Universiteit

4 Leiden
The Netherlands

Back to meshes: optimal simulation-ready mesh prototypes for

autoencoder-based 3D car point clouds
Rios, T.; Kong, J.; Stein, B. van; Back, T.H.W.; Wollstadt, P.; Sendhoff, B.; Menzel, S.

Citation

Rios, T., Kong, J., Stein, B. van, Back, T. H. W., Wollstadt, P., Sendhoff, B., & Menzel, S.
(2020). Back to meshes: optimal simulation-ready mesh prototypes for autoencoder-based
3D car point clouds. 2020 Ieee Symposium Series On Computational Intelligence (Ssci),
942-949. doi:10.1109/SSCI147803.2020.9308400

Version: Publisher's Version
License: Licensed under Article 25fa Copyright Act/Law (Amendment Taverne)
Downloaded from: https://hdl.handle.net/1887/3766136

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:4
https://hdl.handle.net/1887/3766136

Back To Meshes: Optimal Simulation-ready Mesh
Prototypes For Autoencoder-based 3D Car Point
Clouds

Thiago Rios*, Jiawen Kong', Bas van Stein',
Thomas Bick', Patricia Wollstadt*, Bernhard Sendhoff* and Stefan Menzel*
*Honda Research Institute Europe GmbH, Carl-Legien-Str. 30, 63073 Offenbach, Germany
TLeiden Institute of Advanced Computer Science (LIACS), Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
Email: {thiago.rios, patricia.wollstadt, bernhard.sendhoff, stefan.menzel} @honda-ri.de,
{j.kong, b.van.stein, t.h.w.baeck} @liacs.leidenuniv.nl

Abstract—Point cloud autoencoders were recently introduced
as powerful models for data compression. They learn a low-
dimensional set of variables that are suitable as design pa-
rameters for shape generation and optimization problems. In
engineering tasks, 3D point clouds are often derived from fine
polygon meshes, which are the most suitable representations for
physics simulation, e.g., computational fluid dynamics (CFD).
Yet, the reconstruction of high-quality meshes from autoencoder-
based point clouds is challenging, often requiring supervised and
manual work, which is prohibitive during the optimization. Tar-
get shape matching optimization using existing mesh prototypes
overcomes the difficulties of recovering shape information from
the point coordinates. However, for autoencoders trained on data
sets comprising shapes with high degree of dissimilarity, there
is not a single mesh prototype that can fit any autoencoder-
based point cloud, and the selection of a set of prototypes
is nontrivial. In the present paper we propose a method for
optimizing a selection of prototypical meshes to match the
maximum number of shapes in the autoencoder output space
as possible, which is achieved by linking the advantages of the
latent space representation of an autoencoder and the state-
of-the-art free form deformation (FFD) method. Furthermore,
we approached the balance between costs (number of mesh
prototypes) and number of covered shapes by varying the number
of prototypes and the dimensionality of the autoencoder latent
space, showing that higher-dimensional latent spaces encode finer
geomeltric changes, requiring more sophisticated FFD setups.

Index Terms—3D point cloud, meshing, geometric deep learn-
ing, evolutionary optimization

I. INTRODUCTION

Point cloud autoencoders stand out from the literature on
geometric deep learning as powerful shape generation tech-
niques. These architectures compress 3D geomeltric data into
a compact set of design variables, the so-called latent space,
while learning an efficient method for reconstructing geome-
tries [1], [2]. In automated computational shape optimization
problems, e.g. aerodynamic design optimization of vehicles,
the latent variables could perform as shape parameters. While

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement number 766186
(ECOLE).

978-1-7281-2547-3/20/531.00 ©2020 IEEE

942

the optimization algorithm searches iteratively for solutions in
the latent space, the trained decoder retrieves the shapes as
3D point clouds, which serve as input to downstream tasks.
Nevertheless, different aspects hinder the implementation of
these methods. Among them are the interpretability of the
latent variables [3], [4], the sparsity of engineering data sets
and, ultimately, the need to recover surface meshes from the
3D point clouds generated by the autoencoder for performing
downstream tasks, such as automated performance simulations
of novel design proposals.

Recovering surface meshes from the Cartesian coordinates
of a point set is an ill-posed problem. For a single point
cloud, there is an infinite number of solutions that approximate
the surface of the geometry. Thus, the available methods on
mesh generation from point clouds either require additional
information, e.g. surface normal vectors, or manual tuning
through visual inspection [5], where the latter is especially
costly. In order to automate the surface mesh reconstruction,
we propose to use free form deformation (FFD) to manipulate
prototypical meshes and match them to the generated point
clouds. FFD is a well-established shape morphing technique
that enables the optimizers to directly operate on complex
computer aided engineering (CAE) meshes, as required e.g.
for computer fluid dynamics (CFD) simulations, in shape op-
timization problems, reducing the computational costs during
optimization by avoiding remeshing [6]

Therefore, in the present paper, we propose to link both
representations and search for an optimal number of required
mesh prototypes which can be altered through FFD manip-
ulations to match as many shapes in the 3D point cloud
autoencoder output space as possible. Concurrently to the max-
imum coverage, which determines design flexibility, we aim at
minimizing the number of mesh prototypes, since each of them
has high meshing costs. These optimal prototypes potentially
allow us to perform an automated design optimization based
on the latent parameters of a 3D point cloud autoencoder,
where we combine the shape generative power of the deep
neural network, which can represent shapes with high degree
of dissimilarity, to a fast setup of CAE models for engineering

2020 IEEE Symposium Series on Computational Intelligence (SSCI)
December 1-4, 2020, Canberra, Australia

Authorized licensed use limited to: Universiteit Leiden. Downloaded on July 03,2024 at 08:05:28 UTC from IEEE Xplore. Restrictions apply.

performance simulations. with FFD.

In terms of technical realization, we envision our approach
within a fully automated shape optimization workflow (Fig.
1). In a preprocessing step. the autoencoder is trained on
point clouds sampled from a data set of CAE meshes. e.g.
car shapes. Based on the learned latent space, and according
to our proposal in the present paper., the set of prototypical
meshes is optimized, which remains available for the shape
optimization task. Then, for each solution proposed by the
optimizer, we select a mesh from the set of prototypes. which
can be matched to the autoencoder-based point cloud through
target shape matching optimization with FFD and forwarded
to engineering CAE analyses, such as CFD. According to
the performance, the algorithm either terminates or iterates
with a different solution, until it converges to an optimum.
Hence. combining the deep learning and FFD representations
potentially decreases the dependency of the parameterization
on the user expertise. while increasing the range of solutions
that can be achieved, compared to the FFD parameterization
only.

Pre-processing

Autoencoder training i
H |§|—) Losses

Prototype 2

rz,_gr sampling g

Mesh data set Point Cloud data

Prototype |

Prototype 3

Latent space l

Design optimization

S\ =t 5

Optimizer
No =
Performance
A g Target shape
Yes ‘ CFD analysis matching optimization

Final Design

Fig. 1. Realization of the proposed method for an aerodynamic optimization.

The remainder of the paper is organized as follows: in
Section II, we review the work related to point cloud autoen-
coders, surface recovery, meshing and shape morphing, which
is central for the justification of our study. Then, based on the
review, we describe our approach in Section III, providing
details on the architecture of the point cloud autoencoder,
FFD settings and workflow of the experiments. In Section
IV, we discuss the results of the experiments performed on
the shapes in the car class from ShapeNetCore [7], including
an analysis on the trade-off between costs for generating the
mesh prototypes and coverage, considering different number
of prototypes and dimensionality of the latent representations.

943

Finally. we conclude the paper with a summary and outlook
in Section V.

II. RELATED WORK

The popularization of 3D-sensor technology and develop-
ment of powerful graphic processing units (GPUs) enabled
the recent advances in the field of geometric processing. They
allowed the development of complex deep neural network
models that learn on geometric data and., besides solving
classical machine learning tasks, could be used as shape
generators [2]. Among the explored geometric representations,
3D-point clouds are the simplest and most flexible [1], [5].
[8] with compatibility to a wide range of applications, such as
autonomous driving, scene reconstruction and fast prototyping
[9]-[12]. Furthermore, point clouds can be sampled from more
complex representations, such as meshes and voxels, allow for
shape transformations with topological change.

Yet, learning on point cloud data is considerably chal-
lenging, due to the unstructured nature of the data and the
fact that models have to be invariant against permutations
in the input point cloud [13]. In [14], the authors provide
a comprehensive survey on the architectures for processing
point clouds, presenting also benchmark results on different
data sets. One of the proposed classes comprises point-based
networks which successfully compressed and reconstructed
point cloud representations, such as [13]. [15]-[17]. In these
architectures, the encoder operates in a point-wise fashion
and extracts the latent representation with a global operator.
Thus, the features calculated by the network also become
invariant to the permutation of points [18]. Furthermore, in
order to tackle the problem of calculating a distance loss
function between two unordered sets of points clouds, these
architectures were trained with loss functions that can cope
with non-Euclidean representations. such as the Chamfer and
Earth Mover’s distances [19]. [20]. Once trained. the decoder
could be used as shape generative model, by recovering the
Cartesian coordinates of the points from samples in the latent
space, which also allows for geometric operations. such as
shape interpolation [15].

Due to their shape generation capabilities, point cloud au-
toencoders have a promising potential as design representation
in engineering optimization problems. However, engineering
simulations often adopt numerical algorithms that rely on
meshed discretization, such as finite volume methods. Hence,
apart from autoencoders trained on point clouds that cor-
respond to the vertices of isomorphic meshes. as in [3],
[8]. which preserve the ordering of the points, the surface
reconstruction from generated point clouds has to be addressed
in a post-processing task.

Recovering meshes from Cartesian coordinates is an ill-
posed problem, i.e.. the solution space is infinite. Therefore,
many of the available methods require additional information
on the geometric properties, such as surface normals and
topology. In [5], the authors reviewed several methods for
surface reconstruction and proposed taxonomy of the meth-
ods based on the working principle of each algorithm, and

Authorized licensed use limited to: Universiteit Leiden. Downloaded on July 03,2024 at 08:05:28 UTC from IEEE Xplore. Restrictions apply.

compared the sensitivity to point cloud artifacts, required
input prior information, target shape class and type of output
representation. From the methods presented in the paper, two
re applicable to point clouds generated by an autoencoder: the
tangent planes and graph cut algorithms,

The tangent plane algorithm [21] operates locally and
remeshes the point clouds in two steps: tangent plane ap-
proximation and contouring. In the first step, the algorithm
calculates a signed distance function on a set of neighbor
points that is used to estimate the normal and central position
of the tangent plane to this set, which is later refined into
a surface by the contouring algorithm. However, due to the
signed nature of the distance function, [21] claimed that the
estimate of the normal was sensitive to noise and thus to
the selection of the point neighborhood size, which often
decreased the smoothness of the reconstructed surfaces.

The graph cut algorithm [22] overcomes this difficulty by
adopting an unsigned distance metric, relaxing the constraints
on the estimate of the surface local orientation. Initially, the
method calculates a confidence interval over a uniform grid,
which indicates the probability that the surface passes through
a position (of the grid) in the space. Then, it generates a
weighted graph in space, on which a minimum cut problem is
solved, providing the minimum subset of the graph that max-
imizes the total confidence. Although requiring voxelization,
[22] reported that the algorithms performed rather efficiently,
e.g. in reconstructing the Dragon from the Stanford 3D scan
repository with 318000 nodes in 150 s, and could be coupled
with further mesh refinement algorithms.

In addition to the review in [5], the ball pivoting algo-
rithm (BPA) [23], Point'TriNet [24] and Point2Mesh [25] also
approximate surface meshes on unordered point clouds. The
principle of the BPA is (o triangulate every three points that
fit into a ball of radius p without containing any further point
inside the ball, and to recursively pivot the ball around the
triangulated edges. Due to its simplicity, the BPA requires low
memory resoutces and the time complexity scales linearly with
the size of the models. However, it works by exhausting the
triangulation alternatives and underperforms on point clouds
with highly heterogeneous sampling [23].

In [24], the authors approached the triangulation of points
with the PointTriNet, which comprised two deep neural net-
work models: one for classifying points as node candidates
and another to suggest new candidates. Since the networks
were trained on local information, the authors claimed that
the approach was scalable to higher dimensional models.
However, their proposal tackled the triangulation of points
rather than surface reconstruction and required post processing
tasks for vanishing artifacts and smoothing the mesh. Simi-
larly, the authors of Point2Net [25] approached the remeshing
task with a convolutional neural network (CNN). The model
was frained for iteratively deforming an initial mesh into the
shape generated by the autoencoder, using the output of the
layers as shape priors. The authors claimed that CNNs learn
preferably recurring structures and correlations. Therefore,
they inherently smooth out noise and imperfections in the

point clouds. However, training the architecture required high
computational power and, similar to morphing approaches,
the matching between the initial mesh to the output point
cloud relied on shape similarities and the quality of the initial
geometry.

Addressing the challenges of mesh reconstruction and
avoiding high computational costs, we we here approximate
the point cloud surface using mesh deformation algorithms.
These morphing techniques were already explored in the
literature on shape optimization [26]-[29], and provide an in-
tuitive low-dimensional design representation. A representative
algorithm in this class is free form deformation (FFD) [30],
which maps the geometry to a uniform control lattice, using
trivariate Bernstein polynomials, as an R® — R® function.
Hence, when deforming the lattice, the embedded shape de-
forms accordingly, which allows for continuously morphing
the initial shape into a geometry of interest. Furthermore,
depending on the density of the lattice, FFD preserves the
continuity of the surfaces at high-order and potentially the
quality of the initial mesh.

I1I. METHODS

In our approach, we aimed at finding the optimal set of pro-
totypical meshes to match autoencoder-based 3D point clouds
using FFD. Therefore, we initially provide the necessary
background on the autoencoder architecture and FFD settings.
Then, we describe our three-step approach, which starts with
a feasibility assessment and leads to the experiments for
optimizing the set of prototypical meshes.

A. 3D point cloud autoencoder

Our 3D point cloud autoencoder was based on the proposal
in [15]. It comprised an encoder with five 1D-convolutional
layers, followed by a max pooling layer to extract the latent
representations, and a decoder with three fully connected
layers (Tab. I). From the implementation in [15], we modified
the activation function in the last convolutional layer from
rectified linear unit (Rel.U) to hyperbolic tangent and added a
sigmoid function as activation to the output layer. Hence, the
latent variables were constrained to the space Z € [—1,1]%,
easing the definition of constraints for search and sampling
in the latent space, and the output Cartesian coordinates
to x € [0,1]* which corresponds to input space of the
autoencoder. For further details of the architecture, as well as
the validation and comparison to the original implementation,
see [18], [31].

For the purposes of this paper, the autoencoder was (rained
on the shapes from the car class of ShapeNetCore [7]. In order
to approximate the dimensionality of the data to industry-like
CAE data, the car meshes were refined by recursively applying
the midpoint subdivision algorithm [32] up to eight iterations
with an earlier stop criterion in case the maximum edge length
was smaller than 1E-04 (criteria defined experimentally, results
not shown). The point clouds were sampled from the vertices
of the meshes according to a uniform probability distribution,
generating approximately 3500 point clouds with 8192 points

944

Authorized licensed use limited to: Universiteit Leiden. Downloaded on July 03,2024 at 08:05:28 UTC from IEEE Xplore. Restrictions apply.

TABLE 1
ARCHITECTURE OF OUR 3D POINT CLOUD AUTOENCODER.

[Layer [Type [Activation | Features | Output dimensions |

1 1D-C ReLU 64 [Nx64]
2 1D-C ReLU 128 [Nx128]
3 1D-C ReLU 128 [Nx128]
4 1D-C ReLU 256 [N x%256]
5 1D-C tanh L [Nx=L]

6 maxPool - L [1=L]

7 FC ReLU 2563 [256x3]
8 FC ReLU 2563 [256x3]
9 FC sigmoid N3 N3]

L: Number of latent variables
FC: Fully connected

ID-C: 1D-convolution
N: Size of the point cloud

each. The data set was split into 90/10 % partitions for training
and testing the autoencoder, respectively, without applying any
data augmentation technique.

The weights were optimized using the AdamOptimizer [33],
with a learning rate n = 5FE —4, 5 = 0.99 and 3; = 0.9. The
training data were randomly organized in batches of 50 shapes
and trained over 700 epochs. The losses were determined as
the mean Chamfer distance (CD) [19] between the input and
recovered point clouds in a batch. The autoencoders were
trained on a machine with 2 CPUs Intel Xeon Silver 4110,
clocked at 2.10 GHz, with 4 GPUs NVIDIA GeForce RTX
2080 Ti.

B. FFD settings

The FFD lattice comprised 64 control points, uniformly
distributed in the three Cartesian directions (Fig. 2). We
selected this configuration due to its simplicity, reducing
the computational effort to compute the deformations, and
to ensure C-continuity (curvature) of the surfaces in any
direction.

Fig. 2. Example of a prototypical mesh in the FFD lattice used in the
experiments.

The shapes were deformed by the displacement of the eight
central points of the lattice. In order to impose symmetric
deformations, the position of the control points was mirrored
with respect to the xy-plane (vertical-longitudinal midplane).
Therefore, the deformations were parameterized by the Carte-
sian coordinates of only four control points, yielding twelve
parameters.

In order to avoid generating shapes that could not be
interpreted by the autoencoder, the displacement of the control

points was restricted to 50% of the lattice span for each direc-
tion. We reached this value through an experiment, where we
considered 50 different combinations of maximum displace-
ment in Cartesian direction, up to 1.2 times the span of the
lattice. For each case, we randomly generated 30 deformations
for three samples of car shapes taken from ShapeNetCore and
calculated the mean reconstruction loss using the autoencoder
trained on a 2D-latent space. Analyzing how the losses varied
with respect to the maximum displacements, we observed
that the autoencoder was more sensitive to the deformations
in the a-direction (Fig. 3). The behavior is justified by the
normalization of the input data, which considered the length
of the longest car in the data set as a reference metric. Since
the sizes in the transversal directions are often smaller than the
length, the boundaries of the input space became closer to the
shape extremes in the z-direction. Therefore, when excessively
deformed, the point cloud is displaced to the outside of the
training input domain, leading to worse reconstructions.

® bBcee2711b8-
o fc5dBe25052-
® 301d1cdBd32-
=== gonstraint

-t‘-'a.°.'o.u."“'F

0.0 0.z 04 0.6 0.8 10 1.2
Lattice span multiplier in the x-direction

Fig. 3. Analysis of the reconstruction losses for different ranges of de-
formations in the x-direction. The shape ID in the legend is truncated for
visualization purposes.

C. Optimizing the set of prototypical meshes

Based on the provided background, we propose a method
for searching mesh prototypes using representations in the
latent space. We assume that similar shapes yield neighboring
representations in the latent space. Since the similarity between
shapes is central to the quality of the target shape matching
solution, we expect that a prototype can be matched to any
design in the latent space within a hypervolume defined by
the deformations at the limits of the FFD parameters.

Nevertheless, the correspondence between shape similarity
and position in the latent space is not enforced by the training
algorithm of the autoencoder. Additionally, the quality of the
target shape matching result also varies with respect to the
lattice configuration. Hence, our approach starts with two
experiments to assess the feasibility of our approach.

1) Shape similarity analysis: The objective of this analysis
is to verify whether shapes with similar geometric characteris-
tics are represented close to each other in the latent space. The
similarities between two point clouds given in the Cartesian
space can be measured according to the modified version of
the Hausdorff distance [34], defined as follows:

945

Authorized licensed use limited to: Universiteit Leiden. Downloaded on July 03,2024 at 08:05:28 UTC from IEEE Xplore. Restrictions apply.

N
H:l[

2

N
min d(gi, Gr)* + min d(g;..Go)?| (1
i=1 gi€Go (g T) J'; gg_,-ec.,«- (gtJ U) ()

where Gy and Gp are the initial and target point clouds
respectively, IV the number of points, and g;; the j-th point
sampled from point cloud i. Since H(Go,Gr) € Ry and,
for a perfect match, H(Gy, G) = 0, the magnitude of the
function is associated to the degree of dissimilarity between
shapes.

By clustering designs in the latent space, one can define
each center of the clusters as a reference point cloud Gy and
measure both Hausdoff distance in the Cartesian space and
Euclidean distance in the latent space, for any pair of shapes in
the cluster. The expected outcome is that the larger the distance
between designs and cluster centers, the larger the values of the
Hausdorff distance. Hence, we clustered the representations of
the car shapes calculated using an autoencoder trained on a
2D-latent space into three clusters using the k-means algorithm
[35], and projected the values of the Hausdorff distance to the
shape in the center of cluster 0 onto the 2D-scatter of the
latent representation of the designs (Fig. 4), which visually
confirmed our hypothesis.

Normalized modified Hausdorff distance

1
1.00 Data set ~=- Cluster 0 0
075) * ClusterCenters @ Tested samples

0.8
0.50 4

~0.50 /! .
-0.75 1

=1.00 4

T T 0.0
=100 -0.75 -050 -025 000 025 050 075 1.00

Fig. 4. Normalized value of the modified Hausdorff distance, calculated
between the center and random samples of clustered designs in the latent
space. The label z; indicates the i-th latent variable.

When repeating the procedure for the 5D-latent representa-
tions, we compared the distance metrics using a scatter plot,
since visualizing the high-dimensional spaces is nontrivial
(Fig. 5). Similarly, the distances in the latent space correlated
positively with the Hausdorff distance, indicating that the hy-
pothesis holds for higher-dimensional latent spaces. Therefore,
we concluded that we could use the Euclidean distances in the
latent space as a measure of similarity between designs for the
search of prototypical meshes.

2) Target shape matching optimization: Target shape
matching describes the process of approximating an unknown
shape from an initial geometry, based on a block-box function
that measures the difference between the optimized and the
target shape. So, in a second step, we matched potential
prototypical meshes, assumed to correspond to the centers
of clusters calculated from the 2D-latent representations, to
autoencoder-based point clouds. Our main motivation was to

§ 1.0 o
o8 o
Zo,
£ 06 - e
B LI
be: |
m L]
T 04 i ¥
o % *
8 P
502 . gt
E e % o* * -. 3
o
200] | evesmesnddnntpensep e .
0.0 02 04 06 08 10

Normalized distance in latent space

Fig. 5. Distance metrics calculated between designs and center of the cluster
0. for both point clouds and respective latent representations.

assess the feasibility of our approach, but we also demonstrate
that the quality of the target shape matching optimization
depends on the similarity between initial and target shapes,
which justifies the selection of multiple prototypical meshes.

Hence, we randomly generated ten designs from each cluster
center by shifting the latent variables up to three times
their standard deviation, calculated from the shapes in the
cluster, and recovered the corresponding point clouds using
the decoder. For matching the meshes to the point clouds, we
embedded the prototypes in an FFD lattice considering the
aforementioned settings, and defined the optimization problem
as follows:

m)En_f(x) =H(Grrp,Gag) (2)

Where x is the set of FFD parameters, Gpprp(x) the point
cloud sampled from the deformed prototypical mesh, and G 4 g
an autoencoder-based point cloud from the generated set.

For the optimization, we used the covariance matrix adapta-
tion evolutionary strategy (CMA-ES), which is a gradient-free
method, which is suitable for small population sizes, with a
high convergence ratio and low number of parameters [36]. We
used a (5,20) CMA-ES with an initial step size oy = 0.01, and
limited the number of generations to 30.

Projecting the Hausdorff distance of the best individuals
onto the latent space representations (Fig. 6), we observed
a pattern similar as in the previous analyses: The shapes
farther away from the cluster centers yielded worse matching
results. Therefore, we concluded that in order to match a set
of prototypical meshes to any shape in the data set, within
a certain quality range, the number and characteristics of the
meshes should be optimized, justifying our study.

D. Optimization of the mesh prototype set

In order to optimize the selection of mesh prototypes, we
followed the optimization workflow in Fig. 7. The optimization
starts with a random selection of k£ mesh prototypes from the
available set of latent representations. Each mesh prototype is
embedded in an FFD lattice with the fore-mentioned settings
and randomly deformed, generating a set of shapes. The set of
meshes is then sampled into point clouds and fed to a 3D point

946

Authorized licensed use limited to: Universiteit Leiden. Downloaded on July 03,2024 at 08:05:28 UTC from IEEE Xplore. Restrictions apply.

1.00 10
Data set ===~ Cluster 1
0751 X Clustercenter --- Cluster2
=== Cluster 0 08
0.50
S e
0.25 . o
<\
woomd N
\\
-0.25 N 0.4
\\
-0.50 4 T
¥ 0.2
-0.75
-1 0.0

.00 - - : : -
-100 -0.75 -050 =025 000 0325 050 075 100
70

Fig. 6. Normalized Hausdorff distance of the fittest individual obtained at
the last generation of each optimization run.

cloud autoencoder for calculating the latent representations
and reconstruction losses. The deformations that yielded worse
reconstructions than observed in the data set are removed
from the set and the coverage is calculated from the latent
representations of the remaining samples.

Fig. 7. Optimization workflow for maximizing the number of covered shapes
in the data set.

We defined the coverage of a prototype as the hypervolume
(or area for 2D-spaces) of a convex hull delimited by a set of
samples in the latent space. In order to avoid intersections of
hulls and generating prototypes close to infeasible regions of
the latent space, we weighted the coverage by the fraction of
shapes of the data set covered by each hull. Mathematically,
the coverage obtained with a set of prototypes is defined as
follows:

3)

where V, is the hypervolume of the convex hull, N, 4 is the
number of shapes in the data set, and N is the number of
new data set samples covered by the prototype k, compared
to the set obtained at iteration £ — 1.
At last, the selection of the prototypes was optimized by
solving the following optimization problem
. =1
minf(x) = (Cs + €
min f(z) = (Cs +¢))
where x = {(23,2],...,2}),... (2§, 2F,..., 28)} is the set of
latent variables that represent the prototypes and € is a toler-

ance factor with a magnitude close to 0. In our experiments,
we used e = 1E — 06

For this optimization we also applied the CMA-ES algo-
rithm, with same strategy as in the previous target shape
matching problem, however for a maximum of 50 genera-
tions instead of 30. To analyze the influence of the number
of prototypes, dimensionality of the latent space and initial
solution, we considered cases with one, three, five, seven and
nine prototypes, for 2- and S-dimensional latent spaces, and
twenty different initializations.

IV. EXPERIMENTS AND DISCUSSION

We started our analyses by verifying the convergence behav-
ior of the optimizations (Fig. 8). We observed that, on average,
the objective function was minimized in all cases, except for
the optimization with a single prototype in the SD-latent space.
Furthermore, increasing the dimensionality of the latent space
led to a higher variance of results, which reduced with an
increasing the number of prototypes (Table II).

2D-latent space: fx)y o

1.0{ @mo

gence

- EaT, maan
o, maan

SD-latent space: fix)y ¢ e

1% 10 15 20 25 X 35 40 45 50
neration

o
b

Normalized Objective Function
&
Marmalized Cbjective Function
g 5
4

o
-

1 5 10 15 20 25 M 35 40 45 50
Generation

Fig. 8. Normalized objective function calculated for the best individuals for
every five generations in the optimizations with 2D (left) and 5D (right) latent
spaces

TABLE I
AVERAGE AND STANDARD DEVIATION OF THE NORMALIZED OBJECTIVE
FUNCTION AND NUMBER OF SHAPES COVERED BY THE PROTOTYPES.

L]k F(X#)n Covered Shapes
1| (430 & 5.29)E-02 1826 £ 680
3 [371 £ 5.11E-02 2506 £ 674

2 | 5] (351 £ 5601)E-02 2775 £ 462
7| (3.12 £ 2.52)E-02 2851 £ 423
9 | (2.65 £ 252)E-02 2970 + 352
1 | (3.79 &+ 3.97)E-01 216 + 186
3 | (2.77 £ 3.56)E-01 328 + 248

515] (235 £ 3.80)E-01 451 £ 275
7 | (1.75 = 2.96)E-01 480+ 273
9 | (220 & 3.48)E-01 425 + 282

Our interpretation of the results is in line with the analysis of
the network features presented in [18]. First, the encoder learns
preferably how to differentiate the distributions of points in the
shapes of the data set, such that increasing the dimensionality
of the latent space allows the autoencoder to learn more shape
details. Second, the latent variables represent the combination
of regions that the point cloud occupies in the input space,
while the decoder learns how to map latent activations back
into Euclidean space such as to reconstruct the point clouds.

Randomly deforming mesh prototypes possibly yields point
clouds with point distribution that are uncommon in the data
set. Since the 5D latent space describes finer changes in the
occupancy of the input space, the decoder failed to reconstruct

947

Authorized licensed use limited to: Universiteit Leiden. Downloaded on July 03,2024 at 08:05:28 UTC from IEEE Xplore. Restrictions apply.

some of the generated shapes during the optimizations, which
limited the size of the hull. A similar conclusion is drawn
from the analysis of the covered shapes in the data set
(Fig. 9). The optimizations with the 2D latent representations
stagnated faster at a higher number of covered shapes than
with the 5D latent space, also with respect to the number of
prototypes. In the former, the stagnation is explained by the
overlapping of hulls (Fig. 10), while in the latter, in addition
to the overlapping, the size of the hulls was restricted by the
reconstruction quality, limiting the number of covered shapes
to a lower value.

2D-latent space: Number of covered shapes 5D-latent space: Number of covered shapes
10

00| - el mae
- m) s
e raf .

a7, masn
b, e

1 5 10 15 20 25 30 35 40 45 50 1 S5 10 15 20 25 30 35 40 45 30
Generation Generation

Fig. 9. Number of data set shapes covered by the set of prototypical meshes
optimized in the 2D (left) and 5D (right) latent spaces.

=

Fig. 10. Projection of the hulls obtained for different sets of prototypes onto
the representation of the 2D-latent space.

Finally, we analyzed the trade-off between the costs of
generating the mesh prototypes and number of covered shapes
with a Pareto front-style diagram (Fig. 11). As observed,
the optimization with the 2D latent representations performed
better than with the 5D latent space, which is in line with our
previous observations.

4000
g 3500 x
& 3000 SR = -
® 2500 P
- o === LR 2D, mean
S 2000 -~ === LR 50, mean
(W] [+] ®* Target Solution
5 1500 o
0] 8 &
1000
o o o
3 0 S G
0 : ; . :
1 3 5 7 9
Number of Prototypes

Fig. 11. Number of designs from the autoencoder training set covered by
each optimized set of prototypes, considering different dimensionalities of
the latent space

In addition to the discussed causes of such behavior, the
characteristics of the lattice also explain the differences in
the performance. Since the 5D latent space can describe
finer changes in the point clouds, it also requires a denser
lattice and potentially more deformation parameters to enable
lower-scale deformations. As an example, we clustered the
latent representations using the k-means algorithm with three
clusters and sampled the three nearest shapes to the center
of a cluster (Fig. 12). As observed, the transition between
shapes represented in the 5D latent space are more subtle than
obtained with the 2D representations and challenging to be
obtained with the proposed lattice configuration. Therefore,
balancing the costs and coverage with higher-dimensional
latent spaces becomes even more difficult, since it does not
only require more prototypes, but the effort to determine the
FFD settings also increases.

d=0.0073 d=0.0296 d=0.02964
d=0.05474 d=0.07803 d=0.0949

Fig. 12. Reconstruction of the nearest shapes to a cluster center, sampled for
both representations. The variable d indicates the Euclidean distance to the
cluster center.

V. CONCLUSIONS AND OUTLOOK

In the present paper we propose an approach for finding
optimal sets of prototypical meshes that can be matched
using FFD to autoencoder-based point clouds. We based our
approach on a feasibility analysis, where we showed the corre-
spondences between shape similarities, distances in the latent
space and target shape matching performance. We optimized
the selection of prototypes by searching candidate solutions
in the latent space, which is lower-dimensional and thus more
efficient than using conventional geometric representations.

We analyzed the trade-off between the number of prototypes
and coverage as in a multi-objective optimization problem.
We observed that the coverage stagnated quickly with an
increasing number of prototypes. However, increasing the
dimensionality of the latent space allowed the autoencoder to
learn more shape details, which requires more refined FFD
representations to match neighbor samples in the latent space.
Hence, the costs of implementing multiple prototypes does
not only vary with respect to the number of shapes, but also
depends on the granularity with which the autoencoder can
modify shapes.

Regarding the limitations of our approach, we favored com-
putational effort over accuracy when searching for prototypes,
since we based the coverage on the latent representations of
deformed meshes. Furthermore, we neither explored variations
in the FFD setup, nor in the characteristics of the data set,
which was constrained to a single class. Finally, we explored

948

Authorized licensed use limited to: Universiteit Leiden. Downloaded on July 03,2024 at 08:05:28 UTC from IEEE Xplore. Restrictions apply.

the relation between FFD and latent representations, showing
that, in a shape optimization problem, we can combine both
in order to profit from the diversity of shapes represented in
the low-dimensional latent space and the smoothness in shape
modifications provided by the free form deformation.

(5]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

T. Friedrich, N. Aulig, and S. Menzel, “On the potential and challenges
of neural style transfer for three-dimensional shape data.” in Interna-
tional Conference on Engineering Optimization. Springer International
Publishing, 2019, pp. 581-592.

M. M. Bronstein, I. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst,
“Geometric deep learning: going beyond euclidean data,” IEEE Signal
FProcessing Magazine, vol. July, pp. 18-42, 2017.

N. Umetani, “Exploring generative 3D shapes using autoencoder net-
works,” in SIGGRAPH Asia Technical Briefs 2017. ACM SIGGRAPH
Asia, 2017, pp. 1-4.

D. Bau, B. Zhou, A. Khosla, A. Oliva, and A. Torralba, “Network
dissection: Quantifying interpretability of deep visual representations,”
in 2017 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, Honolulu, HI, USA, July 21-26, 2017. 1EEE Computer
Society, 2017, pp. 3319-3327. [Online]. Available: https://doi.org/10.
1109/CVPR.2017.354

M. Berger, A. Tagliasacchi, L. M. Seversky, P. Alliez, I. a. Levine,
A. Sharf, C. T. Silva, A. Tagliasacchi, L. M. Seversky, C. T.
Silva, I. a. Levine, and A. Sharf, “State of the Art in Surface
Reconstruction from Point Clouds,” Proceedings of the Eurographics
2014, Ewrographics STARs, vol. 1, no. 1, pp. 161-185, 2014. [Online].
Available: http://lgg.epfl.ch/reconstar

S. Menzel and B. Sendhoff, Representing the Change - Free
Form Deformation for Evolutionary Design Optimization. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 63-86. [Online].
Available: https://doi.org/10.1007/978-3-540-75771-9_4

A. X. Chang, T. A. Funkhouser, L. I. Guibas, P. Hanrahan, Q. Huang,
7. Li, 8. Savarese, M. Savva, 8. Song, H. Su, I. Xiao, L. Yi, and F. Yu,
“ShapeNet: An information-rich 3D model repository,” arXiv preprint
arXiv:1512.03012v1 [es.GR], 2015.

T. Rios, B. Sendhoff, S. Menzel, T. Bick, and B. van Stein, “On the
efficiency of a point cloud autoencoder as a geometric representation for
shape optimization,” in 2019 IEEE Symposium Series on Computational
Intelligence (SSCI), 2019, pp. 791-798.

A. Ioannidou, E. Chatzilari, S. Nikolopoulos, and I. Kompatsiaris, “Deep
learning advances in computer vision with 3D data,” ACM Computing
Surveys, vol. 50, no. 2, pp. 1-38, 2017.

7. Cai, J. Han, L. Liu, and L. Shao, “RGB-D datasets using microsoft
kinect or similar sensors: a survey,” Multimedia Tools and Applications,
vol. 76, no. 3, pp. 4313-4355, 2017.

T. Yuan, X. Peng, and D. Zhang, “Direct rapid prototyping from point
cloud data without surface reconstruction,” Computer-Aided Design and
Applications, vol. 15, no. 3, pp. 390-398, 2018. [Online]. Available:
https://doi.org/10.1080/16864360.2017.1397889

H. T. Park, M. H. Chang, and S. C. Park, “A slicing algorithm of
point cloud for rapid prototyping,” in Proceedings of the 2007 Sunmimer
Computer Simulation Conference, ser. SCSC "07. San Diego, CA,
USA: Society for Computer Simulation International, 2007.

C. R. Qi, L. Yi, H. Su, and L. I. Guibas, “Pointnet++: Deep hierarchical
feature learning on point sets in a metric space,” in Proceedings of
the Fst International Conference on Newral Information Processing
Systems, ser. NIPS'17. Red Hook, NY, USA: Curran Associates Inc.,
2017, p. 5105-5114.

Y. Guo, H. Wang, Q. Hu, H. Liu, L. Liu, and M. Bennamoun,
“Deep Learning for 3D Point Clouds: A Survey” arXiv preprint
arXiv:1912.12033 fes.CV], 2019,

P. Achlioptas, O. Diamanti, [. Mitliagkas, and L. Guibas, “Learning
representations and generative models for 3D point clouds,” in Proceed-
ings of the 35th International Conference on Machine Learning (ICML),
vol. 80. Stockholmsmiissan, Stockholm Sweden: PMLR, 2018, pp. 40—
49,

Y. Yang, C. Feng, Y. Shen, and D. Tian, “FoldingNet: Point cloud auto-
encoder via deep grid deformation,” 2018 [EEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 206-215, 2018.

[171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[36]

949

M. Gadelha, R. Wang, and S. Maji, “Multiresolution tree networks for
3D point cloud processing,” in Computer Vision — ECCV 2018. Springer
International Publishing, 2018, pp. 105-122.

T. Rios, B. van Stein, S. Menzel, T. Bick, B. Sendhoff, and P. Wollstadt,
“Feature visualization for 3d point cloud autoencoders,” in International
Joint Conference on Neural Networks (IJCNN) 2020, 2020.

H. Fan, H. Su, and L. Guibas, “A point set generation network for 3D
object reconstruction from a single image,” in 30th IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2017, vol. 2017-
Januar, 2017, pp. 2463-2471.

Y. Rubner, C. Tomasi, and L. J. Guibas, “The earth mover’s distance
as a metric for image retrieval,” Int. J. Comput. Vision, vol. 40, no. 2,
p. 99-121, Nov. 2000. [Online]. Available: https://doi.org/10.1023/A:
1026543900054

H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle,
“Surface reconstruction from unorganized points,” Computer Graphics
(ACM), vol. 26, no. 2, pp. 71-78, 1992.

A. Hornung and L. Kobbelt, “Robust Reconstruction of Watertight 3D
Models from Non-uniformly Sampled Point Clouds Without Normal
Information,” in Symposium on Geometry Processing, A. Sheffer and
K. Polthier, Eds. The Eurographics Association, 2006.

F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin, “The
ball-pivoting algorithm for surface reconstruction,” IEEE Transactions
on Visualization and Computer Graphics, vol. 5, no. 4, pp. 349-359,
1999.

N. Sharp and M. Ovsjanikov, “PointTriNet: Learned Triangulation of 3D
Point Sets,” 2020. [Online]. Available: http://arxiv.org/abs/2005.02138
R. Hanocka, G. Metzer, R. Giryes, and D. Cohen-Or, “Point2Mesh:
A Self-Prior for Deformable Meshes.” vol. 39, no. 4, 2020. [Online].
Available: hup://arxiv.org/abs/2005.11084{\ % }0Ahup://dx.doi.org/10.
1145/3386569.3392415

S. Menzel, M. Olhofer, and B. Sendhoff, “Application of free form de-
formation techniques in evolutionary design optimisation,” in 6th World
Congress on Structural and Multidisciplinary Optimization (WCSMOG6),
I. Herskovits, S. Mazorche, and A. Canelas, Eds. Rio de Janeiro:
COPPE Publication, 2005.

D. Sieger, 5. Menzel, and M. Botsch, On Shape Deformation Technigues
for Sinudation-Based Design Optimization, 01 2015, vol. 5, pp. 281-303.
R. Duvigneau, “Adaptive Parameterization using Free-Form
Deformation for Aerodynamic Shape Optimization,” Research Report,
2006. [Online]. Available: https://hal.inria.frfinria-00085058

M. Olhofer, T. Bihrer, S. Menzel, M. Fischer, and B. Sendhoff, “Evo-
lutionary optimisation of an exhaust flow element with free form de-
formation,” in Simudation for Innovative Design, Proceedings of the 4th
FASC - 2009 European Automotive Simulation Conference, K. Seibert
and M. Jirka, Eds. ANSYS Inc., 2009, pp. 163174,

T. W. Sederberg and S. R. Parry, “Free-form deformation of solid
geometric models,” in Proceedings of the 13th Annual Conference on
Computer Graphics and Interactive Technigues, ser. SIGGRAPH "86.
New York, NY, USA: ACM, 1986, pp. 151-160. [Online]. Available:
http://doi.acm.org/10.1145/15922.15903

T. Rios, P. Wollstadt, B. v. Stein, T. Biick, Z. Xu, B. Sendhoff, and
S. Menzel, “Scalability of learning tasks on 3d cae models using point
cloud autoencoders,” in 2019 [EEE Symposium Series on Computational
Intelligence (SSCI), 2019, pp. 1367-1374.

Q. Chen and H. Prautzsch, “General triangular midpoint subdivision,”
Computer Aided Geometric Design, vol. 31, no. 7, pp. 475 — 485, 2014,
recent Trends in Theoretical and Applied Geometry. [Online]. Available:
http:/fwww.sciencedirect.conm/science/farticle/pii/S0167839614000600

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015.

P. Zhang, X. Yao, L. Jia, B. Sendhoff, and T. Schnier, “Target shape
design optimization by evolving splines,” 10 2007, pp. 2009 - 2016.
D. Arthur and S. Vassilvitskii, “K-means++: The advantages of careful
seeding,” in Proceedings of the Eighteenth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, ser. SODA "07. USA: Society for
Industrial and Applied Mathematics, 2007, p. 1027-1035.

T. Biick, E. Hoffmeister, and H.-P. Schwefel, “A survey of evolution
strategies,” in Proceedings of the Fourth International Conference on
Genetic Algorithms. Morgan Kaufmann, 1991, pp. 2-9.

Authorized licensed use limited to: Universiteit Leiden. Downloaded on July 03,2024 at 08:05:28 UTC from IEEE Xplore. Restrictions apply.

