
Analysis and formal specification of OpenJDK’s
BitSet
Tatman, A.S.; Hiep, H.A.; Gouw, C.P.T. de; Herber, P.; Wijs, A.

Citation
Tatman, A. S., Hiep, H. A., & Gouw, C. P. T. de. (2023). Analysis and
formal specification of OpenJDK’s BitSet. Lecture Notes In Computer
Science, 134-152. doi:10.1007/978-3-031-47705-8_8

Version: Publisher's Version

License: Licensed under Article 25fa Copyright
Act/Law (Amendment Taverne)

Downloaded from: https://hdl.handle.net/1887/3766075

Note: To cite this publication please use the final published version
(if applicable).

https://hdl.handle.net/1887/license:4
https://hdl.handle.net/1887/license:4
https://hdl.handle.net/1887/3766075

Analysis and Formal Specification
of OpenJDK’s BitSet

Andy S. Tatman1(B) , Hans-Dieter A. Hiep1,2 , and Stijn de Gouw3

1 Leiden Institute of Advanced Computer Science (LIACS), Leiden, The Netherlands
tatmanandys@gmail.com, hdh@cwi.nl

2 Centrum Wiskunde and Informatica, Amsterdam, The Netherlands
3 Open Universiteit, Heerlen, The Netherlands

sdg@ou.nl

Abstract. This paper uses a combination of formal specification and
testing, to analyse OpenJDK’s BitSet class. This class represents a vec-
tor of bits that grows as required. During our analysis, we uncovered a
number of bugs. We propose and compare various solutions, supported
by our formal specification. While a full mechanical verification of the
BitSet class is not yet possible due to limited support for bitwise opera-
tions in the KeY theorem prover, we show initial steps taken to formally
verify the challenging get(int,int) method, and discuss some required
extensions to the theorem prover.

Keywords: Formal specification · Testing · Java/OpenJDK · KeY ·
JML

1 Introduction

Formal specification and verification are extremely powerful techniques to
inspect program code and determine either its correctness or find errors that can
be missed by traditional testing techniques. These formal methods may uncover
bugs that have laid dormant in code for years. However, applying formal methods
can also be extremely time-consuming: even a small section of code can require a
large proof to verify it. As such, formal verification is generally directed to essen-
tial and frequently used code, such as standard libraries. Previous examples of
such an effort include the verification of OpenJDK’s LinkedList class [12] and
OpenJDK’s sorting implementation [10]. In this paper, we discuss and analyse
another of Java’s standard library classes, specifically the OpenJDK’s BitSet

class. The original goal was to formally verify the correctness of an essential
part of the BitSet class using the KeY theorem prover. However, when using
techniques such as formal specification and testing, we encountered a number
of issues that appear to have existed in the code since the original push on
OpenJDK’s public repository back in 20071.
1 https://github.com/openjdk/jdk/blob/319a3b994703aac84df7bcde272adfcb3cdbbb

f0/jdk/src/share/classes/java/util/BitSet.java.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
P. Herber and A. Wijs (Eds.): iFM 2023, LNCS 14300, pp. 134–152, 2024.
https://doi.org/10.1007/978-3-031-47705-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47705-8_8&domain=pdf
http://orcid.org/0009-0009-3794-2572
http://orcid.org/0000-0001-9677-6644
http://orcid.org/0000-0003-2964-6844
https://github.com/openjdk/jdk/blob/319a3b994703aac84df7bcde272adfcb3cdbbbf0/jdk/src/share/classes/java/util/BitSet.java
https://github.com/openjdk/jdk/blob/319a3b994703aac84df7bcde272adfcb3cdbbbf0/jdk/src/share/classes/java/util/BitSet.java
https://doi.org/10.1007/978-3-031-47705-8_8

Analysis and Formal Specification of OpenJDK’s BitSet 135

We first identified an overflow bug in BitSet’s get(int,int) method. Later,
we also encountered issues with the valueOf(...) methods that under certain
conditions leaves (an instance of) bitset in an unexpected state, causing erratic
behaviour in the other methods of the class. We have chosen to use the KeY
theorem prover because it most accurately models Java semantics, including, for
example, integer overflows. Unlike other available verification tools, KeY allows
to load the unaltered BitSet class. And even then, we need to extend KeY with
additional proof rules before we are able to perform a full verification. However,
a full verification of the BitSet class is not yet possible, since the issues we
encountered are not yet resolved by the Java developers and so the specification
and implementation is not settled yet.

Related Work. To the best of our knowledge, this is the first paper presenting a
formal analysis of Java’s BitSet class, but there is related work in two directions.
On the one hand, in recent years there have been several case studies in formal
verification [2,6,13] and model checking [3,9] of various Java libraries. However,
these libraries did not substantially use bitwise operations. At most a few bit-
shifts were present and shifts can be covered purely arithmetically in a fairly
straightforward manner by multiplying or dividing with a power of two.

In another direction, there are numerous works that focus on (mechanisa-
tion of) logical theories for bit vectors, not necessarily tied to Java. The SMT
solver Z3 [15] has a theory for fixed-width bit vectors. It works roughly by flat-
tening (also known as bit-blasting) a given arithmetic formula of interest that
involves bit vectors into an equisatisfiable propositional formula and then solving
the resulting propositional formula with SAT-solving techniques. An extension
of the CVC4 SMT-solver [11] also supports bit vectors using bit-blasting and,
recently, a more advanced technique called int-blasting [17]. Isabelle/HOL is a
proof assistant that supports bit vectors [7], building on the work in Z3. The Coq
proof assistant also includes a theory for bit vectors [5] which has been applied
to a (self-written) library for finite sets, represented by bit vectors. There is also
a tool-supported approach for verifying LTL properties (a common temporal
logic) of programs involving bit vectors.

While none of these solvers and proof assistants directly support the full-
fledged Java semantics required to load and analyse the unaltered BitSet class
with the formal JML specifications, they could potentially serve as back-ends
to solve proof obligations that arise during verification with KeY. This requires
developing a translator for proof obligations from KeY into e.g. SMT-LIB. KeY
already supports translating standard arithmetic formulas into SMT-LIB (and
then using e.g. Z3 as a back-end) but the translation of bitwise operations is
limited and would have to be enhanced: most bitwise operations are currently
translated as uninterpreted function symbols.

Outline. In Sect. 2 we explain the structure and inner workings of the BitSet

class. Section 3 then discusses our formal specification that captures the expected
behaviour of the class. Section 4 discusses the issues that we discovered while

136 A. S. Tatman et al.

analysing the correctness of the class, and Sect. 4.3 offers various solution direc-
tions. Finally, Sect. 5 covers a proof sketch of the formal verification of the
get(int,int) method, as well as extensions that are required to the KeY the-
orem prover in order to complete the proof.

Listing 1. The fields and methods of the BitSet class relevant for this paper. See also
the Javadoc of BitSet [1] for a full description of all its methods.

1 package java.util;
2

3 public class BitSet {
4 // The internal field storing the bits.
5 private long[] words;
6 // The number of words in the logical size of this BitSet.
7 private transient int wordsInUse = 0;
8

9 /** Creates a new bit set. */
10 public BitSet() { ... }
11 /** Creates a bit set whose initial size is large enough to

explicitly represent bits with indices in the range 0 through
nbits -1. */

12 public BitSet(int nbits) { ... }
13 /** Returns a new bit set containing all the bits in the given long

array. */
14 public static BitSet valueOf(long[] longs) { ... }
15

16 /** Sets the bit at the specified index to true. */
17 public void set(int bitIndex) { ... }
18 /** Returns the value of the bit with the specified index. */
19 public boolean get(int bitIndex) { ... }
20 /** Sets the bit specified by the index to false. */
21 public void clear(int bitIndex) { ... }
22 /** Returns a new BitSet composed of bits from this BitSet from

fromIndex (inclusive) to toIndex (exclusive). */
23 public BitSet get(int fromIndex, int toIndex) { ... }
24

25 /** Returns the "logical size" of this BitSet: the index of the
highest set bit in the BitSet plus one. */

26 public int length() { ... }
27 }

2 The BitSet Class

The BitSet class is part of Java’s standard library in the open-source Java
Development Kit (OpenJDK). Listing 1 shows the fields and methods of the
class relevant for this paper. The class allows users to store bits (or primitive
Booleans) as a bit vector and packs these bits efficiently as an array of elements
of primitive type long, where each long element stores (and occupies, on main-
stream architectures) 64 bits. This is typically far more efficient memory-wise
than storing an unpacked array of individual primitive Booleans. In arrays, all
elements must be directly addressable, and so, on byte-aligned memory archi-
tectures, every single bit in an array of primitive Booleans would use 8 bits.

The class has methods to set, clear or get the value of one bit, as well as
methods to do the same for sequences of consecutive bits. These methods operate
on Booleans, and internally perform packing and unpacking of the bit vector. We
shall simply speak of bit values 1 and 0, instead of true and false, respectively.

Analysis and Formal Specification of OpenJDK’s BitSet 137

Fig. 1. A representation of the words array. Each individual word is depicted by a
decimal number inside a box. The third box contains the decimal number 261, which
has exactly 1 bit set to 1. wordsInUse is 3, as the words array has 3 elements and the
last word has bits set.

Fig. 2. The logical representation of the same bitset as depicted in Fig. 1. Each bit is
stored separately. Every bit between the dots is set to 0. The bit in 189 is set to 1,
because it is the bit set in 261 in the third element of words.

The field words contains the array of (64-bit) long elements. Each word packs
bits, also making use of the sign bit. Index 0 of a bitset is the least significant
bit in the first word, index 63 is the most significant bit of the first word (the
sign bit), and index 64 is the least significant bit of the second word.

Figure 1 shows the words array of a bitset instance, while Fig. 2 shows the
logical representation of that same array as a sequence of bits. The class also
maintains an integer field wordsInUse that keeps track of the last word that
contains at least one set bit. The wordsInUse field is used to approximate the
logical size of the bitset instance. In fact, the logical size of the BitSet is the
position of the most significant bit that is set to 1, and therefore is closely related
to wordsInUse. If no bits are set in a bitset instance, then the logical size is 0.
If the first bit (at index 0) is the most significant bit that is set to 1, the logical
size is 1. In the example above, the logical size is 190, as index 189 is the last
bit that is set to 1.

Initially every bit in a bitset instance is set to 0. If a user tries to retrieve the
value of a bit outside of the logical size of a bitset, then this value is by default
0. This allows the class to handle access to any bit at a non-negative index, even
if the corresponding index would fall outside the bounds of the words array.
When setting a bit at an index outside of the words array, the bitset expands
dynamically by allocating a larger words array.

3 Formal Specification

We focused on a selection of methods that cover the main operations of the
BitSet class: querying and modifying bitsets, shown in Listing 1, and the internal
methods recalculateWordsInUse(), expandTo(int), ensureCapacity(int)

that are explained later. Next, we formulate a specification of the class, in the
form of a class invariant and contracts for methods in scope. We also introduce
model methods (see below) to express method contracts at an abstraction level
that corresponds more closely to our intuition of expected method behaviour.

138 A. S. Tatman et al.

We employ the Java Modelling Language (JML) [14] as the language in which
we express our formal specification. The KeY tool automatically translates our
given specifications into Java Dynamic Logic (JavaDL) [2] to be able to reason
about the correctness of methods.

Method contracts describe what must be true in the state prior to the method
being called (pre-condition) and what must be true in the state after the method
terminates (post-condition). The pre-condition for a method is described in
JML using the requires clause, while the post-condition is described using
the ensures clause. A contract can also specify exactly what parts of the heap
can be altered using the assignable clause. For example, assigable \nothing

means that the fields of any pre-existing object must remain exactly the same,
but the method is allowed to create new objects.

Further, we distinguish helper methods from normal methods. The contracts
of normal methods implicitly includes the class invariant as part of the pre-
condition and post-condition, while helper methods do not implicitly include the
class invariant. We can use \invariant_for(this) to explicitly specify that the
invariant does hold in the pre-condition or post-condition of a helper method.
This is used, for example, in the helper method recalculateWordsInUse() that
restores the class invariant of a bitset where the invariant did not hold in the
pre-condition.

3.1 Class Invariant

Our starting point for defining the class invariant is the three assertions given
in the checkInvariants() method. These are the following:

1. Either wordsInUse is zero or words[wordsInUse-1] is non-zero. The latter
condition states that the word possibly indicated by wordsInUse has at least
one bit that is set.

2. The value of wordsInUse is in the range of [0, words.length], inclusive.
3. Either wordsInUse equals the length of words, or the first word outside the

meaningful part of the words array, i.e. words[wordsInUse], has no set bits
and so words[wordsInUse] = 0.

These conditions are indeed necessarily part of the class invariant, but these con-
ditions alone are not sufficient: there are more conditions that remain invariant.

The words array is allocated and we know that words is never null. Further,
the last condition suggests that all words after words[wordsInUse-1] should be
equal to zero. In fact, the implementations of the in-scope methods guarantee
this property. As an example, take the recalculateWordsInUse method. This
helper method restores the class invariant by setting the wordsInUse variable
to the proper value: when the method is called, it is assumed that all words
after words[wordsInUse-1] equal zero, and the method moves the wordsInUse

as much as is possible to the left to ensure that condition (1) above holds. By
moving wordsInUse to the left when words[wordsInUse] is zero, we indeed have
that all words after wordsInUse are equal to 0.

We formalise this intuition by the class invariant in Listing 2.

Analysis and Formal Specification of OpenJDK’s BitSet 139

Listing 2. The first part of the class invariant, written in JML.

1 /*@ invariant
2 @ words != null &
3 @ // The first three are from checkInvariants:
4 @ (wordsInUse == 0 | words[wordsInUse - 1] != 0) &&
5 @ (wordsInUse >= 0 && wordsInUse <= words.length) &&
6 @ (wordsInUse == words.length || words[wordsInUse] == 0) &&
7 @ // Our addition to the invariant:
8 @ (wordsInUse < words.length ==> (\forall \bigint i; wordsInUse <= i

< words.length; words[i] == 0)) &&
9 @ ...

10 @*/

Next, we look for upper bounds of words.length and wordsInUse. Bitsets
that are generated by the public constructors (i.e. not by the valueOf(...)

methods, see Sect. 4.2) will allocate a words array. When acting on bitsets using
e.g. the set(...) method, the words array grows as required by the inter-
nal expandTo(int) and ensureCapacity(int) methods, while the wordsInUse

variable is updated to reflect the largest word with a set bit. The largest
addressable position of a bit is at position Integer.MAX_VALUE, which is stored
in words[Integer.MAX_VALUE/64]. Hence, the upper bound of wordsInUse is
Integer.MAX_VALUE/64 + 1.

The ensureCapacity(int wordsRequired) method grows the array if nec-
essary, specifically if wordsRequired is larger than the current length of words.
If the array should grow, this method allocates a new array of length
Math.max(2 * words.length, wordsRequired), meaning that the array gets
at least doubled every time words is expanded. The bound for the parameter
wordsRequired is the same as for wordsInUse, namely Integer.MAX_VALUE/64

+ 1. The largest word array that the public constructors create is also of length
Integer.MAX_VALUE/64 + 1. For the upper bound of the length of words, we
thus take double this value: 2 * (Integer.MAX_VALUE/64 + 1).

These bounds hold while using BitSet’s methods to interact with specific
bits, such as set(...) and clear(...). However, in Sect. 4.2, we will show that
these bounds are violated when using the static valueOf(...) methods.

3.2 The wordsToSeq() Model Method

In order to express properties of the contents of a bitset, we use a sequence of
Booleans as representation, such that position i in the sequence corresponds to
the bit at position i in the bitset. We employ a model method, which is a method
that is only used in our contracts and does not affect the (run-time) state of the
object [8], shown in Listing 3.

Listing 3. Our wordsToSeq() model method.

1 /*@ private model strictly_pure \seq wordsToSeq() {
2 @ return (\seq_def \bigint i; 0; (\bigint)wordsInUse * (\bigint)

BITS_PER_WORD; (words[i / BITS_PER_WORD] >>>
3 (int)(i % BITS_PER_WORD)) & 1);
4 @ }
5 @*/

140 A. S. Tatman et al.

For each word in the words array, the sequence isolates each of the individual
64 bits and stores them as an element of the sequence returned by the model
method. Note that, contrary to the logical size of a bitset, the length of our
sequence of Booleans is a multiple of 64, the number of bits per word. As an
example, consider that the wordsToSeq() model method converts the array as
seen in Fig. 1 to the sequence as seen in Fig. 2.

As with the behaviour of the BitSet class itself, any bit at a position larger
than the length of this sequence in the words array must equal 0.

It is now possible to give contracts for the methods get(int), set(int),
and clear(int). Namely, the value that is returned by get(int) is precisely
the value of the Boolean of the wordsToSeq sequence at the right position, or
zero if it falls outside. Similarly, for set(int) and clear(int) we can relate the
wordsToSeq sequence in the pre-state and the post-state by expressing what bit
values remain unchanged, and the new bit value at the changed position in the
bit vector.

3.3 The get(int,int) Method

A more challenging method to specify is the get(int fromIndex,

int toIndex) method. It returns a new BitSet instance that contains the bits
from the given range. As we will show in Sect. 4, the get(int,int) method has
a bug in it, not only in the current Java version (JDK 20, at the time of writ-
ing)2 but also all the way back to the first release of OpenJDK and possibly even
further back. Assuming that the bug will eventually be resolved, get(int,int)
is still an interesting method to look at. It is one of the larger and more complex
methods in the BitSet class, and its verification requires giving a non-trivial
loop invariant.

The method returns a subsequence of the current bitset, containing all bits
from the fromIndex up to but not including the toIndex. Both fromIndex and
toIndex must be non-negative integers, and fromIndex must be less than or
equal toIndex. Furthermore, the specification involves comparing two different
Boolean sequences, namely the original sequence and the sequence associated to
the new BitSet instance returned by the method.

The contract for this method can be seen in Listing 4.

Listing 4. The contract for the get(int,int) method.

1 /*@ normal_behaviour
2 @ requires fromIndex >= 0 && fromIndex <= toIndex;
3 @ ensures \result != this && \invariant_for(\result);
4 @ ensures (\forall \bigint i; 0 <= i < \result.wordsToSeq().length;

(fromIndex + i < wordsToSeq().length ?
wordsToSeq()[fromIndex + i] : 0) == \result.wordsToSeq()[i]);

5 @ ensures (\result.wordsToSeq().length < toIndex - fromIndex) ==>
(\forall \bigint i; \result.wordsToSeq().length <= i < toIndex -
fromIndex; (fromIndex + i < wordsToSeq().length ?
wordsToSeq()[fromIndex + i] : 0) == 0);

2 https://github.com/openjdk/jdk/blob/a52c4ede2f043b7d4a234c7d06f91871312e965
4/src/java.base/share/classes/java/util/BitSet.java.

https://github.com/openjdk/jdk/blob/a52c4ede2f043b7d4a234c7d06f91871312e9654/src/java.base/share/classes/java/util/BitSet.java
https://github.com/openjdk/jdk/blob/a52c4ede2f043b7d4a234c7d06f91871312e9654/src/java.base/share/classes/java/util/BitSet.java

Analysis and Formal Specification of OpenJDK’s BitSet 141

6 @ assignable \nothing;
7 @*/

The pre-condition of the method states that 0 ≤ fromIndex ≤ toIndex. For
the post-condition of this method, we have, first of all, that the invariant must
hold for the resulting bitset and that the resulting instance is different from
this. Further, the last two ensures clauses express that the resulting bit-
set contains the expected bits. Every element in result.wordsToSeq() should
match in value to the corresponding element in the original this.wordsToSeq().
If an element at position i is out of the bounds of one of the Boolean
sequences, then that element should equal 0 in the other sequence. For exam-
ple, assume the user calls get(0, 100) and the method returns a bitset with
result.wordsToSeq().length = 64. This means that the bits at positions 64–
99 in result are set to 0, and as such the corresponding bits in the original bitset
should also all equal 0. Finally, the assignable \nothing clause expresses that
the state of the current object is not changed in any way.

4 Issues in BitSet

Using formal specification and testing, we discovered several issues. These issues
are outlined in this section, and we suggest solution directions. The two issues
are orthogonal, but the issues do overlap in one aspect: an integer overflow of
the logical size as returned by length().

4.1 A Bug in get(int,int) Caused by a Negative length()

The first issue occurs in the get(int fromIndex, int toIndex) method3. The
beginning of the implementation of this method is visible in Listing 5.

Listing 5. Beginning of the get(int, int) method, where the first bug occurs.

1 public BitSet get(int fromIndex, int toIndex) {
2 checkRange(fromIndex, toIndex);
3 checkInvariants();
4 int len = length();
5 if (len <= fromIndex || fromIndex == toIndex)
6 return new BitSet(0); // If no set bits in range
7 if (toIndex > len)
8 toIndex = len; // An optimization
9 ...

The length() method should return the position of the most significant bit set,
plus 1. For example, if the user sets the bit at position 200 in a previously empty
bitset, then the length() method will return 201. However, if the user sets the
bit at index Integer.MAX_VALUE, then the length() method will return the
integer Integer.MAX_VALUE + 1, which overflows to Integer.MIN_VALUE.

Listing 6. Example of how the bug can lead to unexpected results of get(int,int).

1 BitSet bset = new BitSet(0);

3 This bug report has been accepted by Oracle, see JDK-8305734.

https://bugs.openjdk.org/browse/JDK-8305734

142 A. S. Tatman et al.

2 bset.set(Integer.MAX_VALUE);
3 bset.set(999);
4 BitSet result = bset.get(0,1000);

Listing 6 shows an example where this gives faulty behaviour. The expected
behaviour would be that result is a bitset with logical size 1000 and which has
bit 999 set. However, with the current implementation, the result has logical
size 0 and has no bits set!

This is because bset.length() returns the negative Integer.MIN_VALUE.
The expression len <= fromIndex on line 5 will always evaluate to true, since
Integer.MIN_VALUE is smaller than or equal to all 32-bit signed integers, causing
the bset.get(0,1000) to return the empty bitset.

4.2 Bugs Caused by valueOf(...) Corrupting length()

The next issue occurs in the valueOf(...) methods4. We focus on the method
with a parameter of type long[] (Listing 7), but the same bug occurs in the
overloaded methods with parameter types LongBuffer, ByteBuffer and byte[].

Listing 7. The valueOf(long[]) method and the private constructor it uses.

1 private BitSet(long[] words) {
2 this.words = words;
3 this.wordsInUse = words.length;
4 checkInvariants();
5 }
6 ...
7 public static BitSet valueOf(long[] longs) {
8 int n;
9 for (n = longs.length; n > 0 && longs[n - 1] == 0; n--);

10 return new BitSet(Arrays.copyOf(longs, n));
11 }

The valueOf(long[]) method takes in an array, copies it, and stores it in the
internal words field of a new bitset instance. The valueOf(long[]) method
does not specify any preconditions: any non-null array can thus be converted to
a bitset. Issues arise when the user calls valueOf(long[]) with an array that
has a bit set beyond index Integer.MAX_VALUE. This is for example the case
when longs.length is larger than 225 and contains non-zero elements in that
part: since longs are 64-bit, arrays with 225 elements cover all 64 ∗ 225 = 231

non-negative integer indices. Listing 8 shows an example how this can go wrong.

Listing 8. Example of how the bug can occur with valueOf(long[]).

1 final int MAX_WIU = Integer.MAX_VALUE/Long.SIZE + 1; // 2ˆ25+1
2 BitSet normal = new BitSet();
3 normal.set(0);
4 long[] largeArray = new long[2*MAX_WIU + 1];
5 largeArray[largeArray.length - 1] = 1;
6 BitSet broken = BitSet.valueOf(largeArray);
7 broken.set(0);

The constant MAX_WIU equals 225 + 1 (the bound of wordsInUse as deter-
mined in Sect. 3.1). The BitSet class can only access elements of the array up to
4 This bug report has been accepted by Oracle, see JDK-8311905.

https://bugs.openjdk.org/browse/JDK-8311905

Analysis and Formal Specification of OpenJDK’s BitSet 143

largeArray[MAX_WIU-1]. As a result, the bit set at largeArray[2*MAX_WIU] is
not accessible from the broken instance(!)

The equals(Object obj) method specifies that two bitsets are equal “if
and only if ... for every non-negative int index k, ((BitSet)obj).get(k) ==

this.get(k) [is] true.” [1] However, this is not the case here: the equals()

method returns false when comparing normal to broken, yet normal.get(k)

equals broken.get(k) for every non-negative integer k. Furthermore, the
length() method says both objects have the same logical length 1.

Going back to the resulting value from length() of broken: in this case,
the return value did not only overflow to Integer.MIN_VALUE, but has even
gone back up to 1. So broken and normal have the same length as observed
through length(). This problem is not limited to only this example. An array
with length 4*MAX_WIU+1 for which the last word is set to 1 will result in the
same length() value, but in this case the length() has wrapped around twice.

Listing 9. The length() method calculates its returned value using wordsInUse.

1 public /*@ strictly_pure @*/ int length() {
2 if (wordsInUse == 0) return 0;
3 return BITS_PER_WORD * (wordsInUse - 1) + (BITS_PER_WORD -

Long.numberOfLeadingZeros(words[wordsInUse - 1]));
4 }

The issue with length() persists when interacting normally with the broken

bitset: if the user sets a bit i > 0 using broken.set(i), then the expected
behaviour would be that length() would return i + 1. Instead it remains at 1,
as the value of wordsInUse was not changed due to wordsInUse already being
higher than any value (MAX_WIU or lower) that BitSet would ever normally assign
to it, which means that the calculated value of length() is not affected (see List-
ing 9). Note that in some methods that call length() such as clear(int,int)

and previousSetBit(int) behaviour is not negatively affected, for the same
reason, that wordsInUse is already higher than expected.

This issue in the valueOf(...) methods does not appear to be a mistake
in its implementation. In fact, based on the specification of the methods, a user
could use the class to for example convert a LongBuffer to a long array: the user
uses the valueOf(LongBuffer) method to get a bitset based on the LongBuffer,
and then uses BitSet’s toLongArray() method to then convert to a long array.
The current implementation of the methods allows for this, provided that the
last element of the buffer has at least one bit set (and so is not 0).

But this issue nicely demonstrates the utility of formal specifications: using
the methods in this way results in BitSet objects that break crucial internal
class invariants, causing public methods to malfunction.

4.3 Solution Directions

We now discuss possible solutions to the issues raised above. To structure the
discussion, we distinguish between two solution directions: permit using the bit
with index Integer.MAX_VALUE, or forbid using that bit. We show which changes

144 A. S. Tatman et al.

are required to the specification (method contracts and class invariant) and
implementation to realise these solutions.

Permit Using Integer.MAX VALUE bit. Many operations on BitSet work
fine out-of-the-box for the full range of integers, even when the bit at
index Integer.MAX_VALUE is used. We show how the methods get(int,int),
length() and valueOf(...) can be fixed while allowing to use that bit.

As stated inSect. 4.1,length() returns thenegativevalueInteger.MIN_VALUE
if the bit at index Integer.MAX_VALUE is set. Note however that no information
is lost by returning Integer.MIN_VALUE: clients can distinguish bitsets in which
the bit at index Integer.MAX_VALUE is set (returning Integer.MIN_VALUE) from
BitSets where the bit is not set (returning a non-negative length). Hence, a sim-
ple fix is to add to the Javadoc specification that the length() method “returns
Integer.MIN_VALUE if thebit at indexInteger.MAX_VALUE is set.”Effectively, this
means the client can interpret the negative return value as an unsigned 32-bit inte-
ger.

Using the above solution for length, we now turn to the get(int,int)

method. Listing 1 showed that for the get method, the upper bound, given by
the second parameter toIndex, is exclusive, so the highest bit the method can
access is at index Integer.MAX_VALUE-1. Hence, if the length() overflows, we
can simply pretend it returned Integer.MAX_VALUE. This yields the solution
show in Listing 10.

Listing 10. A possible solution of the bug in get(int,int).

1 ...
2 int len = length();
3 if (len < 0)
4 len = Integer.MAX_VALUE;
5 if (len <= fromIndex || fromIndex == toIndex)
6 ...

This simple fix thus only requires a two-line code change in the internal imple-
mentation and does not affect the method specification, nor does it require
changes to the class invariant.

For the valueOf(...) methods, the question arises what to do if an
array is passed in that is too large (i.e. contains bits that are set beyond
Integer.MAX_VALUE). An obvious fix is to simply prevent such arrays by throw-
ing an IllegalArgumentException, along the lines of Listing 11. We also add
the constant MAX_WIU to the BitSet class, initialising it with the value
Integer.MAX_VALUE/Long.SIZE + 1.

Listing 11. A possible fix for valueOf(long[] longs) at the beginning of the method.

1 int len = longs.length;
2 if (len > MAX_WIU)
3 throw new IllegalArgumentException("Input array length " + len +
4 " is larger than maximum");

More lenient approaches (not shown here) are also possible: one can allow
larger arrays, as long as all bits above the Integer.MAX_VALUE index are set to

Analysis and Formal Specification of OpenJDK’s BitSet 145

0, or ignore such bits and only copy the first Integer.MAX_VALUE bits. In all
those cases, the specification must also be updated to reflect these changes.

Forbid Using the Integer.MAX VALUE bit. The second solution direction is to
systematically forbid access to the bit with index Integer.MAX_VALUE. This
can be enforced in the code by throwing an exception in methods with index
parameters, along the lines of Listing 12.

Listing 12. Preventing access to the Integer.MAX VALUE bit.

1 if (bitIndex == Integer.MAX_VALUE)
2 throw new IndexOutOfBoundsException("bitIndex " + bitIndex +
3 "must be smaller than " + Integer.MAX_VALUE);
4 ...

Now, the length cannot overflow, so the implementation of the length() method
and get(int,int) method do not have to be changed. The valueOf method can
be fixed along the lines of the above solution, but with an additional check to
ensure that the Integer.MAX_VALUE bit is not set. Furthermore, it enables the
methods with fromIndex (inclusive) and toIndex (exclusive) parameters, such
as the get(int,int) method, to access all bits of a BitSet: since the highest
bit has index Integer.MAX_VALUE-1, it can be accessed by taking
Integer.MAX_VALUE for toIndex. The class invariant can also be strengthened
to take into account that the Integer.MAX_VALUE bit cannot be used.

Discussion. We now briefly reflect and compare the two solution directions.
The first direction enables using the full range of non-negative integer indices.
It requires few and relatively small changes: the specification of length() is
strengthened, the specification and implementation of valueOf is changed and
the internal implementation of get(int,int) is fixed. This does not break exist-
ing clients that acted in good faith: length behaves the same, but its behaviour
is now guaranteed in the Javadoc specification. The behaviour of valueOf is
not changed when arrays are passed in with at most Integer.MAX_VALUE bits.
But, bad faith clients that relied on the presence of these bugs (e.g. by passing
an array to valueOf that is too large) cannot do so anymore. On the negative
side, the methods with two index parameters where the upper bound is exclusive
cannot access the Integer.MAX_VALUE bit.

The second solution direction forbids using the Integer.MAX_VALUE bit. It
requires changing many implementations and specifications, except methods
such as get(int,int): all methods with a single index parameter are affected
and may now throw an exception. This may break existing client code that relies
on the full range of integer indices. On the positive side, the methods with two
index parameters can now access the same set of bits in a BitSet as their single
index parameter counterparts.5

5 This solution direction was also considered in an issue from 2003 with
nextClearBit(..), see JDK-4816253, but the bugs we described above were not
discovered.

https://bugs.openjdk.org/browse/JDK-4816253

146 A. S. Tatman et al.

5 Towards Formal Verification of the BitSet Class

One reason why formal verification of real-world software is costly is that soft-
ware changes. We reported the above issues to the Java developers (including a
suggested fix for the get(int,int) method)6. This discussion is ongoing at the
time of writing and it is not yet clear how the BitSet class will be fixed. In par-
ticular, the specification and implementation of BitSet is not settled yet. Hence,
this section is speculative, since the Java developers ultimately are responsible
for choosing which solution direction to take to solve the issues mentioned above.

Instead, we will informally describe how the proof of get(int,int) can be
carried out (Sect. 5.2), assuming that the issues described above are resolved in
one particular way (discussed in Sect. 5.1). Moreover, we experienced some issues
with the KeY theorem prover (see Sect. 5.3), which block us from completing the
formal proof.

5.1 Background

As explained in Sect. 3, we write our formal specification in JML, which is trans-
lated into JavaDL by KeY. We add the bounds as described in Sect. 3.1 to the
class invariant (see Listing 13). Furthermore, we add a condition that indicates
to the KeY prover that each element in the words array is within the integer
bounds of the primitive long type, and we use a KeY-specific extension of JML
to do so, the so-called \dl_ escape hatch [4]. To be able to apply various taclets
that are sound only for primitive longs, we require the assumption that each
array element of words satisfies the inLong predicate. However, we did not man-
age to automatically show this in KeY itself, even though the type information
of the words array is known to KeY.

Listing 13. The last part of the class invariant, continuing Listing 2.

1 /*@ invariant
2 @ ... &&
3 @ (wordsInUse <=Integer.MAX_VALUE/BITS_PER_WORD+1) &&
4 @ (words.length <=2*(Integer.MAX_VALUE/BITS_PER_WORD+1)) &&
5 @ (\forall \bigint i; 0 <= i < words.length; \dl_inLong(words[i]));
6 @*/

We have used the KeY theorem prover version 2.10.0.

5.2 Proof Sketch of get(int,int)

In this exposition we will sketch out the proof of correctness of the get(int,int)
method. For the purposes of this explanation, we assume the bug is fixed accord-
ing to our suggested fix permitting the Integer.MAX_VALUE bit. The full method
body is visible in Listing 14.

6 See https://github.com/openjdk/jdk/pull/13388.

https://github.com/openjdk/jdk/pull/13388

Analysis and Formal Specification of OpenJDK’s BitSet 147

Listing 14. The full method body of the get(int,int) method, including our sug-
gested fix and our loop invariant.

1 public BitSet get(int fromIndex, int toIndex) {
2 checkRange(fromIndex, toIndex);
3 checkInvariants();
4

5 int len = length();
6 if (len < 0) // Our proposed bug fix
7 len = Integer.MAX_VALUE;
8

9 // If no set bits in range return empty bitset
10 if (len <= fromIndex || fromIndex == toIndex)
11 return new BitSet(0);
12 if (toIndex > len) // An optimization
13 toIndex = len;
14

15 BitSet result = new BitSet(toIndex - fromIndex);
16 int targetWords = wordIndex(toIndex - fromIndex - 1) + 1;
17 int sourceIndex = wordIndex(fromIndex);
18 boolean wordAligned = ((fromIndex & BIT_INDEX_MASK) == 0);
19

20 // Process all words but the last word
21 /*@ // Adjusting wordsToSeq for result:
22 @ maintaining (\forall \bigint j;
23 @ 0 <= j < ((\bigint)i*(\bigint)BITS_PER_WORD);
24 @ ((result.words[j / BITS_PER_WORD]
25 @ >>> (int)(j % BITS_PER_WORD)) & 1)
26 @ == (fromIndex + i < wordsToSeq().length
27 @ ? wordsToSeq()[fromIndex + i] : 0));
28 @ // >>> is not defined for bigint.
29 @ maintaining i >= 0 & i <= targetWords - 1;
30 @ maintaining sourceIndex < wordsInUse;
31 @ maintaining (i < targetWords -1)

==> sourceIndex+1 < wordsInUse;
32 @ maintaining sourceIndex >= fromIndex / 64 &&

sourceIndex <= toIndex / 64;
33 @ maintaining (\forall \bigint j; 0 <= j < result.words.length;

\dl_inLong(result.words[j]));
34 @ assignable result.words[*];
35 @ decreasing targetWords - i;
36 @*/
37 for (int i = 0; i < targetWords - 1; i++, sourceIndex++)
38 result.words[i] = wordAligned ? words[sourceIndex] :
39 (words[sourceIndex] >>> fromIndex) |
40 (words[sourceIndex+1] << -fromIndex);
41

42 // Process the last word
43 long lastWordMask = WORD_MASK >>> -toIndex;
44 result.words[targetWords - 1] =
45 ((toIndex -1) & BIT_INDEX_MASK) < (fromIndex & BIT_INDEX_MASK)
46 ? /* straddles source words */
47 ((words[sourceIndex] >>> fromIndex) |
48 (words[sourceIndex+1] & lastWordMask) << -fromIndex)
49 :
50 ((words[sourceIndex] & lastWordMask) >>> fromIndex);
51

52 // Set wordsInUse correctly
53 result.wordsInUse = targetWords;
54 result.recalculateWordsInUse();
55 result.checkInvariants();
56

57 return result;
58 }

148 A. S. Tatman et al.

Initialising Local Variables. After input validation, the get method calls sev-
eral small methods that do not modify any fields of pre-existing objects. These
methods have all been given contracts, the main one being wordIndex(i), which
returns i/64 for non-negative i. Besides length(), these contracts have all been
verified either automatically or with minimal human interaction in KeY.

Next, several local variables are initialised in lines 15-18. First, a bitset
result is created through a public constructor, with a words array that can fit all
the bits required, and result.wordsInUse is initialised to 0. The words array is
filled directly. result.wordsInUse is only updated after it is filled completely.
The integer targetWords is the number of words to copy to results.words,
and has the same value as results.words.length. The sourceIndex variable
indicates the starting index in this.words of the bits to copy. The boolean
wordAligned indicates if the result bitset is aligned to the original bitset. If
this is not the case, then copying the bits is made more complicated, as each
element of result.words is spread across two elements of this.words.

Loop Invariant. The clause of the loop invariant on line 22 is an adjusted version
of wordsToSeq(). As result.wordsInUse is 0 during the loop, we cannot use
wordsToSeq() to track the copied bits in result.words, as it has a zero length
when wordsInUse is zero. So, the loop counter i takes care of this.

To verify the statements from line 29 onwards, we use a number of lemmas.
First, the number of words that the method copies (targetWords) is less than
or equal to the number of logically defined elements of words (wordsInUse).
The largest value toIndex can have is wordsInUse*64, as the get(int,int)

method reduces toIndex so that it is within the logically significant length of
the BitSet. Hence, the largest value targetWords can have is wordsInUse, in
the case of toIndex−fromIndex−1

64 + 1 = wordsInUse∗64−0−1
64 + 1 ≤ wordsInUse.7

Using this bound for targetWords, we can verify that in the loop body, the
expressions this.words[sourceIndex] and this.words[sourceIndex+1] have
significant bits as bounded by wordsInUse. This is needed for establishing the
relation between the resulting bitset and the current bitset, and for preventing
an exception.

sourceIndex + targetWords − 1 < wordsInUse.

This can be rewritten to:8

fromIndex
64

+
(
toIndex − fromIndex − 1

64
+ 1

)
− 1 < wordsInUse.

Next, consider division of fromIndex by 64: we can write fromIndex = 64k + x
with k ≥ 0 and 0 ≤ x < 64. Plugging this in into the above equation we can
derive that the left-hand side equals (64k+x)/64+(toIndex−1−x−64k)/64. By
Java’s integer division semantics (where non-negative results are rounded down),

7 Rounded using Java rules.
8 Note that both sourceIndex and targetWords are calculated using wordIndex(...).

Analysis and Formal Specification of OpenJDK’s BitSet 149

this equals k + (toIndex − 1 − x)/64 − k = (toIndex − 1 − x)/64. Clearly this
is smaller or equal to (toIndex − 1)/64. This is smaller than wordsInUse, using
the bound for targetWords proved before, so the desired inequality follows.

Finally, if ((toIndex-1) & BIT_INDEX_MASK) < (fromIndex & BIT_INDEX_MASK)

holds9, then the boolean wordAligned must be false (as
f (fromIndex & BIT_INDEX_MASK) must be larger than 0), and we know that the
method uses sourceIndex+1 to access the this.words array. To compensate
for the +1, we set the bound of sourceIndex+targetWords to wordsInUse-1.
The proof for this is similar to the previous inequality.

As KeY does not fully support binary AND operations (see Sect. 5.3), we
replaced n & 63 with n % 64. These are equivalent for non-negative n. With
suitable lemmas, we expect the preservation of the loop invariant is provable.

End of the get(int, int) Method. Once all bits have been copied from the orig-
inal bitset to result, the method calls the recalculateWordsInUse() method
to establish the invariant in result. In our case, wordsInUse == 0 ||

words[wordsInUse - 1] != 0 and wordsInUse == words.length ||

words[wordsInUse] == 0 from the class invariant need not be true when the
method starts (the method is in fact responsible for re-establishing these proper-
ties). In particular, wordsInUse may be too high, so words[wordsInUse-1] may
be zero. All other clauses from the class invariant do hold initially. To restore the
class invariant, the method lowers wordsInUse to the most significant element
of result.words that is not zero (and to zero if there is none).

As can be seen above, a substantial part of both the (development of) the
specification and the proof concerns dealing with Java’s bounded integer seman-
tics. We now reflect briefly on our approach, where we chose to deal with Java’s
bounded integer semantics right from the start. The question may arise whether
a two-step approach would have been simpler, where as a first step, a proof of
the BitSet class is given using ordinary mathematical integer semantics and in
a second step, this proof is amended by using Java’s bounded integer seman-
tics. KeY supports both mathematical integer semantics and Java’s bounded
semantics so on first sight a two-step approach may sound promising.

But consider our bug fix in Listing 14, line 6. Without overflows, length()
returns a positive integer, so the true-branch is dead code with mathematical
integer semantics. In the bounded integer version it is not dead code and causes
execution to proceed differently in the subsequent code. Formally, the program
using bounded integer semantics is not a refinement of that ‘same’ program
with mathematical integers: it satisfies different properties/contracts. Different
specifications may have to be developed for the two different integer seman-
tics, symbolic execution of the method proceeds rather differently as witnessed
by the dead-code example above and consequently, different proof obligations
are generated (which in turn requires different proofs). This complicates proof
reuse between the two ‘steps’. Practically, the division into two steps would
thus amount to an extra step where one would investigate which specifications,

9 BIT INDEX MASK is a constant integer equalling 63.

150 A. S. Tatman et al.

proofs etc. would be needed for the non-real-world version that uses mathemati-
cal integers. We chose to avoid such an extra step and deal with the Java’s actual
bounded integer semantics from the beginning.

5.3 Required Extensions to KeY

Bit shift operations, such as the >>> and << used in get(int,int), cause the so-
called Finish symbolic execution macro to get stuck in a loop, endlessly applying
rules on the shift term. There are workarounds, such as by hiding the shift terms,
but this comes at the cost of more manual interactions.

More importantly, KeY currently lacks full support for bitwise operators,
such as binaryOr and binaryAnd, which prevents a full mechanic verification of
the class. Rules need to be added, or the terms could be translated to an SMT
solver, which could then handle these bitwise operations. It may be possible to
develop a general theory involving binaryOr and binaryAnd operators, but in
our case this does not appear to be necessary. A large amount of the proof goals
(not discussed here) are related to wordsToSeq(). An individual element of this
sequence is a single bit. This knowledge can be used to make rules where one or
both of the operators are a single bit, allowing us to add specific, but simple rules
to KeY. Listing 15 shows an example of such a rule for the binaryOr operation.

Listing 15. Taclet rule for binaryOr.

1 // x | y = 0. This is true iff x = 0 and y = 0.
2 orLongZero {
3 \schemaVar \term int x, y;
4 \assumes(inLong(x), inLong(y) ==>)
5 \find(moduloLong(binaryOr(x, y)) = 0)
6 \sameUpdateLevel
7 \replacewith(x = 0 & y = 0)
8 };

This rule is necessary to close the proof of BitSet’s set(int) method. In general,
all specific rules we need should follow from a more general theory involving
bitwise operators. But since the implementation and Javadoc specification are
not settled yet, the precise rules that are needed are not known yet, so we left
development of the proof rules as future work.

6 Conclusion

We discussed OpenJDK’s BitSet class, formulated its formal specification and
wrote tests. Using these formal analyses, we discovered bugs triggered by integer
overflows and proposed several solution directions for resolving these issues. The
integer overflow in length()’s return value when the Integer.MAX_VALUE bit
is set is a relatively minor issue, as the method is still usable as long as the
user takes this possibility into account. Meanwhile, the bug discovered in the
get(int,int) method prevents the method from being properly functioning as
long as the Integer.MAX_VALUE bit is set. The bug in the valueOf(..) methods
allows the user to create objects which contain inaccessible bits. The length()

Analysis and Formal Specification of OpenJDK’s BitSet 151

method is no longer reliable in these objects due to an integer overflow. Both of
these bugs are significant, as they fundamentally break the (intended) specifica-
tion of the BitSet class. Finally, we discussed initial steps towards verification
of the get(int,int) method and illustrated remaining challenges. The artifact
with formal specifications and proofs for several smaller methods is publicly
available at [16].

References

1. BitSet (Java Platform SE 8). https://docs.oracle.com/javase/8/docs/api/java/
util/BitSet.html. Accessed 12 May 2023

2. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.):
Deductive Software Verification - The KeY Book - From Theory to Practice. LNCS,
vol. 10001. Springer (2016). https://doi.org/10.1007/978-3-319-49812-6

3. Beckert, B., Kirsten, M., Klamroth, J., Ulbrich, M.: Modular verification of JML
contracts using bounded model checking. In: Margaria, T., Steffen, B. (eds.) ISoLA
2020. LNCS, vol. 12476, pp. 60–80. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-61362-4 4

4. Bian, J., Hiep, H.A., de Boer, F.S., de Gouw, S.: Integrating ADTs in KeY and
their application to history-based reasoning about collection. Formal Methods in
System Design, pp. 1–27 (2023). https://doi.org/10.1007/s10703-023-00426-x

5. Blot, A., Dagand, P.É., Lawall, J.: From sets to bits in Coq. In: Kiselyov, O.,
King, A. (eds.) FLOPS 2016. LNCS, vol. 9613, pp. 12–28. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-29604-3 2

6. de Boer, M., de Gouw, S., Klamroth, J., Jung, C., Ulbrich, M., Weigl, A.: Formal
Specification and Verification of JDK’s Identity Hash Map Implementation. In: ter
Beek, M.H., Monahan, R. (eds.) Integrated Formal Methods - 17th International
Conference, IFM 2022, Lugano, Switzerland, June 7–10, 2022, Proceedings. LNCS,
vol. 13274, pp. 45–62. Springer (2022). https://doi.org/10.1007/978-3-031-07727-
2 4

7. Böhme, S., Fox, A.C.J., Sewell, T., Weber, T.: Reconstruction of Z3’s bit-vector
proofs in HOL4 and Isabelle/HOL. In: Jouannaud, J.-P., Shao, Z. (eds.) CPP
2011. LNCS, vol. 7086, pp. 183–198. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-25379-9 15

8. Cheon, Y., Leavens, G., Sitaraman, M., Edwards, S.: Model variables: cleanly sup-
porting abstraction in design by contract: research articles. Softw. Pract. Exper.
35(6), 583–599 (2005)

9. Cordeiro, L., Kesseli, P., Kroening, D., Schrammel, P., Trtik, M.: JBMC: a bounded
model checking tool for verifying Java bytecode. In: Chockler, H., Weissenbacher,
G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 183–190. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96145-3 10

10. De Gouw, S., Rot, J., de Boer, F.S., Bubel, R., Hähnle, R.: OpenJDK’s
Java.utils.Collection.sort() Is Broken: The Good, the Bad and the Worst Case. In:
Computer Aided Verification: 27th International Conference, CAV 2015, San Fran-
cisco, CA, USA, July 18–24, 2015, Proceedings, Part I 27. pp. 273–289. Springer
(2015)

11. Hadarean, L., Barrett, C., Reynolds, A., Tinelli, C., Deters, M.: Fine grained SMT
proofs for the theory of fixed-width bit-vectors. In: Davis, M., Fehnker, A., McIver,
A., Voronkov, A. (eds.) LPAR 2015. LNCS, vol. 9450, pp. 340–355. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-48899-7 24

https://docs.oracle.com/javase/8/docs/api/java/util/BitSet.html
https://docs.oracle.com/javase/8/docs/api/java/util/BitSet.html
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-030-61362-4_4
https://doi.org/10.1007/978-3-030-61362-4_4
https://doi.org/10.1007/s10703-023-00426-x
https://doi.org/10.1007/978-3-319-29604-3_2
https://doi.org/10.1007/978-3-031-07727-2_4
https://doi.org/10.1007/978-3-031-07727-2_4
https://doi.org/10.1007/978-3-642-25379-9_15
https://doi.org/10.1007/978-3-642-25379-9_15
https://doi.org/10.1007/978-3-319-96145-3_10
https://doi.org/10.1007/978-3-662-48899-7_24

152 A. S. Tatman et al.

12. Hiep, H.-D.A., Bian, J., de Boer, F.S., de Gouw, S.: A tutorial on verifying
LinkedList using KeY. In: Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R.,
Ulbrich, M. (eds.) Deductive Software Verification: Future Perspectives. LNCS,
vol. 12345, pp. 221–245. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-64354-6 9

13. Hiep, H.A., Maathuis, O., Bian, J., de Boer, F.S., de Gouw, S.: Verifying Open-
JDK’s LinkedList using KeY (extended paper). Int. J. Softw. Tools Technol. Transf.
24(5), 783–802 (2022). https://doi.org/10.1007/s10009-022-00679-7

14. Leavens, G.T., Baker, A.L., Ruby, C.: JML: A Notation for Detailed Design (1999).
https://doi.org/10.1007/978-1-4615-5229-1 12

15. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

16. Tatman, A.S., Hiep, H.A., de Gouw, S.: Analysis and Formal Specification of Open-
JDK’s BitSet: Proof Files (2023). https://doi.org/10.5281/zenodo.8043379

17. Zohar, Y., Irfan, A., Mann, M., Niemetz, A., Nötzli, A., Preiner, M., Reynolds,
A., Barrett, C., Tinelli, C.: Bit-precise reasoning via int-blasting. In: Finkbeiner,
B., Wies, T. (eds.) VMCAI 2022. LNCS, vol. 13182, pp. 496–518. Springer, Cham
(2022). https://doi.org/10.1007/978-3-030-94583-1 24

https://doi.org/10.1007/978-3-030-64354-6_9
https://doi.org/10.1007/978-3-030-64354-6_9
https://doi.org/10.1007/s10009-022-00679-7
https://doi.org/10.1007/978-1-4615-5229-1_12
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.5281/zenodo.8043379
https://doi.org/10.1007/978-3-030-94583-1_24

	Analysis and Formal Specification of OpenJDK's BitSet
	1 Introduction
	2 The BitSet Class
	3 Formal Specification
	3.1 Class Invariant
	3.2 The wordsToSeq() Model Method
	3.3 The get(int,int) Method

	4 Issues in BitSet
	4.1 A Bug in get(int,int) Caused by a Negative length()
	4.2 Bugs Caused by valueOf(...) Corrupting length()
	4.3 Solution Directions

	5 Towards Formal Verification of the BitSet Class
	5.1 Background
	5.2 Proof Sketch of get(int,int)
	5.3 Required Extensions to KeY

	6 Conclusion
	References

