), of the 1/f 

parameter. Therefore, the 1/f parameter (reflecting aperiodic or “noise” activity) may be of 

relevance when it comes to concepts (such as metacontrol) drawing on internal “noise” as a 

parameter regulating the system’s state shifts more to the flexibility or the persistence. The 

central hypothesis of the current study is thus that metacontrol states, and their dynamic 

adjustment to task demands, might be reflected by, and thus associated with different levels of 

aperiodic neural activity. 

We tested this hypothesis by assessing the level of aperiodic neural activity during a 

cognitive control task that can be assumed to induce different metacontrol states (persistence-

biased vs. flexibility-biased). A recently developed spectral parameterization approach (Fitting 

Oscillations and One Over f [FOOOF] (Donoghue et al., 2020) was applied to estimate the 

aperiodic activity of EEG signals including aperiodic exponent and offset. We attempted to 

induce different metacontrol states by means of a Simon Go/Nogo task, which combines a 
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Simon task (Simon, 1969) with a Go/Nogo task (Chmielewski & Beste, 2017). In the Simon 

task, participants were required to carry out spatial responses (i.e., left and right) to a non-

spatial feature of a stimulus (i.e., letter “A” and “B”) presented on the left or right side of the 

screen. The spatial stimuli are assumed to prime responses in corresponding locations 

(Hommel, 2011; Simon, 1969), which should facilitate performance if this response is the 

correct one (i.e., if it is signaled by the relevant stimulus—so-called congruent conditions) but 

impair performance if this response is the wrong one (i.e., if the relevant stimulus signals the 

other response)—the incongruent condition. Hence, participants face more response conflict 

in incongruent than congruent conditions (Hommel, 2011). Overcoming this conflict requires 

a more persistent control style, supporting a stronger focus on the relevant and more neglect 

of the irrelevant information (Botvinick, 2007; Botvinick et al., 2004). Accordingly, we 

expected that incongruent trials would be associated with a stronger metacontrol bias toward 

persistence than congruent trials. 

The Simon task was combined with a Go/Nogo task, which means that in some trials, 

participants were to withhold their responses. Importantly for our purposes, Go stimuli were 

more frequently presented (70% Go trials), which can be expected to result in a prepotent Go 

response. Biased response probabilities are commonly assumed to reduce top-down control 

demands for the more frequent response(s) and accordingly increase top-down, goal-driven 

control demands for the less frequent response(s) (Bokura et al., 2001). Accordingly, we 

expected the Nogo trials to be associated with a stronger metacontrol bias toward persistence 

than Go trials. The combination of Simon task and Go/Nogo task yielded four conditions, 

which should be associated with different metacontrol biases: Whereas (frequent) Go trials 

and congruent conditions would be more likely to come with a comparatively stronger bias 

toward metacontrol flexibility, (less frequent) NoGo trials and incongruent trials should come 

with a comparatively stronger bias toward persistence. Moreover, as the Simon conflict in 

incongruent Simon trials should enhance inhibitory control, which in turn would benefit 

correct (no) responses in the Nogo condition (for a detailed explanation, see Chmielewski & 

Beste, 2017), Nogo congruent trials should come with more persistence-heavy processing (or 

less flexibility-heavy processing) than Nogo incongruent trials.  

Intriguingly, emerging evidence indicates a role of neural activity in the pre-trial 

period (or between-trial period), which is the time window before the stimuli presentation 
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during inhibitory control (Adelhöfer, Bluschke, et al., 2021; Adelhöfer & Beste, 2020; 

Prochnow et al., 2022; Wendiggensen et al., 2022), as it may reflect a “stage-setting state” that 

affects subsequent cognitive processes. Therefore, besides the typically used within-trial 

period (i.e., a time window after stimulus presentation), we also assessed aperiodic activity 

during the pre-trial period. 

 

Materials and methods 

Participants 

The current study reanalyzed existing data which were collected for other scientific aims with 

a cohort of n = 204 participants. As 13 participants were identified as outliers, the reported 

analyses are from n = 191 participants (99 females; age 18-40 years; M=24.93; SD=4.28). 

Participants were identified as outliers and excluded from further data analyses if one of the 

following criteria were met: false alarm rate in Nogo trials higher than 60%, FOOOF spectra 

fits (R2) smaller than the group mean minus three times the standard deviation (SD), and 

aperiodic exponent or offset values exceeds group mean ± 3 ´ SD. All remaining participants 

were right-handed with no record of neurological or psychiatric illnesses. The present study 

was approved by the Psychology Research Ethics Committee of Leiden University and by TU 

Dresden. The original study was approved by the Ethics Commission of the TU Dresden, and 

all participants provided written informed consent for their participation. The study was 

conducted in accordance with the Declaration of Helsinki. 

 

Task 

A combined Simon-Go/Nogo task (Chmielewski & Beste, 2017) was employed to assess 

cognitive control. The different task conditions are illustrated in Figure 1. Participants were 

presented with letter stimuli and were instructed to make corresponding responses or no 

response to a given stimulus. In each trial, a letter ‘A’ or ‘B’ was displayed either in normal 

font (i.e., ‘A’, ‘B’) or in bold italics (i.e., ‘A’ or ‘B’). A normal font ‘A’ or ‘B’ indicated Go 

trials in which participants were required to respond as fast as possible, while bold italics ‘A’ 

or ‘B’ represented Nogo trials in which responses had to be inhibited. In Go trials, participants 

were required to press the left “Ctrl” button when the stimulus was an “A” and the right “Ctrl” 
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button when it was a “B”, regardless of the spatial position of the stimuli. Letter stimuli 

pseudo-randomly appeared on the left or right side. There were two Go conditions: the 

congruent Go condition = stimuli were presented on the side of the hand carrying out the 

response (i.e., ‘A’ on the left side and ‘B’ on the right side); in the incongruent Go condition = 

stimuli were presented on the opposite side of the hand carrying out the response (i.e., ‘A’ on 

the right side and ‘B’ on the left side). In Nogo trials, left side ‘A’s and right side ‘B’s indicated 

congruent NoGo trials, whereas left side ‘B’s and right side ‘A’s represented incongruent 

NoGo trials.  

All stimuli were in white color and presented on a black background. A fixation cross 

was always displayed in the middle of the screen and a white frame box displayed on the left 

and right sides of the fixation cross was also constantly presented during the task. Each trial 

started with the letter stimuli presented for 200 ms. In Go trials, participants were asked to 

respond within 250-1200 ms after stimulus presentation. If no response was made, trials were 

coded as misses. For NoGo trials, any response within 1200 ms after stimulus presentation 

was recorded as a false alarm (i.e., a failure to inhibit the response). Each trial ended after 

1700 ms. The inter-trial interval (ITI) was jittered between 1100 and 1600 ms. The experiment 

consisted of 720 trials (70% Go and 30% NoGo trials), of which 50% were congruent trials 

and 50% were incongruent trials. The test was divided into six equally sized blocks, and trial 

types were equally distributed across blocks. Before the experiment, each participant 

completed a practice block of 40 trials. 
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Figure 1. The Simon Go/Nogo task with all possible stimulus configurations. (A) The Simon Go/Nogo 

task with all possible stimulus configurations. The upper panel displays stimuli in the Go condition. The 

upper left panel shows stimuli (i.e., ‘A’) which require a left-hand response, whereas the upper right 

panel shows stimuli (i.e., ‘B’) which require a right-hand response. The lower panel illustrates stimuli 

(i.e., “A” and “B”) that require no response. (B) The schematic of a trial. Each trial began with the letter 

stimuli presented for 200 ms. In Go trials, a correct response was recorded if participants responded 

within 250-1200 ms after stimulus presentation. In NoGo trials, any response within 1200 ms after 

stimulus presentation was recorded as a false alarm. A trial ended after 1700 ms, followed by the ITI 

jittered between 1100 and 1600 ms.  

 

As behavioral parameters in this Simon Go/Nogo task, we calculated the rate of false 

alarms (FA, i.e., frequency of responding to a Nogo stimulus), the proportion of correct 
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responses in Go trials (i.e., hit rate), and reaction times in correct hits (i.e., hit RT) as behavior 

parameters of interest. 
 

EEG recording and processing 

The data were recorded at the Cognitive Neurophysiology Lab at TU Dresden, Germany. 

During the Simon-Go/Nogo task, the EEG activity was recorded using QuickAmp and 

BrainAmp amplifiers (Brain Products GmbH, Gilching, Germany) from 60 equidistantly 

positioned Ag/AgCl electrodes. All electrodes were referenced to Fpz. The data were recorded 

at a sampling rate of 500 Hz. Electrode impedances were kept below 5 kΩ. The raw EEG data 

were preprocessed using the “Automagic” toolbox (Pedroni et al., 2019) and EEGLAB 

(Delorme & Makeig, 2004) on Matlab R2021b (The MathWorks Corp.). First, the raw EEG 

data were down-sampled to 256 Hz. Afterward, flat channels were removed, and EEG data 

were re-referenced to average reference. Subsequently, the PREP preprocessing pipeline 

(Bigdely-Shamlo et al., 2015) was applied to remove line-noise at 50 Hz and calculate a robust 

average reference after removing bad channels. The EEGLAB clean_rawdata() pipeline was 

used to detrend the EEG data using an IIR high-pass filter of 0.5 Hz (slope 80 dB). Flat-line, 

noisy, and outlier channels were detected and removed. Epochs with extremely strong power 

(>15 standard deviations relative to calibration data) were reconstructed using Artifact 

Subspace Reconstruction (ASR; burst criterion: 15) (Mullen et al., 2013). Time windows that 

could not be reconstructed were removed. This is followed by a low-pass filter of 40 Hz (sinc 

FIR filter; order: 86) (Widmann et al., 2015). EOG artifacts were removed using a subtraction 

method (Parra et al., 2005). Muscle and remaining eye artifacts were classified and removed 

by an independent component analysis (ICA) based Multiple Artifacts Rejection Algorithm 

(MARS) (Winkler et al., 2011, 2014). Components containing cardiac artifacts were identified 

using ICLable (Pion-Tonachini et al., 2019) and removed consecutively. Finally, all removed 

channels were interpolated using a spherical method. 

After preprocessing, the EEG data were segmented and locked to the onset of 

stimulus. Each segment started at 2000 ms prior to the stimulus and ended at 2000 ms after 

the stimulus. Segments were built for Go congruent, Go incongruent, Nogo congruent, and 

Nogo incongruent conditions, separately. Only correct Go and Nogo trials were analyzed 

further. An automated artifact rejection procedure was applied in the segmented data to remove 
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trials with residual artifacts (rejection criteria: maximal value difference of 200 μV in a 200 ms 

interval; activity below 0.5 μV in a 100 ms period). Afterward, a baseline correction was 

performed using EEG data from -200 to 0 ms (i.e., stimulus onset).  

 

Parameterization of the spectral data 

We used EEG data in a time window from 0 to 1000 ms after the stimulus presentation as the 

within-trial period and a time window from -1000 to 0 ms as the pre-trial period. The power 

spectral density (PSD) for each frequency was calculated using Welch’s method (0.25s 

Hamming window, 50% overlap) (Welch, 1967). The calculation was implemented in Matlab 

using the ‘pwelch’ function. The PSDs were estimated separately for each participant, 

electrode, condition, and the pre-trial/within-trial period. 

To estimate aperiodic activity, the Python-based FOOOF toolbox (version 1.0.0; 

https://github.com/fooof-tools/fooof) was applied to parameterize the power spectra by 

decomposing the aperiodic and periodic components of the signal (for a detailed overview of 

this approach see: Donoghue et al., 2020) as done in previous work (Adelhöfer, Paulus, et al., 

2021). The FOOOF algorithm conceptualizes the power spectrum as a linear combination of 

aperiodic activity [L(f)] and periodic (oscillatory) activity [Gn(f)]. Precisely, the model of the 

power spectrum can be written as: 

𝑃𝑆𝐷(𝑓) = 𝐿(𝑓) +	/𝐺'(𝑓)
'

 

where f represents the frequency. The PSD is the linear combination of the aperiodic 

component, L(f), and n total Gaussians. The aperiodic component is fit as a function across the 

entire fitted range of the spectrum. The function for the aperiodic component, L(f), is described 

as: 

𝐿(𝑓) = 𝑏 − log[𝑓#] 

where b is the aperiodic offset reflecting the broadband power shift, and x is the aperiodic 

exponent which is equivalent to the slope of the line fitted to the power spectrum in a log-log 

space. The periodic (oscillatory) components are characterized as frequency regions of power 

over and above the aperiodic component. Each oscillatory component (also referred to as 

‘peak’) is modeled with a Gaussian and characterized by three parameters that define a 

Gaussian. Each Gaussian fit can be modeled as: 
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𝐺'(𝑓) = 𝑎'exp <−	
(𝑓 −	µ'))

2𝜎')
@ 

where an is the amplitude, µn is the center frequency, and σn is the bandwidth of each 

component. 

In order to obtain a reliable estimation of the aperiodic component of data, the power 

spectra data were fit over a broad range of frequency between 1 to 40 Hz, which is consistent 

with prior studies (Hill et al., 2022; Ostlund et al., 2021) and recommendations in the FOOOF 

documentation. The FOOOF algorithm used the settings {aperiodic mode = ‘fixed’, peak 

width limits = [1, 8], maximum number of peaks = 8, minimum peak height = 0.05, default 

settings otherwise}. The power spectra were fit for each electrode, each participant, each task 

condition, and each period. The average R2 of spectral fits for all participants was 0.98 (n = 

191). 

 

Aperiodic exponent and offset 

The aperiodic exponent and offset were extracted from the aperiodic-only signal for each 

participant and for each EEG electrode. Due to the absence of priori assumptions regarding 

the scalp distribution of the aperiodic neural activity, we adopted the “global” exponent and 

offset in the statistical analysis (Hill et al., 2022). The “global” exponent and offset were 

obtained by averaging the exponent and offset values across 60 electrodes for each participant. 

To analyze the scalp distribution of the aperiodic components, we performed an additional 

cluster-based permutation test where significant results were reached at the global level. The 

non-parametric cluster-based permutation test was proposed to localize effects in space, 

frequency, and time,  while correcting the multiple comparison problem in high-dimensional 

EEG/MEG data (see Maris & Oostenveld, 2007 for details). Here, we applied this approach to 

identify electrodes that differ between conditions over participants. Clusters were formed 

based on the adjacency of thresholded sample-level F-values (α = 0.005). The sum of F-values 

in a cluster was used as the cluster-level statistics. Significant clusters were obtained based on 

1,000 Monte Carlo random sampling using a 0.05 significance level. 

 

 

 



Aperiodic Neural Activity Reflects Metacontrol 

 59 

Statistical analysis 

The aperiodic exponent and offset were analyzed using two-way repeated measures ANOVAs. 

The factor “Go/Nogo” (Go versus Nogo) and factor “congruency” (congruent versus 

incongruent) were used as within-participants factors. Simple effect analyses were performed 

where the interaction effect is significant. All post hoc tests were Bonferroni-corrected. 

Wilcoxon tests were used to evaluate differences in behavioral performance between task 

conditions, as our behavioral data (i.e., the hit rate and hit RT in Go trials, and false alarm rate 

in Nogo trials) were not normally distributed. Paired-sample t-tests were employed to test 

differences in aperiodic activity between the pre-trial and within-trial period. All t-tests are 

two-tailed. Bayesian statistics were reported for all ANOVAs, Wilcoxon tests, and paired-

sample t-tests. In ANOVAs, the inclusion Bayesian factor (BF*'+,) was calculated to assess the 

evidence in the data for including a predictor (Bergh et al., 2020, 2022). For the Wilcoxon test 

and paired-sample t-test, the BF10 was used to quantify the evidence supporting the alternative 

hypothesis over the null hypothesis. Statistical analyses were performed using SPSS and JASP 

packages. 

 

Results 

Behavior results 

The descriptive results of behavioral data are illustrated in Figure 2. Wilcoxon tests showed 

that, within Go trials, the rate of correct responses (hit rate) in the congruent condition (0.96 

± 0.03) was significantly higher than the incongruent condition (0.95 ± 0.05) (Z = -6.00, p < 

0.001; BF10 = 53513.87). Reaction times (RTs) in the congruent condition (511 ± 81ms) were 

significantly faster than in the incongruent condition (529 ± 77ms) (Z = -9.76, p < 0.001; BF10 

= 5.63×106), indicating a robust Simon effect. The false alarm rate was significantly higher in 

the congruent Nogo condition (0.13 ± 0.12), as compared to the incongruent Nogo condition 

(0.10 ± 0.10) (Z = -8.81, p < 0.001; BF10 = 9.72×106). 
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Figure 2. Descriptive statistics for behavioral data. (A) shows the hit rate in Go trials; (B) displays the 

mean reaction time (RT) in Go trials; (C) depicts the false alarm rate in Nogo trials. Each violin plot 

contains a boxplot. The black dot within the box represents the median; the box in the center represents 

the interquartile range; the vertical black line depicts the remaining distribution, except for any data 

points identified as "outliers" (i.e., those more than 1.5 standard deviations above or below the median). 

 

Aperiodic exponent and offset results in the pre-trial and within-trial period 

Figure 3 shows the PSD in a log-log space at the frequency from 1 Hz to 40 Hz for different 

experimental conditions in the within-trial period and pre-trial period, separately. PSDs were 

averaged across electrodes and participants.  
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Figure 3. Log-log transformed power spectral densities averaged across electrodes and participants. (A) 

shows PSDs in the within-trial period; (B) displays PSDs in the pre-trial period. The left figure showed 

PSDs for congruent trials, and the right figure displayed PSDs for incongruent trials.  

 

In the pre-trial period, two-way repeated measures ANOVAs revealed no significant 

main effect or interaction effect for either the aperiodic exponent or the aperiodic offset (all 

p > 0.05, 𝐵𝐹-./0 < 1). 

In the within-trial period, the two-way repeated measures ANOVA for the aperiodic 

exponent revealed a significant Go/Nogo main effect (F(1,190) = 37.64, p < 0.001, 𝜂1) = 0.17; 

𝐵𝐹-./0 = 2.09×106). The aperiodic exponent in the Nogo condition (1.15 ± 0.13) was higher 

than the Go condition (1.14 ± 0.13), thus indicating more aperiodic activity in the Nogo 

condition than the Go condition. A significant interaction between Go/Nogo and congruency 

was evident (F(1,190) = 8.98, p = 0.003, 𝜂1) = 0.05; 𝐵𝐹-./0 = 13.53). The simple effect analysis 

showed that, within Go trials, the aperiodic exponent in the incongruent condition (1.14 ± 0.13) 

was significantly higher than the congruent condition (1.14 ± 0.13) (p < 0.001; BF10 = 193.72). 
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Within Nogo trials, no significant difference was found in the aperiodic exponent between the 

congruent and incongruent condition (p > 0.05; BF10 = 0.04) (see Figure 4A and B). 

The analysis for the within-trial aperiodic offset showed a significant Go/Nogo main 

effect (F(1,190) = 60.56, p < 0.001, 𝜂1) = 0.24; 𝐵𝐹-./0 = 1.43×1010). The aperiodic offset in the 

Nogo condition (0.61 ± 0.22) was higher than the Go condition (0.59 ± 0.21). A significant 

interaction effect between Go/Nogo and congruency was also found (F(1,190) = 7.30, p = 

0.008, 𝜂1) = 0.04; 𝐵𝐹-./0 = 5.52). More precisely, within the Go condition, the aperiodic offset 

was significantly higher in incongruent trials (0.59 ± 0.21) compared with congruent trials 

(0.58 ± 0.21) (p = 0.001; BF10 = 51.12). No significant difference was found between 

congruent and incongruent trials in offset in Nogo condition (p > 0.05; BF10 = 0.05) (see Figure 

4C and D).  
 

 
 

Figure 4. Descriptive results for the within-trial aperiodic exponent and offset in different Simon 

Go/Nogo conditions. (A) and (B) show the violin plot and line plot for the aperiodic exponent in different 

task conditions; (C) and (D) reveal the violin plot and line plot for the aperiodic offset in different 
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experimental conditions. Each violin plot contains a boxplot. The horizontal line within the box 

represents the median; the box in the center represents the interquartile range; the vertical black line 

depicts the remaining distribution, except for any data points identified as "outliers" (i.e., those more 

than 1.5 standard deviations above or below the median). In line plots, error bars represent the standard 

error of the mean. 

 

The above analyses were based on the aperiodic exponent and offset averaged across 

all electrodes. To explore the scalp distribution of aperiodic parameters, we performed a 

cluster-based permutation test to detect electrodes contributing to significant differences 

between task conditions. The analysis was performed for the within-trial period only, as no 

difference was identified in the pre-trial period at the “global” level. The scalp topography for 

the aperiodic exponent and offset is shown in Figure 5. For the aperiodic exponent parameter, 

the “Go/Nogo × congruency” interaction was evident at FC2, FC3, FC4, Cz, C4, and CP2. The 

significant “Go/Nogo × congruency” interaction effect in the offset parameter was observed 

at FC1, FC2, CZ, and CP2. We found a broad range of electrodes across frontal, central, 

temporal, posterior, and occipital areas where aperiodic exponent and offset in Go trials were 

significantly different with them in Nogo trials. Vastly evident differences were observed in 

frontal-central and posterior regions.  
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Figure 5. Scalp distributions of the aperiodic exponent and offset in the within-trial period. Scalp 

topographies in the upper row show electrode sites with significant “Go/Nogo × congruency” interaction 

effect (the upper left figure) and Go/Nogo main effect (the upper right figure) in the aperiodic exponent. 

Scalp topographies in the lower row show electrode sites with significant “Go/Nogo × congruency” 

interaction effect (the lower left graph) and Go/Nogo effect (the lower right graph) in the aperiodic offset. 

Labels are shown for significant clusters of electrodes. The colors denote cluster-level summed F-values.  

 

The comparison of aperiodic activity in pre-trial and within-trial period 

To test the difference in aperiodic activity between the pre-trial and within-trial time window, 

we performed paired-sample t-tests for the aperiodic exponent and the aperiodic offset 

separately. Results reflected significantly higher aperiodic activity in the within-trial period 

compared to the pre-trial period in all task conditions (all p < 0.001, BF10 ≥ 2.41 × 1064) (see 

Table 1), indicating increased aperiodic neural activity for task execution (i.e., in the within-

trial period).  
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Discussion 

The main aim of the present study was to test whether the broadband aperiodic activity in the 

EEG power spectrum is associated with demand-specific biases of metacontrol toward 

persistence or flexibility. To achieve this, we tested the aperiodic activity in the EEG power 

spectrum during a Simon Go/Nogo task in the pre-trial period and within-trial period, 

separately. Using the cluster-based permutation test, we then examined the scalp distribution 

for aperiodic exponent and offset parameters. Several key findings emerged from this study: 

First, in the within-trial period, the aperiodic exponent and offset were higher in the Nogo 

condition than in the Go condition. The aperiodic activity in incongruent trials was higher than 

in congruent trials in the Go condition; however, the difference failed to reach significance in 

the Nogo condition. In contrast, in the pre-trial period, no significant difference was detected 

for aperiodic activity between experimental conditions. Second, we found significant 

Go/Nogo effects in the aperiodic exponent and offset across a number of electrodes over the 

scalp, and Go/Nogo × congruency effects in several frontal and central electrodes. In addition, 

we observed increased aperiodic activity across task conditions in the within-trial period, as 

compared with the pre-trial period.  

Importantly, our findings suggest that aperiodic activity measured in the EEG power 

spectrum reflects metacontrol states or, more specifically, dynamic adjustments of metacontrol 

states to task demands. More concretely, in the within-trial period, we observed increased 

aperiodic exponent and offset values in the Nogo condition than in the Go condition. As 

explained above, the infrequent Nogo trials should have induced more response conflict, 

which would need to be overcome with a stronger persistence bias in metacontrol (Hommel, 

2015). In contrast, in Go trials, the stimulus conditions unequivocally support the correct 

response, so that participants can afford a more flexible metacontrol state. Another indication 

that metacontrol is reflected in aperiodic activity is that, in the Go condition, the aperiodic 

exponent and offset values were higher in (persistence-heavy) incongruent trials than in 

(flexibility-friendly) congruent trials. As discussed above, incongruent trials can be assumed 

to induce more response conflict. Given that both responses are legal responses in the task, 

this conflict can only be overcome by relying on goal-information, which in turn implies a 

stronger metacontrol bias toward persistence. Taken together, these findings suggest that 
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aperiodic activity increases during persistence-heavy processing, but decreases during 

flexibility-heavy processing.  

Several studies have demonstrated that aperiodic activity is modulated by the 

behavioral state (Podvalny et al., 2015), task performance (He et al., 2010), and arousal level 

(Lendner et al., 2020). A recent study by Pertermann et al. (2019a, b) who recorded EEG 

activity during the motor response inhibition task, found a steeper “1/f slope” (i.e., higher 

aperiodic exponent) when inhibiting a prepotent response. Our results extend previous 

findings by demonstrating that aperiodic activity reflects the demand-specific metacontrol 

state, with increased values during persistence-heavy processing and reduced values during 

flexibility-heavy processing. It is also noteworthy that the main effect or interaction effect did 

not reach significance in the pre-trial period (i.e., before the stimulus presentation). This 

observation may suggest that the modulation of aperiodic activity is reactive and stimulus-

induced—which would fit with the counter-intuitive idea that control operations may be driven 

by the environment (Dignath et al., 2019; Waszak et al., 2003). Based on MEG data, recent 

research has shown that aperiodic activity demonstrates less significant task-related changes 

than oscillatory activity, indicating a more stable aspect of brain activity (Wainio-Theberge et 

al., 2022). Our results expand upon prior findings and indicate that, while aperiodic activity 

can serve as a stable background for neural activity, it also demonstrates the capacity to adapt 

to changing cognitive demands. Furthermore, the observation of higher aperiodic activity in 

the within-trial period than in the pre-trial period indicates a tight connection between 

aperiodic activity and metacontrol states, in keeping with recent findings that the steepness of 

1/f activity increases after auditory stimulation (Gyurkovics et al., 2022). 

Although the precise neurophysiological and cognitive mechanisms underlying 

aperiodic activity remain under discussion, several potential explanations for the aperiodic 

exponent in EEG signals have been proposed. The “neural noise” account assumes that 

aperiodic exponent in EEG signals is a measure of the level of noise in the underlying neural 

circuits (Dave et al., 2018; Gao, 2016; He et al., 2010; Voytek et al., 2015; Voytek & Knight, 

2015). Synchronized neural spiking activity results in a steeper 1/f slope and is associated with 

an increased signal-to-noise ratio (SNR) in the nervous system, whereas asynchronous spiking 

activity gives rise to a flatter 1/f slope and decreased SNR (Podvalny et al., 2015; Voytek et 

al., 2015; Voytek & Knight, 2015). The neural noise account of aperiodic activity has been 
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extensively employed to gain a better understanding of clinical phenomena, such as 

schizophrenia (Wolff et al., 2022), Tourette syndrome (Adelhöfer, Paulus, et al., 2021; 

Münchau et al., 2021), ADHD (Ostlund et al., 2021), and age-related cognitive decline (Dave 

et al., 2018; Voytek et al., 2015). Recently, researchers have considered that 1/f slope in EEG 

signals may serve as a marker of “neural variability”, which enables the brain to dynamically 

adjust its neural activity to meet the demands of a given task or situation (Waschke, 

Kloosterman, et al., 2021). Hence, our findings may indicate that different metacontrol states 

manifest in altered levels of neural variability, with decreased neural noise/variability during 

persistence-heavy and increased neural noise/variability during flexibility-heavy processing.  

The potential mechanisms underlying the link between aperiodic activity and 

metacontrol are not yet fully understood. One possible account is that neural variability may 

be related to the dynamics of cortical network states, which could be associated with the 

representation of goal- and task-related information (Armbruster-Genç et al., 2016; Deco, 

Rolls, et al., 2009; Nogueira et al., 2018; Tsujimoto et al., 2008). In persistence-heavy 

processing, the system needs to maintain a stable representation of task goals to focus on task-

relevant stimuli and ignore task-irrelevant stimuli (Hommel, 2015). The sustained 

representation of task goals may require fewer transitions between cortical network states, 

reflected by lower neural variability (Armbruster-Genç et al., 2016; Durstewitz & Seamans, 

2008; Tsujimoto et al., 2008). Therefore, lower aperiodic activity may be associated with more 

stable cortical network states and sustained representations of the task goal. However, in 

flexibility-heavy processing, the system is less bounded by the task goal and sensitive to task-

irrelevant stimuli (Hommel, 2015). This may require/result in more frequent and easier 

transitions between cortical network states (Armbruster-Genç et al., 2016; Durstewitz & 

Seamans, 2008; Tsujimoto et al., 2008). Thus, higher neural variability may be associated with 

easier switches between cortical network states and unstable representations of goal-

information. However, this interpretation is currently speculative and requires further research 

in the future. 

In a broader sense, the link between neural noise/aperiodic activity and metacontrol 

is consistent with previous fMRI findings showing that higher levels of brain variability (i.e., 

high brain noise) facilitate cognitive flexibility, but impair cognitive stability (Armbruster-

Genç et al., 2016). Recent work found that higher levels of resting-state fMRI signal variability 
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are associated with increased flexibility bias of metacontrol (or decreased persistence bias of 

metacontrol), which also points to an association between neural “noise” and individual 

metacontrol policies (Zhang et al., 2022). The present findings provide evidence for an 

interesting connection between neural noise in terms of EEG signal and cognitive metacontrol 

states.  

Moreover, physiological evidence has shown that the balance between excitation and 

inhibition (E/I) can be estimated from the exponent of the EEG power spectrum (Gao et al. 

2017; Lombardi et al. 2017). A flatter exponent is assumed to be driven by an increased E/I 

ratio, whereas a steeper exponent is assumed to be induced by a decreased E/I ratio (Gao et 

al., 2017; Lombardi et al., 2017). The association between E/I balance and aperiodic activity 

has been implicated in several studies. For example, Lendner and colleagues discovered that 

aperiodic exponent can distinguish arousal levels, and higher values found in REM sleep than 

in NREM sleep, and higher values in NREM sleep than during wakefulness (Lendner et al., 

2020). These findings align with in vivo calcium imaging evidence in mice that indicates a 

shift toward predominant inhibition in cortical networks during REM sleep (Niethard et al., 

2016). More recently, a study revealed that aperiodic exponent increased under propofol 

anesthesia (which results in a relative increase of inhibition), and decreased under ketamine 

anesthesia (which results in a relative increase of excitation) (Waschke, Donoghue, et al., 

2021). The present findings may indicate a decreased E/I ratio during persistence-heavy 

processing, whereas an increased E/I ratio during flexibility-heavy processing. Our results 

suggest that the state of metacontrol might be associated with a shift toward increased 

inhibitory tone or toward increased excitatory tone within neural circuits. Even though the 

aperiodic exponent has been demonstrated to approximate E/I balance (Gao et al., 2017; 

Lombardi et al., 2017), evidence for joint changes between E/I balance, aperiodic variability, 

and behavior is still lacking.  

Future work may test whether control-related changes in aperiodic activity affect 

behavior in a direct or indirect manner. The scalp distribution results indicate that the 

difference in aperiodic activity between the Go and Nogo condition is relatively global, given 

that a broad range of electrodes on the scalp showed a significant Go/Nogo effect for both 

exponent and offset. In contrast, only a few electrodes in the frontal and central scalp 

contribute to the congruency effect in the Go condition, indicating a region-specific 
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congruency effect. The finding that aperiodic offset reflects metacontrol states also warrants 

further investigation. Evidence from humans and macaques demonstrated that broadband 

power shifts are positively correlated to neuronal population spiking (Manning et al., 2009; 

Ray & Maunsell, 2011). Thus, our present observation of an enlargement in aperiodic offset 

during persistence-heavy processing and a reduction during flexibility-heavy processing could 

be tentatively interpreted to reflect control-state dependent changes in the spiking rates of 

cortical neurons. The current study opens a window on the role of aperiodic activity in 

metacontrol, but the precise mechanisms underlying this association remain to be determined.




