A:EN:p Universiteit
Nelird) Leiden
%’b The Netherlands

Automatic algorithm configuration: instance-specific or not?
Leyman, P.; Hoos, H.H.

Citation
Leyman, P., & Hoos, H. H. (2020). Automatic algorithm configuration: instance-

specific or not? Annual Conference Of The Belgian Operational Research
Society, 34, 108-109. Retrieved from https://hdl.handle.net/1887/3766134

Version: Publisher's Version
Licensed under Article 25fa Copyright Act/Law
(Amendment Taverne)

Downloaded from: https://hdl.handle.net/1887/3766134

License:

Note: To cite this publication please use the final published version (if
applicable).


https://hdl.handle.net/1887/license:4
https://hdl.handle.net/1887/license:4
https://hdl.handle.net/1887/3766134

Automatic algorithm configuration:
Instance-specific or not?

Pieter Leyman
Leiden Institute of Advanced Computer Science, Leiden University, The Netherlands
CODeS, Department of Computer Science, KU Leuven Kulak, Belgium

e-mail: p.leyman@liacs.leidenuniv.nl, pieter.leyman@kuleuven.be

Holger H. Hoos
Leiden Institute of Advanced Computer Science, Leiden University, The Netherlands
Department of Computer Science, University of British Columbia, Canada

e-mail: hh@liacs.nl

Assume that you want to solve a rather difficult, say NP-hard, problem. You
could then design a new metaheuristic algorithm, or use (parts of) an existing
implementation, with operators or components tailored to the problem you wish
to solve. Typically, these operators would be associated with a multitude of,
often hard-coded, design choices. Additionally, most if not all metaheuristic
algorithms contain parameters (e.g., the population size in a genetic algorithm),
which can have major impact on the performance obtained for specific types of
problem instances. It is well known that finding good parameter settings can
be quite difficult, even for experts, and becomes even harder when additional
design choices, such as alternative or optional components have to be made.
However, these configuration tasks can be solved automatically, using general-
purpose algorithm configuration procedures (see e.g., SMAC, ParamlILS, irace).

Programming by Optimization (PbO) [3] states that it is crucial to avoid pre-
mature commitment, which can be achieved by incorporating alternatives for each
of an algorithm’s components, and by employing a (large) number of algorithm
parameters to determine which alternative is or should be used. The aforemen-
tioned automatic algorithm configuration can then be employed to determine the
best combination of components, given a training dataset. Note that algorithms
typically are (and should be) configured on a training set, which is different from
the evaluation set used to determine the performance of said configuration.

In the context of PbO, we propose an algorithm framework, which exposes
all design choices and allows for the conversion to a highly parametrized algo-
rithm (e.g., [4]). Instead of configuring this algorithm on a training dataset and
subsequently employing the same configuration to evaluate performance for all
instances in an evaluation set, however, we aim to find a configuration model
based on instance characteristics. Since it was shown that the largest perfor-
mance improvement for an algorithm typically comes from tuning 3-4 algorithm
parameters [2], and that configuration landscapes are often unimodal and convex
[5], we believe the focus of our suggested configuration model can be limited to
these most important algorithm parameters.



Specifically, we configure an algorithm with automatic algorithm configura-
tion, and then apply ablation analysis [2] to determine the algorithm parame-
ters with the greatest impact on performance. Afterward, we build an instance-
specific model based on this smaller set of algorithm parameters, such that differ-
ent algorithm configurations can be proposed based on the data parameters of the
test instances used. This way, we can obtain a mapping of instance parameters
to algorithm parameters, such that different test instances may require different
algorithm configurations. A particularly interesting question in this context is
then whether our proposed approach would outperform a “standard” automated
algorithm configuration (i.e. independent of data parameters), when applied on
an evaluation set.

As a possible application, we are currently working on the capacitated ve-
hicle routing problem (CVRP), since this is a well-studied problem in logistics.
Recently, [1] proposed a ruin-and-recreate algorithm, which outperformed earlier
state-of-the-art algorithms for both the CVRP and several problem extensions.
As a result, we believe the algorithm of [1] makes for an excellent application to
test our framework with.

Acknowledgements

Pieter Leyman is a Postdoctoral Fellow of the Research Foundation - Flanders.

References

[1] Christiaens, J. and Vanden Berghe, G. (2019). Slack induction by string re-
movals for vehicle routing problems. Transportation Science, to appear.

[2] Fawcett, C. and Hoos, H.H. (2016). Analysing differences between algorithm
configurations through ablation. Journal of Heuristics, 22: 431-458.

[3] Hoos, H.H. (2012). Programming by optimization (2016). Communications of
the ACM, 55(2): 70-80.

[4] Luo, C., Hoos, H.H., Cai, S., Lin, Q., Zhang, H. and Zhang, D. (2019). Local
search with efficient automatic configuration for minimum vertex cover. Pro-
ceedings of the 28th International Joint Conference on Artificial Intelligence
(1JCAI-19), 1297-1304.

[5] Pushak, Y. and Hoos, H.H. (2018). Algorithm Configuration Landscapes:
More Benign than Expected? Proceedings of the 15th International Confer-
ence on Parallel Problem Solving from Nature (PPSN-18), 271-283.



