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Abstract

Background and 
Aims

Patients with repaired tetralogy of Fallot remain at risk of life-threatening ventricular tachycardia related to slow-conducting 
anatomical isthmuses (SCAIs). Preventive ablation of SCAI identified by invasive electroanatomical mapping is increasingly 
performed. This study aimed to non-invasively identify SCAI using 3D late gadolinium enhancement cardiac magnetic res-
onance (3D-LGE-CMR).

Methods Consecutive tetralogy of Fallot patients who underwent right ventricular electroanatomical mapping (RV-EAM) and 3D- 
LGE-CMR were included. High signal intensity threshold for abnormal myocardium was determined based on direct 
comparison of bipolar voltages and signal intensity by co-registration of RV-EAM with 3D-LGE-CMR. The diagnostic per-
formance of 3D-LGE-CMR to non-invasively identify SCAI was determined, validated in a second cohort, and compared 
with the discriminative ability of proposed risk scores.

Results The derivation cohort consisted of 48 (34 ± 16 years) and the validation cohort of 53 patients (36 ± 18 years). In the der-
ivation cohort, 78 of 107 anatomical isthmuses (AIs) identified by EAM were normal-conducting AI, 22 were SCAI, and 7 
blocked AI. High signal intensity threshold was 42% of the maximal signal intensity. The sensitivity and specificity of 3D-LGE- 
CMR for identifying SCAI or blocked AI were 100% and 90%, respectively. In the validation cohort, 85 of 124 AIs were 
normal-conducting AI, 36 were SCAI, and 3 blocked AI. The sensitivity and specificity of 3D-LGE-CMR were 95% and 
91%, respectively. All risk scores showed an at best modest performance to identify SCAI (area under the curve ≤ .68).

Conclusions 3D late gadolinium enhancement cardiac magnetic resonance can identify SCAI with excellent accuracy and may refine non- 
invasive risk stratification and patient selection for invasive EAM in tetralogy of Fallot.

* Corresponding author. Tel: +31715262020, Email: K.Zeppenfeld@lumc.nl
© The Author(s) 2024. Published by Oxford University Press on behalf of the European Society of Cardiology. All rights reserved. For commercial re-use, please contact reprints@oup.com for 
reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information 
please contact journals.permissions@oup.com.
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Structured Graphical Abstract

In repaired tetralogy of Fallot (rTOF), identification of slow conducting anatomical isthmus (SCAI), which predisposes to severe
ventricular arrhythmias and sudden death, requires invasive electroanatomical mapping (EAM). 3D late gadolinium enhancement cardiac
magnetic resonance (3D-LGE-CMR) may identify SCAI, contributing to individualized risk stratification, treatment planning, and
non-invasive follow-up.

In the derivation cohort, 3D-LGE-CMR identified SCAI with excellent sensitivity and specificity (100% and 90%, respectively), which was 
confirmed in the validation cohort (95% and 91%, respectively). 

3D-LGE-CMR can identify SCAI with excellent accuracy, reducing the need for invasive EAM procedures by about 70%. Thus, 
3D-LGE-CMR may improve patient selection for invasive EAM as compared to previously proposed risk scores, characterized by lower 
predictive accuracy.
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Consecutive rTOF patients with EAM and 3D-LGE-CMR at two centers were included. In the derivation cohort, 3D-LGE-CMR identified SCAI with 
excellent sensitivity and specificity, which was confirmed in the validation cohort. The occurrence of spontaneous VT depends on the interplay be-
tween a pre-existing substrate, initiating triggers and modulating factors (triangle of arrhythmogenesis). 3D-LGE-CMR can significantly reduce the 
need for diagnostic EAM procedures. AI, anatomical isthmus; BNP, b-type natriuretic peptide; EAM, electroanatomical mapping; EDV, end-diastolic 
volume; EF, ejection fraction; HSIt, High signal intensity threshold; LGE-CMR, late gadolinium enhancement cardiac magnetic resonance; PVC, pre-
mature ventricular complex; PVO2, peak oxygen uptake; PVR, pulmonary valve replacement; rTOF, repaired tetralogy of Fallot; RVOT, right ven-
tricular outflow tract; RVSP, right ventricular systolic pressure; SCAI, slow conducting anatomical isthmus; SI, signal intensity; VT, ventricular 
tachycardia.

Keywords Tetralogy of Fallot • Ventricular tachycardia • Cardiac magnetic resonance • Anatomical isthmus • Risk stratification

Introduction
Advances in surgical repair and medical treatment have improved sur-
vival in patients with tetralogy of Fallot (TOF).1,2 The risk of sudden car-
diac death (SCD) due to sustained monomorphic ventricular 
tachycardia (SMVT) remains of concern.

The vast majority of documented ventricular arrhythmias (VAs) in 
repaired TOF (rTOF) are SMVT due to re-entry. The critical compo-
nent of the re-entry circuit is typically located within anatomically de-
fined isthmuses (AIs) bordered by unexcitable structures such as 
surgical scars, patches, and valve annuli. While AIs are present in almost 
all rTOF patients, only those with abnormal myocardium leading to 
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slow-conducting properties during baseline rhythm [slow-conducting 
AI (SCAI), conduction velocity (CV) < .5 m/s during sinus rhythm 
(SR)] are arrhythmogenic and play a key role for re-entry SMVT.3–6

Patients without SCAI or after successful transection of SCAI by 
catheter ablation have excellent ventricular tachycardia (VT)-free sur-
vival,7 while patients with a SCAI not successfully ablated or not tar-
geted remain at risk for SMVT.5 Of note, the abnormal myocardium 
of SCAI may not be longer accessible by catheter ablation after surgical 
or percutaneous pulmonary valve replacement (PVR),8–10 accordingly 
preventive ablation of SCAI before PVR is increasingly performed.10–15

Time- and disease-dependent modulating factors, including age and 
residual or new haemodynamical lesions, and initiating triggers may 
contribute to arrhythmogenesis and the occurrence of spontaneous 
SMVT in rTOF patients with a pre-existing SCAI (triangle of arrhythmo-
genesis; Figure 1). This interaction may further support preventive abla-
tion of SCAI before spontaneous VT has occurred.10–13,15–17 Several 
risk scores have been developed to predict adverse outcome in 
rTOF,18–21 while their performance to predict the presence of SCAI 
has not been evaluated. Currently, the identification of SCAI requires 
invasive electroanatomical mapping (EAM). As slow conduction may 
develop over time, repeated EAM may be required.

Compared with 2D late gadolinium enhancement cardiac magnetic res-
onance (LGE-CMR), 3D-LGE-CMR allows accurate visualization of mor-
phologically complex parts of the heart such as the right ventricular (RV) 
outflow tract (RVOT) with high spatial resolution.22 Non-invasive identifi-
cation of SCAI by LGE-CMR has not been achieved but may significantly 
contribute to individualized risk stratification and non-invasive follow-up.

In the present study, we aimed to (i) determine rTOF-specific signal 
intensity (SI) threshold values to identify abnormal myocardium by 3D 
registration of LGE-CMR and EAM; (ii) assess the performance of 
3D-LGE-CMR to non-invasively identify SCAI; and (iii) compare this 
with the performance of previously proposed risk scores18–21 to non- 
invasively identify SCAI.

Methods
Study population and study design
Consecutive patients with rTOF who underwent RV-EAM and 3D-LGE-CMR 
at Leiden University Medical Center (LUMC), the Netherlands (September 

2012 to June 2023, n = 61) and Bordeaux University Hospital (CHU), 
Bordeaux, France (August 2010 to October 2018, n = 40) were included. 
Electroanatomical mapping was performed before ablation in patients present-
ing with VT or out-of-hospital cardiac arrest, prior to planned surgical PVR, or 
as part of risk stratification according to the standard clinical protocol.5 Patients 
were assigned to the derivation or validation cohort according to procedure 
date and including institution (see Supplementary data online, Method S1).

All patients provided informed consent for the procedure. The protocol ap-
plies to the Declaration of Helsinki and was approved by the internal review 
board of the cardiology department in the LUMC. For the retrospective part, 
the Medical Ethics Committee (METC Leiden Den Haag Delft) waived the 
need for written informed consent, as all data were acquired according to routine 
clinical care. The prospective registry was approved by the METC (G21.137).

Baseline evaluation
A comprehensive clinical evaluation was performed before EAM. Medical re-
cords were reviewed for the details of prior surgeries and for documented 
VA. QRS duration, morphology, and fragmented QRS were assessed on non- 
paced 12-lead electrocardiographies. Fragmented QRS was defined as previous-
ly described.20 Blood sampling for N-terminal pro-B-type natriuretic peptide 
and cardiopulmonary exercise testing were performed if clinically indicated. 
Peak oxygen uptake was included when the respiratory exchange ratio was >1.

Biventricular systolic function and pulmonary valve insufficiency were 
measured with CMR. The left and RV functions were classified as severely 
reduced (<30%), moderately reduced (30%–39%), mildly reduced (40%– 
54%), or good (≥55%).7 Right ventricular systolic pressure (RVSP) and 
left ventricular (LV) diastolic dysfunction (LVDD) were assessed by trans-
thoracic echocardiography, and LVDD was defined as mitral lateral e′ <  
10 cm/s and E/e′ ratio ≥ 9.23,24

3D late gadolinium enhancement cardiac 
magnetic resonance acquisition and processing
Cardiac magnetic resonance examinations in the LUMC were performed 
on a 1.5 T Gyroscan ACS-NT/Intera MR system or on a 3.0 T Ingenia 
MR system (Philips Medical Systems, Best, the Netherlands).25 Following 
a standardized clinical protocol including cine magnetic resonance imaging 
in long axis (two- and four-chamber views) and short axis, the gadolinium- 
based contrast agent (Dotarem, Guerbet, Villepinte, France) was given 
intravenously (dosage, .15 mmol/kg). Ten minutes after contrast adminis-
tration, a 2D gradient-echo T1-weighted sequence was used to visually 
determine the optimal inversion time (T1) of healthy myocardium. Ap-
proximately 10–15 min after administration of contrast, a whole heart 

Figure 1 Triangle of arrhythmogenesis for monomorphic ventricular tachycardia in patients with repaired tetralogy of Fallot. BNP, B-type natriuretic 
peptide; EDV, end-diastolic volume; LGE, late gadolinium enhancement; LVEF, left ventricular ejection fraction; PVC, premature ventricular complex; 
PVO2, peak oxygen uptake; PVR, pulmonary valve replacement; RVEF, right ventricular ejection fraction; RVOT, right ventricular outflow tract; RVSP, 
right ventricular systolic pressure
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high spatial resolution 3D gradient echo (T1 fast field echo) phase-sensitive 
inversion recovery (PSIR) sequence was obtained during free breathing with 
diaphragmatic pencil-beam navigation (see Supplementary data online, 
Method S2). Typical parameters were as follows: repetition time 4.15 ms; 
echo time 2.02 ms; the optimal inversion time was set at the null point plus 
50 ms and ranged from 250 to 400 ms; flip angle 10°; field of view 350 ×  
350 mm; matrix size 208 × 208; acquired pixel size 1.68 × 1.68 mm; recon-
structed pixel size .91 × .91 mm; 71 transverse slices with 3.4 mm thickness 
and slice gap −1.7 mm; and sensitivity encoding factor 3. Immediately after 
free-breathing LGE-CMR, breath hold was obtained using a 3D gradient 
echo PSIR sequence in short-axis slice orientation in two equal stacks during 
two breath holds of 10- to 20-s duration. The detailed description of the MRI 
protocol in CHU can be found in Supplementary data online, Method S3.

Risk scores
Five previously published risk scores, which included18,21 or not included LGE- 
CMR parameters19,20 to predict adverse outcomes in patients with rTOF, 
were calculated for each patient (see Supplementary data online, Method S4).

Electrophysiology study and 
electroanatomical mapping
Programmed electrical stimulation (PES) was performed from the RV apex 
and the RVOT, at or adjacent to the infundibular septum with up to four 
drive-cycle lengths (CLs: 600, 500, 400, and 350 ms) and up to four extra 
stimuli, until the ventricular effective refractory period or a minimum coup-
ling interval of 200 ms (180 ms in patients ≤ 18 years old) was reached. The 
protocol was repeated after administration of isoproterenol if necessary. 
Sustained monomorphic ventricular tachycardia was defined as VT with a 
similar QRS configuration from beat to beat, lasting ≥30 s or causing 
haemodynamic compromise requiring termination. The detailed methods 
to obtain a 3D reconstruction of all four AIs and to target the VT-related 
isthmus by ablation have been previously reported.3,5,11,17,26 The potential 
four AIs and their anatomical boundaries are illustrated in Figure 2A.

Briefly, 3D-RV (and LV and aorta if necessary) electroanatomical bipolar 
voltage (BV) mapping during baseline rhythm was performed using a 
3.5 mm irrigated-tip catheter (NaviStar Thermocool, Smarttouch, Biosense 
Webster Inc., Irvine, CA, USA) and long steerable sheaths. The aorta and 
LV were approached by retrograde access. The locations of the tricuspid an-
nulus (TA) and pulmonary annulus (PA) and unexcitable tissue (patch mater-
ial) were determined by the local electrograms (EGMs) and/or non-capturing 
by pacing at 10 mA/2 ms.

After completing RV mapping, the entrance and exit sites of the AI were 
determined to measure AI length and to determine the conduction time 
through each AI. For this purpose, sites with the first normal configurated bi-
polar EGM (≤4 deflections without fractionations or late components, typic-
ally with BV > 1.5 mV) at each site of an AI were selected, and the local 
activation times at these sites were assessed based on the downstroke of 
the corresponding unipolar EGM. Anatomical isthmus length and conduction 
time were determined by measuring the distance using the software of the 3D 
mapping system (CARTO 3™) and by calculating the difference in local acti-
vation time between entrance and exit sites, respectively (Figure 2B and E).5 In 
cases with QRS duration < 150 ms and/or colliding activation wavefronts 
within an AI during non-paced rhythm, the RV was re-mapped during pacing 
from the septal or lateral site of the isthmus just above SR rate to allow correct 
determination of the conduction time.27 If the calculated CV (distance/time) 
across the AI was <.5 m/s, the AI was considered SCAI,5 and an AI with 
CV ≥ .5 m/s was considered as normal-conducting AI (NCAI). A blocked AI 
was defined as AI with pre-existing bidirectional conduction block.26 The ana-
lyses of EAM were performed by at least two operators in each centre.

Ablation and follow-up
Ablation of a SCAI was considered successful if conduction through SCAI 
was bidirectionally blocked after radiofrequency delivery. In selected pa-
tients in whom PVR was planned, intraoperative cryoablation of the 

VT-related AI was performed, with intraoperative confirmation of bidirec-
tional conduction block.12

Patients were followed according to institutional protocols (see 
Supplementary data online, Method S5).

Late gadolinium enhancement cardiac 
magnetic resonance-derived 3D scar 
reconstructions and evaluation of anatomical 
isthmuses
Late gadolinium enhancement images in DICOM format were imported to 
the ADAS-3D image post-processing software tool (Galgo Medical, 
Barcelona, Spain). The RV wall was traced semi-automatically and then manu-
ally corrected for a mid-myocardial layer while ensuring the avoidance of ar-
tefacts from sternal wire/prosthetic valves and high-intensity signal from the 
blood pool (Figure 3A).28 The maximum and minimum voxel SIs (MaxSI and 
MinSI) on the 3D-RV-shell were automatically detected and exported.

Next, the obtained 3D-LGE-CMR-derived RV reconstruction was merged 
with the 3D-RV CARTO mesh file. For registration, the TA, ventricular septal 
defect patch, PA, and RV apex were used as landmarks utilizing ADAS-3D 
software. After visual assessment, additional anatomical structures (i.e. pul-
monary artery and RV septum) were used to optimize registration. 
Electroanatomical mapping points were superimposed on the 
CMR-derived reconstruction, which allows for direct comparison of EAM 
data and local SI. Electroanatomical mapping points > 10 mm away from 
the CMR-derived reconstruction were removed from the analysis (Figure 3B).

The percentage of MaxSI (%MaxSI) at each EAM site was calculated for 
each EAM point by the equation: %MaxSI = (Local SI − MinSI)/(MaxSI −  
MinSI) ∗ 100.

Data on BV and %MaxSI for each EAM point were retrieved in all patients. 
The optimal threshold of %MaxSI to detect abnormal low BV (threshold <  
1.76 mV based on previously published normal BV data using contact force 
sensing catheters in the RV in patients with rTOF)29 was determined by re-
ceiver operating characteristic (ROC) analysis. The obtained high SI threshold 
(HSIt) was applied to the CMR-derived 3D-RV reconstruction, colour coded 
for the local %MaxSI (Figure 3C). Of note, BV < 1.76 mV indicates any dis-
eased myocardium, including but not restricted to unexcitable tissue. 
Accordingly, myocardium with a SI above the HSIt includes both unexcitable 
boundaries and diseased myocardium with slow-conducting properties.

All AIs on the 3D-LGE-CMR-derived reconstruction were analysed. An ab-
normal AI on CMR was defined as AI showing continuous high SI (>HSIt) con-
necting the anatomical boundaries; otherwise, an AI was considered normal. 
In cases of a normal AI on 3D-CMR reconstruction, the minimal width of the 
normal SI area between the two anatomical boundaries was measured using a 
tool deployed to the software (Figure 3C). Total RV surface area and the area 
with SI above the HSIt were automatically calculated.

For the derivation cohort, all CMR analyses were performed by an ex-
perienced operator blinded to EAM data. To assess inter-observer repro-
ducibility, 20 cases were re-analysed by a second operator, and the total 
RV surface area, the area above the HSIt, and the presence of abnormal 
AI on CMR were compared. For the validation cohort, all analyses were 
performed by two experienced operators blinded to EAM data.

Statistical analysis
Continuous data are presented as mean ± SD or median [interquartile 
range (IQR)] according to distribution. Categorical data are reported as 
percentage and frequency. Continuous variables were compared using 
the Student’s t-test or the Mann–Whitney U test where appropriate. 
Categorical variables were compared using the chi-square test. Odds ratios 
of clinical parameters and risk scores for the presence of SCAI or blocked 
AI (SCAI/blocked AI) and VT inducibility were calculated using univariable 
logistic regression analysis. The performance of risk scores to predict the 
presence of SCAI/blocked AI and VT inducibility was determined using 
ROC curves. Patients who had undergone ablation of AI before CMR 
were not included in the univariable logistic regression analysis or the 
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Figure 2 Electroanatomical evaluation of anatomical isthmus. (A) Schematic overview of the four potential anatomical isthmuses. Anatomical isthmus 
1 is located between the tricuspid annulus and the right ventricular outflow tract patch/right ventricular incision. Anatomical isthmus 2 is bordered by an 
RV incision and the pulmonary annulus, and its presence depends on the type of surgical approach. Anatomical isthmuses 3 and 4 are located at the 
infundibular septum, with anatomical isthmus 3 between pulmonary valve and ventricular septal defect patch, and anatomical isthmus 4 between ven-
tricular septal defect patch and tricuspid annulus in case of muscular ventricular septal defect. Adapted from Kapel et al.5 with permission by Oxford 
University Press. (B and C ) Slow-conducting anatomical isthmus 3. (B) (Upper left panel) modified posterior view showing anatomical isthmus 3 bor-
dered by the ventricular septal defect patch and the pulmonary annulus. Bipolar voltages are colour coded according to bar, voltage > 1.5 mV (purple), 
grey tags indicate sites with no capture at high output pacing (10 mA/2 ms) consistent with scar/prosthetic material. The yellow tag represents the site 
where a His electrogram was recorded. The local electrograms in and at both sides of AI3, corresponding to electrograms 1, 2, and 3 are shown in C. 
(Upper right panel) the same map is displayed as an activation map. Local activation time is colour coded according to bar. A broad area of early ac-
tivation is evident at the septum (typical for right bundle branch block [RBBB]) and late activation at the posterolateral right ventricle. Based on the local 
signal characteristics, normal (non-fragmented) bipolar electrogram sites at the entrance of anatomical isthmus 3 (Site 1) and the exit of anatomical 
isthmus 3 (Site 3) were selected, allowing for accurate determination of the local activation time based on the downstroke of the unipolar electrogram 
recorded from the tip of the mapping catheter. The length of anatomical isthmus 3 (19 mm) is measured as the distance between the selected entrance                                                                                                                                                                                                    

Continued 
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ROC curve analysis. The intra-class correlation coefficient was used to de-
termine inter-observer variabilities in total RV surface area, total scar area, 
and percentage of total scar area on CMR, and Kappa coefficient was calcu-
lated for agreement on the presence of abnormal AI on CMR. All tests were 
two-sided, and a P-value of <.05 was considered statistically significant. All 
analyses were performed with SPSS 25.0 (IBM Corporation, Armonk, NY, 
USA).

Results
Derivation cohort
Forty-eight patients were included (34 ± 16 years, 58% male) in the 
derivation cohort (Table 1). Five patients (10%) underwent EAM for 
spontaneous VT, 19 patients (40%) before PVR, and the remaining 
24 patients (50%) for risk stratification (see Supplementary data 
online, Table S1). The median age at initial repair was 2.6 (IQR .7–6.2) 
years. The mean QRS duration was 155 ± 30 ms. Cardiac magnetic res-
onance was performed at a median of 55 days (IQR 2–154) before 
EAM. Mean LVEF and RVEF were 55 ± 7% and 48 ± 8%, respectively.

Electrophysiological study and 
electroanatomical mapping data
A total of 107 AIs were identified on EAM. Anatomical isthmuses 1 and 
3 were present in all patients, while AI2 was identified in 11 patients 
(23%) and AI4 in none (Table 2). All AI1 had normal CV. Slow- 
conducting anatomical isthmuses 2 and 3 were observed in 2 (4%) 
and 20 patients (42%), respectively. Seven patients (15%) had a blocked 
AI3, including three after previous ablation. The remaining 78 AIs were 
NCAI.

In 11 patients, 14 SMVTs (median CL 250 ms; IQR 231–278 ms) 
were induced, all related to SCAI3.

Association between non-invasive 
parameters, risk scores, and the presence 
of slow-conducting anatomical isthmus/ 
blocked anatomical isthmus
In univariable analysis of clinical parameters, only the presence of trans-
ventricular repair was significantly associated with the presence of 
SCAI/blocked AI (Table 3). Among previously published risk scores, 

only the score by Babu-Narayan et al. showed a significant correlation, 
with an area under the curve (AUC) of .65 (Table 4). None of the risk 
scores could exclude patients with SCAI/blocked AI, based on a low 
score or on the presence of only minimal/mild RV-LGE (Figure 4).

Association between non-invasive 
parameters, risk scores, and ventricular 
tachycardia inducibility
In univariable analysis, palliative shunt operation, transventricular repair, 
and LVEF were significantly associated with VT inducibility (see 
Supplementary data online, Table S2). Among the available risk scores, 
only those including RV-LGE18,21 showed a good discriminative ability 
for VT inducibility (AUC of .86 and .80, respectively; Supplementary 
data online, Table S3). These two risk scores could identify non-inducible 
patients, based on a low score or the presence of only minimal/mild 
RV-LGE (see Supplementary data online, Figure S1).

Reversed registration of bipolar voltage 
mapping data and 3D late gadolinium 
enhancement cardiac magnetic 
resonance-derived right ventricular 
reconstruction
A total of 10 178 mapping points were superimposed onto the 
3D-CMR RV reconstruction, and 9240 points within 10 mm from 
the 3D-CMR RV reconstruction were used for the analysis. There 
was a significant inverse relationship between local BV and %maxSI 
(R2 = .16, P < .001; Figure 5A). Based on ROC curve analysis, HSIt to de-
tect abnormal low BV (<1.76 mV) was 42% of the maximal SI with a 
sensitivity of 74% and a specificity of 78% (AUC .80; Figure 5B).

Identification of slow-conducting 
anatomical isthmus by 3D cardiac 
magnetic resonance reconstruction using 
the disease-specific signal intensity 
threshold for low bipolar voltage
Using the HSIt (42% of maxSI), 3D-CMR reconstructions were ana-
lysed. Representative two cases are illustrated in Figure 6. The total 

Figure 2 Continued 
and exit sites (1 and 3) using the software of the 3D mapping system. (Lower panel) Modified right lateral view showing the latest local activation time 
site in the right ventricle to ensure that the activation wavefronts from the septal and lateral right ventricle do not collide within anatomical isthmus 3. If 
such collision occurs, remapping during pacing near anatomical isthmus 3 is necessary to accurately measure the conduction time through anatomical 
isthmus 3. (C ) Local electrograms in and at both sides of anatomical isthmus 3. The difference between the local activation time at the entrance (Site 1, 
8 ms) and exit (Site 3, 78 ms) sites determines the conduction time through the anatomical isthmus, which is 70 ms. Using the anatomical isthmus length 
and conduction time, the conduction velocity can be calculated (19 mm/70 ms = .27 m/s), which is abnormal. In this patient, anatomical isthmus 3 was the 
only slow-conducting anatomical isthmus and related to the ventricular tachycardia. (D and E) Normal-conducting anatomical isthmus 3. (D) (Left panel) 
modified posterior view showing anatomical isthmus 3. Bipolar voltages are colour coded according to bar, voltage ≥ 1.5 mV (purple). The local electro-
grams in and at both sides of anatomical isthmus 3 corresponding to electrograms 1, 2, and 3 are shown in E. In this case, bipolar voltage is consistently 
>1.5 mV throughout the anatomical isthmus 3. The entrance and exit of anatomical isthmus 3 (Sites 1 and 3) are determined by lines extending from the 
septal and lateral extension of the ventricular septal defect patch to the pulmonary annulus, as indicated by dashed lines. (Right panel) the same map is 
displayed as an activation map. Local activation time is colour coded according to bar, showing a broad area of early activation at the septum and late 
activation at the inferolateral right ventricle. At two sites at the entrance of anatomical isthmus 3 (Site 1) and the exit of anatomical isthmus 3 (Site 3), 
the local activation time is determined based on the downstroke of the unipolar electrogram recorded from the tip of the mapping catheter. The length 
of anatomical isthmus 3 (12 mm) is the distance between Sites 1 and 3. (E) Local electrograms in and at both sides of anatomical isthmus 3. The conduction 
time through the anatomical isthmus 3 is 8 ms. Accordingly, the conduction velocity can be calculated (12 mm/8 ms = 1.5 m/s), which is normal. PA, 
pulmonary annulus; TA, tricuspid annulus
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RV surface area and the area > HSIt were 238 ± 44 and 55 ± 25 cm2, 
respectively. All unexcitable boundaries of AI as identified by EAM, in-
cluding patch materials, incision, and at least a part of valve annuli had a 
SI above the HSIt.

Of the 107 AI, 37 AI in 33 patients were categorized as abnormal AI 
based on 3D-LGE-CMR (Table 2). Importantly, all 29 SCAI/blocked AI 
on EAM were correctly classified as abnormal AI on CMR. Among the 
78 NCAI, 70 were correctly categorized as normal AI on CMR. 

Figure 3 Processing of 3D late gadolinium enhancement cardiac magnetic resonance and integration with electroanatomical map. (A) (Left panel) right 
ventricular contour was semi-automatically traced and manually corrected for a mid-myocardial layer. Noises by sternum wire were carefully removed 
from the contour. (Right panel) Tricuspid valve and pulmonary artery were removed from the 3D late gadolinium enhancement cardiac magnetic res-
onance reconstruction. The imaging processing software automatically detects the maximum and minimum signal intensities of the 3D late gadolinium 
enhancement cardiac magnetic resonance reconstruction. (B) (Left panel) right ventricular electroanatomical mapping was reviewed and exported. 
(Right panel) All mapping points were superimposed onto the 3D late gadolinium enhancement cardiac magnetic resonance reconstruction. 
Electroanatomical mapping points > 10 mm away from the cardiac magnetic resonance-derived reconstruction were removed from the analysis, 
and bipolar voltage of the remaining points was compared with corresponding local signal intensities (see Figure 2). (C ) (Left and mid panels) the ob-
tained high signal intensity threshold (42% of the maximum signal intensity) was applied to the 3D cardiac magnetic resonance right ventricular recon-
struction, visualizing the right ventricular shell colour coded by local percentage of MaxSI and the scar lesion defined as an area above the high signal 
intensity threshold. An additional threshold was put at 1.5-fold of the high signal intensity threshold but not used for analysis. Abnormal myocardium 
(>HSIt) was visualized as red, yellow, green, or blue, and normal myocardium (<HSIt) was as purple. Anatomical isthmuses on the 3D late gadolinium 
enhancement cardiac magnetic resonance-derived construction were visually inspected if it is abnormal anatomical isthmus, defined as a continuous 
area above the high signal intensity threshold connecting anatomical boundaries. (Right panel) in cases with a normal anatomical isthmus on cardiac 
magnetic resonance, the lesion width of the healthy part of the anatomical isthmus was measured using a tool deployed to the software. AI, anatomical 
isthmus; BV, bipolar voltage; CMR, cardiac magnetic resonance imaging; EAM, electroanatomical mapping; HSIt, high signal intensity threshold; LGE, late 
gadolinium enhancement; RV, right ventricle; SI, signal intensity
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The median minimal widths of normal AI2 and AI3 on CMR were 
14.6 mm (range 11.3–34.8 mm) and 15.5 mm (range 6.3–27.4 mm), re-
spectively. The remaining 8/78 (10%) NCAI were considered abnormal 
AI on CMR (Table 2).

The sensitivity and specificity of 3D-LGE-CMR for identifying SCAI/ 
blocked AI were 100% and 90% (29/29 and 70/78), respectively. Data 
for each AI are provided in Table 2. The results were similar if patients 
with previous ablation were excluded (see Supplementary data online, 
Table S4).

Inter-observer variability
Intra-class correlation coefficients were .97 [95% confidence interval 
(CI) .93–.99] for the total RV surface area and .97 (95% CI .93–.99) 
for the area with SI > HSIt. Kappa coefficient was 1.0.

Association between bipolar voltage, 
conduction velocity, and cardiac magnetic 
resonance findings of anatomical isthmus 3
Patients were divided into three groups according to the EAM and 
CMR findings of AI3, considering EAM as the gold standard: (i) NCAI 
on EAM and normal AI on CMR (‘true negative CMR’, n = 15), 
(ii) NCAI on EAM and abnormal AI on CMR (‘false-positive CMR’, 
n = 6), and (iii) SCAI on EAM and abnormal AI on CMR (‘true positive 
CMR’, n = 20). There were no false negatives.

The median BV and CV of AI3 in all patients were 1.68 (IQR .61– 
2.62) mV and .64 (.36–.93) m/s, respectively. Of note, the median BV 
within AI3 was highest in Group A, followed by Groups B and C 
(P < .01 for both A vs. B and B vs. C; Figure 7A). In addition, the median 
CV was highest in Group A, followed by Groups B and C (A vs. B, 
P < .01, B vs. C, P < .001; Figure 7B).

Acute ablation outcome
All 20 SCAI3 were targeted by radiofrequency (n = 10) or surgical 
cryoablation (n = 10), with acute procedural success in 17/20 (85%). 
The reason for three ablation failures was inaccessibility likely due 
to prior PVR/artificial material, and an implantable cardioverter- 
defibrillator (ICD) was implanted in all 3. The two SCAI2 were success-
fully transected by radiofrequency catheter ablation (n = 1) or surgically 
during PVR (n = 1).

Follow-up
During a median follow-up of 25 (IQR 11–45) months, two patients had 
VT, both with SCAI3 and ablation failure.

In one patient with a normal but narrow (6.3 mm) AI3 on a first CMR 
and corresponding normal CV through the AI3 (.81 m/s) on EAM, a se-
cond 3D-LGE-CMR was performed 4 years later because of palpita-
tions. Cardiac magnetic resonance was consistent with an abnormal 
AI3, and EAM confirmed a SCAI3, which was the critical substrate 
for an induced SMVT. Anatomical isthmus 3 was successfully transected 
by catheter ablation (Figure 8).

Validation cohort
Fifty-three patients were included (36 ± 18 years, 81% male) in the val-
idation cohort. The reasons for EAM were clinical VT in 3 (6%), before 
PVR in 31 (58%), and risk stratification in 19 patients (36%) (see 
Supplementary data online, Table S5). Cardiac magnetic resonance 
was performed at a median of 38 days (IQR 1–114) before EAM.

A total of 124 AIs were identified on EAM (Table 5). Anatomical isth-
muses 1 and 3 were present in all patients, while AI2 was identified in 16 
patients (30%) and AI4 in 2 (4%). Of 124 AIs, 36 (29%) were SCAI. 
Three patients (6%) had a blocked AI3, including 2 with previous abla-
tion. The remaining 85 AIs were NCAI.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Baseline data of the derivation cohort

Derivation cohort (n = 48)

Age, years 34 ± 16

Male sex 28 (58)

Initial repair

Age at total repair, years 2.6 (.7–6.2)

Initial repair ≥ 5 years 17 (35)

Palliative shunt (n = 46) 14 (30)

Transannular patch (n = 47) 30 (64)

Transventricular repair (n = 36) 18 (50)

PVR 23 (45)

Syncope 2 (4)

ECG

QRS duration, ms 155 ± 30

QRS duration ≥ 180 ms 9 (19)

CRBBB 42 (88)

FQRS 28 (58)

History of atrial arrhythmia 10 (21)

NSVT 17 (38)

Clinical SMVT 5 (10)

LV diastolic dysfunction (n = 45) 5 (11)

RVSP, mmHg 35 (26–44)

PVO2, mL/kg/m2 (n = 37) 26.5 (20.9–31.6)

NT-proBNP, pg/mL (n = 25) 168 (68–293)

CMR

LVEF, % 55 ± 7

RVEF, % 48 ± 8

LVEF good/mildly reduced 48 (100)

RVEF good/mildly reduced 42 (87)

RVEDV, mL 227 ± 61

RVEDVI, mL/m2 128 ± 34

PR moderate/severe 23 (48)

Results are expressed as a number (%), mean ± SD, or median (IQR). 
CMR, cardiac magnetic resonance imaging; CRBBB, complete right bundle branch block; 
ECG, electrocardiography; FQRS, fragmented QRS; LV, left ventricle; LVEF, left 
ventricular ejection fraction; MRI, magnetic resonance imaging; NSVT, non-sustained 
ventricular tachycardia; NT-proBNP, N-terminal pro-B-type natriuretic peptide; PR, 
pulmonary regurgitation; PVO2, peak oxygen uptake; PVR, pulmonary valve 
replacement; RV, right ventricle; RVEDV, right ventricular end-diastolic volume; 
RVEDVI, right ventricular end-diastolic volume index; RVEF, right ventricular ejection 
fraction; RVSP, right ventricular systolic pressure; SMVT, sustained monomorphic 
ventricular tachycardia.
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All but two SCAI/blocked AI on EAM were correctly classified as ab-
normal AI on CMR (Table 5). Reconstructed CMR images of the two 
cases with false-negative CMR findings (SCAI on EAM but normal AI 

on CMR) are shown in Supplementary data online, Figure S2. 
Among the 85 NCAI on EAM, 77 were correctly categorized as 
normal AI on CMR, and 8 (9%) were considered as abnormal AI on 
CMR.

The sensitivity and specificity of 3D-LGE-CMR for identifying SCAI/ 
blocked AI were 95% and 91% (30/32 and 77/85), respectively (Table 5). 
The results were similar if patients with previous ablation were ex-
cluded (see Supplementary data online, Table S6).

Potential impact of systematic evaluation 
by cardiac magnetic resonance on 
indication for electroanatomical mapping 
in patients without spontaneous 
ventricular tachycardia or previous 
ablation
In the entire cohort (n = 101), 88 patients had no previous spontan-
eous VT or prior ablation. Of those, 48 patients (19 derivation and 
29 validation cohort) underwent EAM for evaluation before PVR, 
showing at least one abnormal AI on CMR in 32 patients and 
only normal AI on CMR in 16 patients (Figure 9). The positive predictive 
value (PPV) of CMR before PVR was 81% (26/32 patients). Since an ab-
normal AI on CMR could prompt cryoablation concomitant to surgical 
PVR or RF ablation before/during transcatheter PVR, EAM, performed 
solely for diagnostic purposes, could be omitted in all patients with ab-
normal AI on CMR. For the remaining 16 patients with normal AI on 
CMR, the negative predictive value (NPV) of CMR was 94% (15/16 
patients).

In the remaining 40 patients, who underwent EAM for risk stratifica-
tion, 23 patients had at least one abnormal AI on CMR, and 17 only had 
normal AI on CMR (Figure 9). The PPV and NPV of CMR were 87% and 
100%, respectively. Electroanatomical mapping could be restricted to 
patients who have abnormal CMR findings with the option to target 
a SCAI at the time of mapping.

Accordingly, in patients without previous VT or ablation, systematic 
evaluation by CMR could reduce the need for diagnostic EAM proce-
dures by 74% (EAM is necessary after CMR in 23/88 patients).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 Electroanatomical mapping and cardiac magnetic resonance data of the derivation cohort

Normal AICMR Abnormal AICMR Total Sensitivity 
(95% CI)

Specificity 
(95% CI)

AIEAM1 NCAI 48 0 48 n/a 100% 
(93–100)SCAI 0 0

AIEAM2 NCAI 7 2 11 100% 
(16–100)

78% 
(46–96)SCAI 0 2

AIEAM3 NCAI 15 6 48 100% 
(87–100)

71% 
(50–88)SCAI 0 20

Blocked AI 0 7

AIEAM4 0 0 0 n/a n/a

Total 70 37 107 100% 
(88–100)

90% 
(82–95)

95% CI, 95% confidence interval; AI, anatomical isthmus; CMR, cardiac magnetic resonance; EAM, electroanatomical mapping; NCAI, normal-conducting anatomical isthmus; SCAI, 
slow-conducting anatomical isthmus.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3 Univariable analyses for the presence of 
slow-conducting anatomical isthmus/blocked 
anatomical isthmus

Odds 
ratio

95% CI P-value

Age, per 1 year 1.03 .99–1.07 .12

Male sex 2.20 .66–7.35 .20

Age at total repair, per 1 year 1.06 .91–1.23 .42

Initial repair ≥ 5 years 1.92 .52–7.05 .32

Palliative shunt 3.64 .82–16.1 .07

Transannular patch .34 .09–1.24 .09

Transventricular repair 7.15 1.53–33.4 .01

QRS duration, per 1 ms 
increase

1.02 .99–1.04 .12

FQRS 2.20 .66–7.35 .20

History of atrial arrhythmia 2.50 .43–14.5 .29

NSVT .67 .19–2.33 .53

RVEF moderate/severely 
reduced

1.82 .15–21.6 .64

LV diastolic dysfunction 1.00 .13–7.85 1.00

PR moderate/severe .63 .20–2.06 .45

LVEF, per 1% increase .96 .88–1.05 .33

RVEF, per 1% increase 1.00 .93–1.08 .98

Area > HSIt, per 1 cm2 increase 1.03 1.00–1.06 .04

CI, confidence interval; HSIt, high signal intensity threshold. 
See Table 1 for other abbreviations.
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Figure 4 Distribution of patients according to the results of risk scores and presence of slow-conducting anatomical isthmus/blocked anatomical 
isthmus. AI, anatomical isthmus; LGE, late gadolinium enhancement; SCAI, slow-conducting anatomical isthmus; VT, ventricular tachycardia

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4 Performance of previously proposed risk scores for prediction of the presence of slow-conducting anatomical 
isthmus/blocked anatomical isthmus

LGE Median score (IQR) Odds ratio 95%CI P AUC

Ghonim 2022a + 23 (12–35) 1.04 .99–1.08 .06 .65

Ghonim without LGE 2022 a − 10 (5–13) 1.05 .98–1.13 .17 .58

Bokma 2017 − 2 (1–3) 1.49 .97–2.31 .06 .68

Khairy without VT inducibility 2008 − 2 (0–4) 1.13 .87–1.48 .35 .56

Babu-Narayan 2006 + 5 (3–6) 1.42 1.00–2.06 .04 .65

AUC, area under the curve; LGE, late gadolinium enhancement. 
aData on RVOT akinetic length were not available.
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Figure 5 Defining repaired tetralogy of Fallot-specific signal intensity threshold. (A) Correlation between bipolar voltage and local signal intensity. 
(B) Receiver operating characteristic analysis for low bipolar voltage correlating to local signal intensity. AUC, area under the curve; BV, bipolar voltage; 
SI, signal intensity

Figure 6 Examples of normal and slow-conducting anatomical isthmuses. (A) Normal-conducting anatomical isthmus (left panel) electroanatomical mapping 
showed normal bipolar voltage within anatomical isthmus 3. Conduction velocity was calculated as 1.1 m/s. (Right panel) 3D late gadolinium enhancement 
cardiac magnetic resonance represented normal myocardium (≤HSIt) within anatomical isthmus 3 (normal anatomical isthmus on cardiac magnetic reson-
ance). (B) Slow-conducting anatomical isthmus (left panel) electroanatomical mapping showed low bipolar voltage within anatomical isthmus 3. Conduction 
velocity was calculated as .3 m/s. (Right panel) 3D late gadolinium enhancement cardiac magnetic resonance represented abnormal myocardium (>HSIt) on 
anatomical isthmus 3 connecting the pulmonary annulus and ventricular septal defect patch (abnormal anatomical isthmus on cardiac magnetic resonance). 
Signal intensity above HSIt does detect not only unexcitable tissue but also abnormal myocardium with slow-conducting properties. AI, anatomical isthmus; 
EAM, electroanatomical mapping; HSIt, high signal intensity threshold; PA, pulmonary annulus; TA, tricuspid valve annulus; VSD, ventricular septal defect
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Discussion
To the best of our knowledge, this is the first study to demonstrate that 
3D-LGE-CMR can non-invasively identify SCAI, the dominant substrate 
for VT, in patients with rTOF. The newly proposed method of CMR 
image analysis showed an excellent inter-observer agreement and could 
identify SCAI or blocked AI with high sensitivity and specificity, which 
was confirmed in the validation cohort. In addition, compared with pa-
tients with NCAI on EAM and normal AI on CMR (true negative CMR), 
those with NCAI on EAM but abnormal AI on CMR (false-positive 
CMR) had already significantly lower BV and CV on EAM.

These results suggest that 3D-LGE-CMR can diagnose SCAI with ex-
cellent accuracy and may identify a diseased AI3 even before critical 
conduction delay occurs. This technique can refine patient selection 
for invasive EAM prior to re-valving and may allow non-invasive and ser-
ial testing for the presence of a VT substrate in contemporary patients 
with rTOF (Structured Graphical Abstract).

Slow-conducting anatomical isthmus as 
the dominant substrate for monomorphic 
ventricular tachycardia
The vast majority of spontaneous and induced VA in rTOF are re- 
entrant SMVTs dependent on SCAI.5,11,16 Among four previously de-
scribed AIs, AI3 was the most prevalent SCAI in contemporary rTOF 
patients.4,5,11,13,17 In line with previous reports, 91% of all SCAI was 
SCAI3, which was the substrate for all induced VTs in the derivation co-
hort. Invasive EAM is currently the gold standard to identify SCAI. Of 
note, repeated mapping may be needed as slow conduction can de-
velop over time (Figure 8).

Transection of SCAI by catheter or surgical ablation has been recog-
nized as the most effective, curative, and potentially preventive treat-
ment of SMVT in rTOF.7,15 Preventive ablation of SCAI3 before PVR 
is increasingly performed as the abnormal myocardium of AI3 may be 
covered by the prosthetic materials, becoming inaccessible for future 

catheter ablation.8–10 Accordingly, there is a high clinical need for non- 
invasive identification of SCAI.

In this context, we would like to emphasize that we aimed to non- 
invasively identify the most prevalent substrate for SMVT. In particular, 
patients with advanced heart failure and/or a large scar remote from 
SCAI may have a competing risk to develop non-SCAI-related VA.

Association between risk scores, the 
presence of slow-conducting anatomical 
isthmus, and arrhythmogenesis
Risk scores have been developed to predict mortality,20 ICD shocks,19

and VA.21 The occurrence of spontaneous VT depends on the interplay 
between a pre-existing substrate (SCAI), initiating triggers (e.g. PVCs), 
and modulating factors including autonomic tone, volume and pressure 
overload, or heart failure (Figure 1). All previously developed risk scores 
showed an at best moderate performance to discriminate between pa-
tients with or without SCAI (AUC < .7) as pre-existing substrate 
(Table 4).

Induction of SMVT by invasive PES, which can be considered as an 
initiating trigger, proves the presence of a VT substrate. Of interest, 
risk scores that have included LGE-CMR parameters, namely the extent 
of LGE and biventricular function (Ghonim 2022 and Babu-Narayan 
2006), showed a good and, in general, higher discriminative ability for 
VT inducibility. However, VT induction is also dependent on modulat-
ing factors present at the time of PES that may either facilitate or im-
pede VT inducibility. Therefore, non-inducibility does not exclude the 
presence of a VT substrate. The poor discriminative ability of the risk 
scores for SCAI and their better performance for predicting VT indu-
cibility suggest that the outcome of these risk scores is associated with 
modulators of arrhythmogenesis rather than with the VT substrate.

Extensive myocardial scar detected by LGE-CMR has been also asso-
ciated with spontaneous VT and SCD in patients with rTOF, supporting 
the potential value of LGE-CMR.18,30,31 However, before CMR be-
comes the decisive factor for risk stratification and for VT substrate 

Figure 7 Bipolar voltage and conduction velocity of anatomical isthmus 3 according to electroanatomical mapping and cardiac magnetic resonance 
findings. (A) Bipolar voltage. (B) Conduction velocity. AI, anatomical isthmus; CMR, cardiac magnetic resonance imaging; CV, conduction velocity; EAM, 
electroanatomical mapping
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Figure 8 A patient with progression of conduction delay through anatomical isthmus 3. (A) The first cardiac magnetic resonance showed narrow 
(6.3 mm) but normal anatomical isthmus 3. The conduction velocity through the anatomical isthmus 3 was correlated (.81 m/s). (B) 3D late gadolinium 
enhancement cardiac magnetic resonance was repeated 4 years later, showing an abnormal anatomical isthmus 3. Re-electroanatomical mapping was 
also performed, indicating slow-conducting anatomical isthmus 3. (C ) Fragmented local signals were observed at slow-conducting anatomical isthmus 3 
(Points 1, 2, and 3). Sustained monomorphic ventricular tachycardia was induced and a good pace-match was obtained at slow-conducting anatomical 
isthmus 3 (point 3). Slow-conducting anatomical isthmus 3 was transected by catheter ablation. AI, anatomical isthmus; CMR, cardiac magnetic reson-
ance imaging; CV, conduction velocity; EAM, electroanatomical mapping; LGE, late gadolinium enhancement; SCAI, slow-conducting anatomical isth-
mus; SMVT, sustained monomorphic ventricular tachycardia
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Table 5 Electroanatomical mapping and cardiac magnetic resonance data of the validation cohort

Normal AICMR Abnormal AICMR Total Sensitivity 
(95% CI)

Specificity 
(95% CI)

AIEAM1 NCAI 52 0 53 100% 
(3–100)

100% 
(93–100)SCAI 0 1

AIEAM2 NCAI 7 4 16 100% 
(48–100)

64% 
(35–87)SCAI 0 5

AIEAM3 NCAI 18 3 53 94% 
(82–99)

86% 
(67–96)SCAI 2 27

Blocked AI 0 3

AIEAM4 NCAI 0 1 2 100% 
(3–100)

0% 
(0–98)SCAI 0 1

Total 79 45 124 95% 
(85–99)

91% 
(83–96)

See Table 2 for abbreviations.
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delineation, important aspects need to be considered. First, LGE-CMR 
methods and SI thresholds to quantify scar and delineate the 3D scar 
geometry have not been validated for surgical scars and other unexcit-
able boundaries of AI including endothelialized prosthetic patches. 
Second, the previous reports have focused on the total LGE burden/ 
volume of the RV with/without LV based on visual assessment of 
2D-LGE-CMR or manual segmentation from 3D-LGE-CMR.18,21,32

The LGE volume has been correlated with VT inducibility, but the sig-
nificant overlap in LGE values between patients with and without 
events limits its discriminative value in clinical practice.32

Identification of slow-conducting 
anatomical isthmus by 3D cardiac 
magnetic resonance
The feasibility of semi-automated scar segmentation from 3D-LGE-CMR 
has been reported in a small series of rTOF patients.22 The 3D imaging 
technique is especially useful for morphologically complex 

architectures, such as the RVOT, where the 2D technique cannot 
maintain continuously co-axial slices to the imaging plane, increasing 
partial volume effects.22 Annotation of the mid-myocardial layer al-
lows the exclusion of a high-intensity signal from the blood pool 
and does not exclude patch materials, which appear as a transmural 
high-intensity lesion.

In the present study, we performed reversed registration of CMR 
and EAM data allowing the direct comparison of BV on EAM with 
the local SI. The obtained AUC (.8) was similar or superior to the values 
reported in acquired heart diseases.33 We identified 42% of maxSI as 
the best SI cut-off for abnormal myocardium, which, when continuously 
present between anatomical boundaries, was consistent with slow- 
conducting or blocked AI during EAM. The excellent sensitivity and spe-
cificity of 3D-LGE-CMR for SCAI were confirmed in the large validation 
cohort. In the two false-negative CMRs in the validation cohort, the 
automatically determined area with maximal SI was incorrect, which 
can be easily, manually controlled and adjusted (see Supplementary 
data online, Figure S2). Importantly, most patients in the validation 

Figure 9 Impact of systematic evaluation by 3D late gadolinium enhancement cardiac magnetic resonance on patient selection for electroanatomical 
mapping. The columns ‘proposed treatment’ are colour corded according to indication for invasive electroanatomical mapping. Blue (n = 65): indication 
for diagnostic electroanatomical mapping (−);red (n = 23): indication for diagnostic electroanatomical mapping (+). aAI2, n = 2; AI3, n = 24; AI2 + 3, n =  
5; AI3 + 4, n = 1. bAI3, n = 21; AI2 + 3, n = 1; and AI3 + 4, n = 1. c PPV for slow-conducting anatomical isthmus/blocked anatomical isthmus. dPositive 
predictive value for slow-conducting anatomical isthmus. AI, anatomical isthmus; CMR, cardiac magnetic resonance imaging; EAM, electroanatomical 
mapping; NCAI, slow-conducting anatomical isthmus; NPV, negative predictive value; PPV, positive predictive value; RF, radio frequency; SCAI, slow- 
conducting anatomical isthmus; SPVR, surgical pulmonary valve replacement; TPVR, transcatheter pulmonary valve replacement; VT, ventricular 
tachycardia
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cohort were from an independent centre, with different CMR scanners 
and protocols used. This further supports the generalizability of the 
approach.

Slow-conducting anatomical isthmus cannot be differentiated from a 
blocked AI by CMR. However, a pre-existing blocked AI is rare, ob-
served in only 4.6% of patients in our cohort. Human studies have de-
monstrated that slow conduction can occur even through single 
myocardial bundles with a diameter of 200 µm. The current resolution 
of in vivo LGE-CMRs does not allow the detection of single bundles, 
which may explain the inability to distinguish between SCAI and 
blocked AI.34

Late gadolinium enhancement cardiac 
magnetic resonance for early detection of 
adverse remodelling
There is a time-dependent risk of life-threatening VT in rTOF.35

Adverse remodelling and slow conduction across AI may develop 
over time. In the present study, one patient who underwent repeated 
EAM and CMR showed voltage reduction and progressive conduction 
delay across AI3 over 4 years, correctly identified by CMR.

3D-LGE-CMR may even identify AI3 that are more likely to remodel 
over time before critical conduction delay occurs. The six patients with 
false-positive CMR finding had already significantly lower BV and CV 
than those with true positive CMR finding.

Potential impact of systematic evaluation 
by cardiac magnetic resonance on 
indication for electroanatomical mapping 
in patients without spontaneous 
ventricular tachycardia or previous 
ablation
The excellent NPV of the 3D-LGE-CMR for SCAI impacts the need 
for invasive EAM, currently performed for risk stratification and be-
fore re-valving. Systematic evaluation by CMR would indeed signifi-
cantly reduce diagnostic EAM procedures (Figure 9), following the 
proposed approach.

Particularly in patients before PVR, abnormal AI on CMR could 
prompt cryoablation concomitant to surgical PVR and RF ablation 
before/during transcatheter PVR, without prior diagnostic EAM.15,36

The PPV for SCAI of abnormal AI on CMR is high (81%) and even ‘false- 
positive CMR’ correlated with borderline BV and CV reduction. 
Conduction velocity in these AI may further slow due to aging and/or 
the intervention and may become inaccessible after PVR.9,10

Although data to support the ablation of AI with borderline properties 
are currently lacking, it may be reasonable to intraoperatively target 
narrow AI with borderline CV reduction, considering the fast surgical 
procedure without reported complications.12–14

In patients followed for risk stratification, EAM can be combined with 
catheter ablation of the AI during the same procedure, if a SCAI is likely 
based on serial CMR.

Limitations
The patients included in this study were referred for EAM before re- 
valving, for risk stratification, or treatment of spontaneous VT, and 
the findings may not be generalizable to all rTOF patients. Follow-up 
studies are required to evaluate if LGE-CMR can detect AI that will 

develop slow conduction over time, thereby justifying preventive abla-
tion based on LGE-CMR only in those who are scheduled for re-valving.

The acquisition of 3D-LGE-CMR requires expertise and has a sub-
stantial learning curve. The availability of ADAS-3D image post- 
processing software may be limited. However, patients with congenital 
heart disease are more gathered to tertiary centres where a variety of 
imaging software is deployed. Our novel concept and required meth-
ods may be adopted by other software packages.

In only two cases, CMR analysis did not detect a SCAI (false-negative 
CMR), which may be due to an incorrect selection of the automatically 
determined area of maxSI. Visual control of automatically set reference 
areas may overcome this problem.

Not all variables were available for all patients, as most patients were 
included retrospectively.

Although multipolar catheters may facilitate fast acquisition of BV 
and LAT, the use of a single ablation catheter for mapping with reliable 
catheter-tissue contact may be of advantage to evaluate non-excitable 
tissue and allow for immediate treatment without additional costs.

Conclusion
3D late gadolinium enhancement cardiac magnetic resonance can iden-
tify SCAI with excellent diagnostic accuracy and may identify diseased 
AI even before critical conduction delay occurs. This technique can re-
fine patient selection for invasive EAM and may allow for non-invasive 
and serial VT substrate identification and risk stratification for life- 
threatening VT.
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