
Automatic algorithm configuration: instance-specific or not?
Leyman, P.; Hoos, H.H.

Citation
Leyman, P., & Hoos, H. H. (2020). Automatic algorithm configuration: instance-
specific or not? Annual Conference Of The Belgian Operational Research
Society, 34, 108-109. Retrieved from https://hdl.handle.net/1887/3766134
 
Version: Publisher's Version

License: Licensed under Article 25fa Copyright Act/Law
(Amendment Taverne)

Downloaded from: https://hdl.handle.net/1887/3766134
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:4
https://hdl.handle.net/1887/license:4
https://hdl.handle.net/1887/3766134


Automatic algorithm con�guration:

Instance-speci�c or not?

Pieter Leyman

Leiden Institute of Advanced Computer Science, Leiden University, The Netherlands

CODeS, Department of Computer Science, KU Leuven Kulak, Belgium

e-mail: p.leyman@liacs.leidenuniv.nl, pieter.leyman@kuleuven.be

Holger H. Hoos

Leiden Institute of Advanced Computer Science, Leiden University, The Netherlands

Department of Computer Science, University of British Columbia, Canada

e-mail: hh@liacs.nl

Assume that you want to solve a rather di�cult, say NP-hard, problem. You
could then design a new metaheuristic algorithm, or use (parts of) an existing
implementation, with operators or components tailored to the problem you wish
to solve. Typically, these operators would be associated with a multitude of,
often hard-coded, design choices. Additionally, most if not all metaheuristic
algorithms contain parameters (e.g., the population size in a genetic algorithm),
which can have major impact on the performance obtained for speci�c types of
problem instances. It is well known that �nding good parameter settings can
be quite di�cult, even for experts, and becomes even harder when additional
design choices, such as alternative or optional components have to be made.
However, these con�guration tasks can be solved automatically, using general-
purpose algorithm con�guration procedures (see e.g., SMAC, ParamILS, irace).

Programming by Optimization (PbO) [3] states that it is crucial to avoid pre-
mature commitment, which can be achieved by incorporating alternatives for each
of an algorithm's components, and by employing a (large) number of algorithm
parameters to determine which alternative is or should be used. The aforemen-
tioned automatic algorithm con�guration can then be employed to determine the
best combination of components, given a training dataset. Note that algorithms
typically are (and should be) con�gured on a training set, which is di�erent from
the evaluation set used to determine the performance of said con�guration.

In the context of PbO, we propose an algorithm framework, which exposes
all design choices and allows for the conversion to a highly parametrized algo-
rithm (e.g., [4]). Instead of con�guring this algorithm on a training dataset and
subsequently employing the same con�guration to evaluate performance for all
instances in an evaluation set, however, we aim to �nd a con�guration model
based on instance characteristics. Since it was shown that the largest perfor-
mance improvement for an algorithm typically comes from tuning 3-4 algorithm
parameters [2], and that con�guration landscapes are often unimodal and convex
[5], we believe the focus of our suggested con�guration model can be limited to
these most important algorithm parameters.

1



Speci�cally, we con�gure an algorithm with automatic algorithm con�gura-
tion, and then apply ablation analysis [2] to determine the algorithm parame-
ters with the greatest impact on performance. Afterward, we build an instance-
speci�c model based on this smaller set of algorithm parameters, such that di�er-
ent algorithm con�gurations can be proposed based on the data parameters of the
test instances used. This way, we can obtain a mapping of instance parameters
to algorithm parameters, such that di�erent test instances may require di�erent
algorithm con�gurations. A particularly interesting question in this context is
then whether our proposed approach would outperform a �standard� automated
algorithm con�guration (i.e. independent of data parameters), when applied on
an evaluation set.

As a possible application, we are currently working on the capacitated ve-
hicle routing problem (CVRP), since this is a well-studied problem in logistics.
Recently, [1] proposed a ruin-and-recreate algorithm, which outperformed earlier
state-of-the-art algorithms for both the CVRP and several problem extensions.
As a result, we believe the algorithm of [1] makes for an excellent application to
test our framework with.

Acknowledgements

Pieter Leyman is a Postdoctoral Fellow of the Research Foundation - Flanders.

References

[1] Christiaens, J. and Vanden Berghe, G. (2019). Slack induction by string re-
movals for vehicle routing problems. Transportation Science, to appear.

[2] Fawcett, C. and Hoos, H.H. (2016). Analysing di�erences between algorithm
con�gurations through ablation. Journal of Heuristics, 22: 431-458.

[3] Hoos, H.H. (2012). Programming by optimization (2016). Communications of
the ACM, 55(2): 70-80.

[4] Luo, C., Hoos, H.H., Cai, S., Lin, Q., Zhang, H. and Zhang, D. (2019). Local
search with e�cient automatic con�guration for minimum vertex cover. Pro-
ceedings of the 28th International Joint Conference on Arti�cial Intelligence
(IJCAI-19), 1297-1304.

[5] Pushak, Y. and Hoos, H.H. (2018). Algorithm Con�guration Landscapes:
More Benign than Expected? Proceedings of the 15th International Confer-
ence on Parallel Problem Solving from Nature (PPSN-18), 271-283.


