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CHAPTER 6

Dynamical simulation of the injection of vortices into a
Majorana edge mode

6.1. Introduction
A remarkable property of topological superconductors is that two vortices

winding around each other exchange a quasiparticle [36, 88, 100]. This
“braiding” operation is a manifestation of the non-Abelian statistics of
the Majorana zero-modes bound to the core of an Abrikosov vortex [101–
103]. Because Abrikosov vortices are immobile, typically pinned to defects,
winding them is a thought experiment that is not easily implemented
[104–106].

A proposal to mobilize vortices by injecting them into the edge modes
of a topological superconductor was suggested by Beenakker et al. [38].
The parity carried by such edge-vortices can be used to encode a qubit.
After the injection, the edge-vortices can be braided with bulk vortices due
to their chiral motion without requiring any external manipulation. This
results in a fermion parity switch (flip of the qubit) between the edges and
the bulk that can be detected electrically as an e/2 charge pulse when a
pair of edge vortices is fused in a normal metal contact [107, 108].

The key component of the braiding device of Ref. 38 is the edge-vortex
injector (see Fig. 6.1): it consists of a flux-biased Josephson junction,

93



6 Dynamical simulation of the injection of vortices into a Majorana edge
mode

WΔ0 Δ0eiφ(t)
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Figure 6.1: Edge vortex injector [38], consisting of a Josephson junction in a
topological superconductor with co-propagating chiral edge modes. An h/2e
flux increment injects a pair of edge-vortices on opposite edges with a protected
fermion parity. The corresponding phase domain wall is represented with green
lines. The adiabatic description of the injection process assumes that the
injection time tinj = (2πξJ/W )(dφ/dt)−1 is long compared to the propagation
time W/v along the junction. In this work we relax that assumption, to simulate
a device (Fig. 6.2) where these dynamically injected edge-vortices are braided
with Abrikosov bulk vortices.

connecting co-propagating chiral edge modes. The application of a flux
bias of h/2e increments the superconducting phase φ by 2π. For the
fermionic edge mode wave functions this amounts to a π-phase domain
wall [37], which moves away from the junction with the Fermi velocity
v, carrying the edge-vortex excitations. The injection process takes a
finite time tinj, that translates into a finite width vtinj of the domain wall.
Given a rate of change dφ/dt, a junction width W , and a superconducting
coherence length ξJ one has

tinj = (2πξJ/W )(dφ/dt)−1. (6.1)

A major simplification of the theoretical description of the injection process
arises if tinj is large compared to the propagation time W/v, so for a
sufficiently slow rate of change dφ/dt ≪ 2πvξJ/W

2. This is the so-called
adiabatic regime, in which one may rely on the instantaneous scattering
approximation. Ref. 38 applies to that regime. The purpose of the present
work is to relax the adiabatic approximation, to see how large (v/W )tinj
should be for the braiding operation to succeed. This is studied via a fully
dynamical simulation of the proposed device during the injection, braiding
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and fusion.
Since an edge vortex is a collective degree of freedom, the dynamics

involves the full many-body state. We study it numerically, by means
of time-dependent Bogoliubov-de Gennes methods. Our main conclusion
is that a factor of two between tinj and W/v is sufficient to avoid the
excitations of internal degrees of freedom in the junction that would spoil
the fermion parity switch [109–112].

The outline of the chapter is as follows: the simulated device and the
time-dependent model are introduced in Sec. 6.2. In Sec. 6.3, we present
the results of the braiding protocol which recover the main predictions
from the adiabatic theory, namely the charge signature at the exit of the
device and the fermion parity exchange of the edges with the bulk. Sec. 6.4
describes the excitation dynamics of the junction in the alternative regime
W > vtinj where the braiding protocol cannot hold. The conclusion is
presented in Sec. 6.5.

6.2. Model and device

6.2.1. Setup
We consider the device shown in Fig. 6.2 (a). A quantum anomalous Hall

(QAH) insulator (N = 2) exhibits an electronic chiral mode (corresponding
to two Majorana fermions in the BdG formalism), on each of the two
edges [113–115]. When the edge of a QAH is proxitimitized by an s-
wave superconductor, the fermionic edge mode splits into two spatialy
separated co-propagating chiral Majorana fermions, localized at the edges
of the superconducting region [116, 117]. This proximitized system can
be described as a topological superconductor (N = 1). In our setup, such
a topological superconductor (TSC) with two co-propagating Majorana
edge modes (Fig. 6.2 (b)) is divided in three sections by two Josephson
junctions, each of length W and thickness w. The junctions are separated
by a distance L. Two vortices of flux Φ0 = h/2e are created in the bulk
by an external magnetic field, one of which is in the region between the
two junctions.

A time-dependent flux bias is applied such that the phase in the middle
superconductor is φ(t) relative to the others, as in Fig. 6.1. By increasing
the phase φ(t) from 0 to 2π, the effective gap inside the Josephson junctions
closes at φ = π (Fig. 6.2 (c)). In this process, a Josephson vortex [119]
passes through each junction, which must locally change the boundary
condition from periodic to anti-periodic along the two edges [37] inducing
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Figure 6.2: (a) Full braiding device: two injectors (as in Fig. 6.1) are used to
produce pairs of edge-vortices. The pair of edge-vortices at the back exchanges
parity with the bulk vortices upon overtaking a bulk vortex, which is detected
by an e/2 charge measurement at the exit. (b) Dispersion of Majorana edge
modes (magenta), calculated for an infinite strip of a topological superconductor
(N = 1). (c) Lowest energy levels in an infinite Josephson junction (described
in Sec. 6.2) as a function of the superconducting phase. At ϕ = π these modes
become degenerate and correspond to chiral Majorana edge states propagating
along the junction [118].
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Figure 6.3: Time snapshots of a dynamical simulation of the full device during
the injection and braiding protocol, (a) Bogoliubov quasiparticle density as
defined in equation (6.19) and (b) current density as defined in (6.11). In this
simulation vtinj = 1.5W ≪ L, so the edge-vortices injected at the back and front
junction are well separated creating two separate e/2 charge pulses upon fusion.
An animated version can be found at http://link.aps.org/supplemental/10.
1103/PhysRevB.108.235309.

a phase domain wall in the wave functions over some characteristic time
tinj. This local change of the boundary conditions can be described in
terms of an edge vortex field operator µ̂(x), a collective excitation with
non-Abelian statistics [37, 107]. The injected edge-vortices – one pair at
the back junction and another pair at the front junction – then propagate
along the edges with the Fermi velocity v. The injection time is given
by tinj = (2πξJ/W )(dφ(t)/dt)−1 where ξJ = ℏv/∆J [38] is the coherence
length of the junction. Here ∆J denotes the effective gap in the junction
[118] (calculated for an infinite junction as shown in Fig. 6.2 (c)). As long
as the characteristic injection time is slow compared to W/v, only the two
lowest energy states in the finite junction play a role in the dynamics (see
App. 6.C).

The edge-vortices of size vtinj then propagate along the edges. The pair
of edge-vortices injected at the back overtake a bulk vortex over a distance
L. This induces a relative sign flip between the edge vortices and effectively
results in a quasiparticle being transferred between the edge vortices and
the vortices in the bulk. This parity switch of the edge vortices and the
bulk vortices is denoted by Pedges → −Pedges and Pvortices → −Pvortices,
i.e. a flip of the qubit encoded in parity of the edge-vortices.
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The braiding event can be detected upon the fusion at the exit of the su-
perconductor via a charge measurement. The edge-vortices injected at the
front junction produce a charge e/2 independently, while the edge-vortices
injected at the back junction produce a charge ±e/2 depending on whether
they have braided with the bulk vortex. The resulting net charge at the
exit is e(Nvortex mod 2) with Nvortex the number of vortices in between
the two injectors. In Fig. 6.3, the local excitation density and local charge
during the braiding protocol are shown for an example simulation.

6.2.2. Hamiltonian

The device of Fig. 6.2 is simulated using a tight-binding model of a
QAH. In the central regions the QAH is proximitized with an s-wave
superconductor. The Hamiltonian is given by [116]:

Ĥ(t) = 1
2
∑

x

Ψ̂†(x)H(k,x, t)Ψ̂(x) (6.2)

where Ψ̂(x) = (ψ̂↑(x), ψ̂↓(x), ψ̂†
↓(x),−ψ̂†

↑(x))⊺ is the four component
Nambu spinor and H is the Bogoliubov-de-Gennes (BdG) Hamiltonian
matrix

H(k,x, t) =
(
He(k,x) − µ ∆0(x)eiϑ(x,t)

∆0(x)e−iϑ(x,t) µ− T He(k,x)T −1

)
(6.3)

with µ the chemical potential and T = iσyK the time-reversal operator
(σy is the second Pauli matrix in the spin degree of freedom and K denotes
complex conjugation). The electronic block is given by:

He(k,x) = ℏv
a

(σx sin(kxa) + σy sin(kya))

+ (m0(x) +M(k))σz
(6.4)

where M(k) = 2m1
a2 (2 − cos(kxa) − cos(kya)) and k = −i∇. The simu-

lated system is finite in the x-direction and anti-periodic in the y-direction
to ensure that there are no k = 0 modes in the edges initially [37, 118].

The different Chern numbers in the regions of Fig. 6.2 are achieved by
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different values of m0 and ∆0:

m0(x) = −0.5, ∆0(x) = 0 : x ∈ QAH
m0(x) = −0.5, ∆0(x) = 1 : x ∈ TSC
m0(x) = +∞, ∆0(x) = 0 : x ∈ Ins

(6.5)

in units of ℏv/a. The trivial insulating region (Ins) is realized by truncation
of the lattice. Furthermore we fix the width of the junction to w = 2a and
the length to W = 42a. This length ensures that the separation between
edges and vortices is much larger than their respective localization lengths.
The effective gap ∆J inside the junctions is estimated numerically from
the spectrum of an infinitely long junction (see Fig. 6.2), which yields
∆J ≈ 0.12∆0.

In the TSC, ϑ(x, t) = η(x) + φ(x, t) is the pair potential phase with η
describing the vortices by ∇ × ∇η =

∑
xvortex

2πδ(x − xvortex); ∇ · ∇η = 0,
and φ(x, t) describing the time-dependent bias, which is only nonzero in
the middle superconductor and given by:

φ(t) = 2π (θ(τ − t)t/τ + θ(t− τ)) , t ≥ 0 (6.6)

over a characteristic time τ . Here θ(t) denotes the Heaviside step function.
For this profile, the estimated injection time is simply tinj = τℏv/(∆JW ).

6.2.3. Computation of observables in the evolved
many-body state

Before the injection, the system is assumed to be in the stationary
ground state of Ĥ(0) denoted by |Ω⟩. Here, we consider the evaluation
of single-particle operators in the evolved many-body state Û(t) |Ω⟩ with
the time-evolution operator Û(t) = T exp

(
−(i/ℏ)

∫ t
0 Ĥ(t′)dt′

)
, T being

the time-ordering operator. Relative to the initial ground state, the net
change in the expectation value of a single-particle operator Â is denoted:

⟨Â(t)⟩ − ⟨Â(0)⟩ := ⟨Ω| Û†(t)ÂÛ(t) |Ω⟩ − ⟨Ω| Â |Ω⟩ . (6.7)

The effective description of the superconductor can be reduced to a non-
interacting model using the BdG formalism. In App. 6.A.1, we show how
we can transform this many-body problem into single-particle problems
which can be solved within the first quantization formalism. Eq. (6.7) can
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be written as:

⟨Â(t)⟩ − ⟨Â(0)⟩ = 1
2
∑
α∈S−

(
⟨α(t)|A |α(t)⟩ − ⟨α|A |α⟩

)
. (6.8)

Here A is the single-particle BdG operator associated with Â, |α⟩ := |α(0)⟩
denotes the α-th eigenstate of H(0) and |α(t)⟩ obeys

iℏ∂t |α(t)⟩ = H(t) |α(t)⟩ . (6.9)

The evolution of the state |α(t)⟩ is calculated numerically using the python
package Tkwant [97, 120–123]. This approach has numerical complications
as it requires to evolve all the N states in S− in order to achieve convergence
(see App. 6.A.2).

We resolve this issue by writing A in terms of the basis of eigenstates of
H(0):

⟨Â(t)⟩ − ⟨Â(0)⟩ = Re
∑
α∈S−

µ∈S+

∑
ν∈S

⟨α(t)|µ⟩ ⟨µ|A |ν⟩ ⟨ν|α(t)⟩ . (6.10)

Here the sets S+ and S− denote positive and negative energy state indices
respectively1 and S their union S+ ∪ S−. In contrast with Eq. (6.8) (see
App. 6.A.2), this form only gives non-zero contributions in a finite range
around E = 0. This allows us to approximate this expression by truncating
the sum and discarding all terms above some energy cut-off, i.e terms with
|Eα,µ,ν | > Emax.

6.3. Results
In this section we present the main results of our simulation. We show the

charge signature of the braiding protocol and calculate the corresponding
parity switch. We consider a system where W is smaller, but comparable
to the injection time vtinj ≈ 2W . While the theoretical description, relying

1Notice that particle-hole symmetry enforces that the eigenstates of the BdG Hamil-
tonian H come in pairs of opposite energies. The eigenspace of zero modes of H
must be even dimensional and there must exist a basis of particle-hole partners in it.
For each pair, we arbitrarily chose one state to be in S+ and put its partner in S−.
Thus, in general, S+ contains zero modes. Overall it contains half of the states (n
states) and if we act on them with the particle-hole symmetry operator, we obtain
S−.
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on the adiabatic limit, no longer holds for this system we show that the
main predictions remain unchanged.

6.3.1. Quantized charge measurement
We first consider the charge signature that can be measured at the exit

of the device, after the fusion of the edge vortices. For this we evaluate the
current density operator ȷ̂y(x) = (ev/a2)Ψ̂†(x)ν0σyΨ̂(x) in the y-direction
using Eq. (6.10). Here, ν0 is the identity acting on the particle-hole degree
of freedom. Defining the current as:

I(t) = a
∑

x|y=yexit

⟨ȷ̂y(x, t)⟩ − ⟨ȷ̂y(x, 0)⟩ (6.11)

the net charge creation is given by the time integral:

Q(t) =
∫ t

0
I(t′)dt′. (6.12)

With this, we can calculate the charge pumped during the braiding protocol
at the exit of the device (yexit). The spatial separation L between the two
Josephson junctions allows to distinguish between two characteristic charge
signatures. When L ≫ vtinj, the injection events at each junction are well
separated in space. In this case, the two pairs of edge-vortices produce
separate signals of ± e

2 charge at the exit. The charge contribution of the
second pair of edge vortices experiences a sign flip in the presence of bulk
vortices, as a consequence of braiding [107]. The theoretical predictions
from Refs. 38, 107 are compared with numerical results in the left panel
of Fig. 6.4. On the other hand when L ≲ vtinj, the injection events at
both junctions are close, so that the overlapping electrical signals add up,
producing a unit charge signature (Fig. 6.4 (b)).

The transferred charge is an indirect probe of the braiding event as it
is a result of the fusion between the edge vortices. It is therefore only
quantized if the path lengths of the two vortices between injection and
fusion are the same [107]. In contrast, the parity exchange is topologically
protected, it does not depend on microscopic details. We will check this
numerically.

6.3.2. Parity switch of edge-vortices
The phase rotation φ(t) : 0 → 2π in the superconductor changes the

parity locally carried by the two bulk vortices. Since parity must be
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Figure 6.4: (a) Simulated (pink) and theoretical (gray) current density at the
exit of the superconductor. A system without (with) vortices is represented
with dashed (solid) lines. The pulse width tinj ≈ τ/5.17 is indicated. (b)
Corresponding charge increase, for different values of the inter-junction separation
L, with values of L/vτ shown on top of the curves. All simulations have
τ = 500a/v and W = 42a.

globally conserved, then necessarily there must be an odd number of
excitations elsewhere in the system –namely carried by the edges [38].
This change of parity is a direct consequence of braiding between the bulk
and edge vortices. To characterize this process we first identify the parity
subsectors that correspond to the states in the bulk vortices and the edges.

The full parity operator can be written –up to the sign of the initial
ground state parity– in terms of the Bogoliubov operators as:

P̂ =
∏
α∈S+

(
1 − 2d†

αdα
)
. (6.13)

We provide a further explanation for this form in App. 6.B.1. In our device,
P̂ can be split in a product of two terms, the first one corresponding to the
bulk vortex excitation (i.e. the fermionic superposition of the two vortex
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Majorana zero-modes) and the second one containing all other excitations:

P̂ =
(
1 − 2d†

αv
dαv

)
·
∏
α∈S+

α̸=αv

(
1 − 2d†

αdα
)

:= P̂vortices · P̂ ′

(6.14)

where αv is the index of the fermionic state bound to the vortices. This
can be done if the vortex state is well isolated from the rest (i.e. there is
no hybridization between vortex and edge states). P̂ ′ can be evolved in
the Heisenberg picture and expressed in terms of the Bogoliubov operators
of the initial Hamiltonian {dβ}β∈S . As we show in App. 6.B.1, the time
evolution of each dα can be expanded as

Û†dαÛ =
∑
β∈S

χαβdβ with χ(t)αβ = ⟨α(0)|β(t)⟩ (6.15)

The time evolution of P̂ ′ can then be expressed as a sum of terms of
different orders in d operators

Û†P̂ ′Û =
(

1 − 2
∑
α∈S+

∑
µ,ν∈S

χ∗
αµχανd

†
µdν

+ 4
∑

α,β∈S+

Eβ>Eα

∑
µ,ν,σ,τ∈S

χ∗
αµχανχ

∗
βσχβτd

†
µdνd

†
σdτ + · · ·

)
.

(6.16)

Its expectation value in the ground state |Ω⟩ can then be calculated making
use of Wick’s theorem up to all orders. The final equation can be found in
App. 6.B.1 (Eq. (6.52)).

In our numerical calculation we neglect correlators of order higher than
four, and only include states within an energy window Emax. This energy
window is chosen to match the maximum excitation energy in order for
the parity calculation to converge (see App. 6.C).

Since edge and junction states are hybridized, P̂ ′ cannot be decomposed
similarly in edge and junction sectors. However, after the bias pump, the
expectation value ⟨P̂ ′⟩ can be identified with the parity carried by the
edges ⟨P̂edge⟩ as long as the filling of junction states – which only exist
for energies E ≥ ∆J – is negligible. The different intensities of red in
Fig. 6.5 show the value obtained for P̂ ′ as we increase Emax. We see that
convergence is achieved before we need to include any states with energies
around ∆J . This identification of ⟨P̂ ′⟩ ≈ ⟨P̂edge⟩ is further supported in
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Figure 6.5: Evolution of the parity operator expectation value in the initial
ground state without (a) and with vortices (b). In panel (b), the parity of the
vortices is separated from the edges, and a parity switch is observed. Convergence
of the curves as a function of Emax is shown in color.

Sec. 6.4 and App. 6.C.
Fig. 6.5, shows that the parity expectation of the edges is unchanged

when there are no vortices, but it switches in the presence of bulk vortices.
This demonstrates that, for this set of parametes, the braiding of edge-
vortices holds dynamically, and that the internal degrees of freedom in the
junction do not spoil the exchange of parity. This implies that neither the
adiabatic nor the point junction limits need to be satisfied for braiding to
be realised.

6.3.3. Topological protection of the edge vortices
The phase domain wall created during the quench corresponds to a

pair of edge vortices that propagate along the edges. As one of them
surrounds the bulk vortex it picks up a phase that realises the parity
switch [107]. Since a π domain wall cannot be unwound, this mechanism is
protected from all local sources of disorder. In this part, we verify that the
dynamically injected vortices are topologically protected by introducing
irregularities in the spatial profile of ∆0(x). We show how an additional
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Figure 6.6: (Top) Net charge increase at the exit of the superconductors without
(a) and with (b) vortices, with four geometrically induced path length differences
between the edges δx for τ = 500a/v. (Bottom) Parity of the edge sector for
the same data sets. The calculated parity is independent of δx. In this case the
data sets overlap making the different curves indistinguishable.

path-length δx in the upper edge (see the top panel of Fig. 6.6) influences
the charge signature, fully spoiling the quantization discussed in Sec. 6.3.1
in agreement with the predictions in Ref. 107. In contrast, our calculation
of parity (see the bottom panel of Fig. 6.6) remains unaffected by the
local changes in the system, demonstrating the topological protection of
the edge-vortex excitations. This confirms that even for a finite junction,
edge-vortices can be used to encode protected quantum information.

6.4. Long junction dynamics

Our results so far have considered the particular case vtinj ∼ 2W where
the injection process is not spoiled by the excitation of junction modes. In
this section, we consider the more general case where the ratio vtinj/W is
varied. In particular, we investigate how trapped excitations can influence
the creation of edge-vortices for sufficiently long-junctions.
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6.4.1. Quasi-particle excitation spectrum
To understand the behaviour in the junction we first study the quasi-

particle excitation spectrum E(φ). Within the superconducting gap, this
spectrum consists of states localized in the bulk vortices, junction and
edges. The injection process is characterized by the gap closing at φ = π
with the dispersion EJ = ±∆J cosφ/2 seen before in Fig. 6.2. In our case,
the junction states couple with the edge states, forming hybridized bands
seen in Fig. 6.7 (gray lines). We calculate the occupation number of these
energy levels:

N̂(φ) =
∑

Eµ(φ)∈S+

d†
µ(φ)dµ(φ) (6.17)

where each term d†
µ(φ)dµ(φ) counts the quasi-particle occupation within a

single energy level µ. The expectation value in the evolved state Û(t) |Ω⟩
is then given by:

⟨N̂(φ, t)⟩ = Re
∑
α∈S−

µ∈S+

∑
ν∈S

⟨α(t)|µφ⟩ ⟨µφ|N |νφ⟩ ⟨νφ|α(t)⟩ (6.18)

where |µφ⟩ denotes an eigenstate of H(φ) and N = 1.
The occupation of each level through-out the quench is shown by thick

lines in Fig. 6.7, where the color is used to distinguish between edge (red)
and junction (blue) states.2 The slow injection case (a) treated in Sec. 6.3
shows that the junction states are only occupied near values of φ = π and
fully emptied in the edges at the end of the injection. In panel (b), the
injection is short enough to create excitations in the levels E > ∆J. Note
that, in this case, the approximation ⟨P̂ ′⟩ made in Sec. 6.3.2 fails because
of nonzero occupation in the junction. This means that the parity switch
is no longer fully carried by the edge modes, which we attribute to trapped
excitations in the Josephson junction.

6.4.2. Trapped excitations
In the presence of a finite Josephson junction the coupling between the

two edges is mediated by their hybridization with the chiral states in the
Josephson junction. This hybridization is only supported for a duration
tinj around φ = π, when the junction is effectively gapless. We have shown
that when vtinj ∼ 2W the travel time W/v is short enough to allow the

2The color at a value φ and band µ is proportional to the value
∑

x∈junctions |⟨µφ|x⟩|2.
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Figure 6.7: Quasi-particle occupation of the energy levels (thick colored lines;
a thick line signifies a strong occupation) above the ground state level (E = 0),
superimposed on the time-independent energy spectrum of H(φ) (thin gray
lines). The color of the lines distinguishes between junction (blue) and edge
(red) states. At fast injection (b), the quasiparticle occupation in the junction
levels Eµ ≥ ∆J at final time is high. We have removed the vortex state from
this figure.

excitations to escape the junctions before the gap re-opens. Here we show
that in the alternative regime vtinj < W , the excitation is partially trapped
in the gapped bound state of the junction.

In order to describe the quasi-particles inside the junction, we define
an excitation density via a spatial projection of the quasi-particle number
N(x) = P(x)NP(x). This is done similarly to our description of charge
(i.e. ⟨x′|N(x) |x′′⟩ = σ0ν0δx′,x′′δx,x′) arriving to the expression:

⟨ρ̂φ(x, t)⟩ = Re
∑
µ∈S+

α∈S−

∑
ν∈S

⟨α(t)|µφ⟩ ⟨µφ|N(x) |νφ⟩ ⟨νφ|α(t)⟩ . (6.19)

Note that when integrated over the whole system, the Eq. (6.18) is recov-
ered. Integrating this density locally gives the number of quasi-particle
inside junctions ⟨N̂junc(t)⟩ and edges ⟨N̂edges(t)⟩.

In Fig. 6.8, we show how the quasi-particle changes with time for two
different systems. When the injection is slow (a) the quasi-particle number
in the junction is fully transferred to the edges as anticipated. In the
alternate case when the injection is very fast (b), the particle number slowly
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Figure 6.8: Bogoliubov quasi-particle number inside the junction (red) and
inside the edges (blue) as a function of time. Panel (a) shows that the junction
excitation fully escapes into the edges, while in (b), at short injection time,
the junction contains residual quasi-particles. The bottom panels show the
corresponding quasi-particle densities at two different times times. The inte-
gration window used to calculate the quasi-particle number inside the junction
is marked with a blue rectangle. An animated visualisation can be found in
http://link.aps.org/supplemental/10.1103/PhysRevB.108.235309.
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6.5 Conclusion

decays towards a constant residual value in the junctions corresponding to
quasi-particles occupying the lowest bound state in the Josephson junctions.
As this trapped excitation can carry a part of the parity exchange it can
spoil the injection protocol as well as the characteristic charge signature
(shown in App. 6.C). For this reason, it is important to find a bound for
tinj above which the trapped excitations in the junction can be neglected.

6.4.3. Particle number in the junction
In the adiabatic theory Ref. 38, the total particle number produced

in the edges at final time is equal to 1.037. The non-quantized number
is due to particle-hole pairs production during the injection process. At
slow injection, we find a comparable value ⟨N̂junc⟩ + ⟨N̂edge⟩ = 1.049 as
indicated in Fig. 6.8 (a), close to the adiabatic theory. For the fast injection
in Fig. 6.8, this is ⟨N̂junc⟩ + ⟨N̂edge⟩ = 2.033 instead.

We therefore turn to a quantitative description of the residual particle
number in the junction ⟨N̂junc⟩ for different values of vtinj/W . We achieve
this by simulating different values of τ in Fig. 6.9. In Fig. 6.9 (a), the
particle number is shown as a function of time for different values of
vtinj/W , where we distinguish between the two regimes vtinj > W and
vtinj < W by two colors. In panel (b), we show that the residual excitation
number in the junction decreases fast as the injection time becomes long.
We match this with an exponential shown in Fig. 6.9. After vtinj > 2W , this
value has nearly decayed to zero. In an experimental setting, this provides
us with an upper bound on the flux bias change rate |dΦ/dt| < Φ0v/2W 2∆J
when the parity exchange is fully carried by the edges corresponding,
ensuring a successful injection of edge vortices.

6.5. Conclusion
In this work we have shown how a braiding protocol introduced in Ref. 38

can be dynamically simulated as a tight-binding many-body system. With
this setup we were able to fully probe the braiding process away from
the limitations of the effective model. This allowed us to investigate the
relevant scales in the system as well as compare the current signature with
analytical predictions. We were able to study dynamically the local parity
switch present in the edge states and show the topological protection of this
exchange. We have shown that the injection and braiding of edge-vortices
is uncompromised by a finite junction when vtinj > 2W , so that all the
parity exchange is contained in the edge states. Additionally we studied
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Figure 6.9: (a) Quasi-particle number inside the junction as a function of time,
for two values of the injection time. (b) Residual quasi-particle number in the
junction at some final time tf = 500a/v as a function of the ratio vtinj/W .
An exponential fit yields ⟨N̂junc(tf)⟩ = N0 · exp(vtinj/Wβ) with β = 0.31 and
N0 = 0.5.

this system away from this limit and investigated the excitations in the
junction. Here, we showed that the lowest bound state of the junction
remains excited long after the quench for sufficiently fast injections. While
the parity switch ⟨P̂ ′⟩ is still protected in this limit, we can no longer
conclude that it is fully carried in the edge states, therefore providing
a limitation for the use of such device as a topological qubit. For this
reason we show the interplay of scales vtinj and W to find a parameter
regime, where the injection of edge vortices is well defined. We see that
the adiabatic condition vtinj ≫ W discussed in previous works can be
relaxed to vtinj ≳W , while keeping the braiding predictions intact. This
is helpful for future experimental work as it allows large deviations from
the point junction limit.
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6.A Time-evolution of single-body operators in BdG

6.A. Time-evolution of single-body
operators in BdG

6.A.1. From second to first quantization

In a tight-binding system, any single-body operator Â can be written as

Â =
n∑

α,β=1
Aeαβψ̂

†
αψ̂β , Aeαβ = ⟨0| ψ̂αÂψ̂†

β |0⟩ , (6.20)

where |0⟩ denotes the vacuum of electrons, which can be rewritten into
the BdG form as

Â = 1
2Ψ̂†AΨ̂ + 1

2 TrAe (6.21)

with

A =
(
Ae 0
0 −σyAe∗σy

)
Ψ̂ :=

(
ψ̂1↑ ψ̂1↓ · · · ψ̂N/2↑ ψ̂N/2↓

ψ̂†
1↓ −ψ̂†

1↑ · · · ψ̂†
N/2↓ −ψ̂†

N/2↑

)T (6.22)

We can evolve this operator in the Heisenberg picture to obtain

Û†ÂÛ = 1
2Ψ̂(t)†AΨ̂(t) + 1

2 TrAe (6.23)

where we defined ψ̂α(t) = Û†ψ̂αÛ . Since we intend to evaluate this
operator in the ground state |Ω⟩ of the initial Hamiltonian, we need to
write it in terms of the Bogoliubov operators {dβ}ν∈S of Ĥ(0). It is
possible to prove (see App. 6.A.3) that the {ψ̂α(t)}ν∈S operators can be
written as linear combinations of these Bogoliubov operators as

ψ̂α(t) =
∑
β∈S

Φαβ(t)dβ i.e. Ψ̂(t) = Φ(t)d (6.24)

where Φ(0) is the matrix that diagonalises the BdG Hamiltonian at t = 0,
(i.e. H(0) = Φ(0)EΦ†(0)) and Φ(t) is the solution of

iℏ∂tΦ(t) = H(t)Φ(t). (6.25)
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Notice that this means that the columns of Φ are none other than the
eigenstates of H(0) evolved according to the Schrödinger equation for H(t).
With this, we can express

Û†ÂÛ = 1
2d†Φ†AΦd + 1

2 TrAe (6.26)

Finally, using the fact that by definition ⟨Ω| d†
αdβ |Ω⟩ = δαβ if Eα < 0 and

⟨Ω| d†
αdβ |Ω⟩ = 0 otherwise, we obtain

⟨Â(t)⟩ − ⟨Â(0)⟩ = 1
2
∑
α∈S−

(
Φ†(t)AΦ(t) − Φ†(0)AΦ(0)

)
αα
, (6.27)

which in Dirac notation becomes

⟨Â(t)⟩ − ⟨Â(0)⟩ = 1
2
∑
α∈S−

(
⟨α(t)|A |α(t)⟩ − ⟨α(0)|A |α(0)⟩

)
. (6.28)

With this, we have mapped our original problem of evolving many-body
states in a Hilbert space of dimension 2n into n first quantization problems
in a Hilbert space of dimension 2n.

6.A.2. Convergence

The fact that Eq. (6.28) involves all n negative energy eigenstates of H
poses two problems. First, we only aim at describing the system accurately
at low energies. Any realistic system will not share the specific high-energy
behaviour of our tight-binding description far from the Fermi energy.
Secondly, we should be able to understand our system by considering only
states close to the Fermi energy, so evolving all of them is a waste of
computational resources. Unfortunately we have no reason to belive that
the contribution of both terms in Eq. (6.28) will cancel out as we go away
from the Fermi energy. This was actually studied numerically and it was
verified that the value of ⟨ȷ̂y(x, t)⟩ − ⟨ȷ̂y(x, 0)⟩ as given by Eq. (6.28) does
not converge –instead it oscillates– as we increase the amount of states
evolved (see Fig. 6.10). This section is devoted to rewrite this equation in
a form that solves this issue. To do so, let us explicitly make use of basis
of the eigenstates of H(0) and introduce the completeness relation around
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6.A Time-evolution of single-body operators in BdG

A in the first term of Eq. (6.28) to obtain

1
2
∑
α∈S−

⟨α(t)|A |α(t)⟩ =

1
2
∑
α∈S−

∑
µ,ν∈S

⟨α(t)|µ⟩ ⟨µ|A |ν⟩ ⟨ν|α(t)⟩ =

1
2
∑
α∈S−

∑
µ,ν∈S−

(
⟨α(t)|µ⟩ ⟨µ|A |ν⟩ ⟨ν|α(t)⟩

+ ⟨α(t)|Cµ⟩ ⟨Cµ|A |ν⟩ ⟨ν|α(t)⟩

+ ⟨α(t)|µ⟩ ⟨µ|A |Cν⟩ ⟨Cν|α(t)⟩

+ ⟨α(t)|Cµ⟩ ⟨Cµ|A |Cν⟩ ⟨Cν|α(t)⟩
)
.

(6.29)

where C = σyνyK is the BdG charge conjugation operator and Cµ denotes
the particle-hole partner of the state labeled µ. Since Â is a single-particle
operator, it satisfies CAC = −A. Given that {|α(t)⟩ : α ∈ (S− ∪ S+)} is a
complete basis of the BdG Hilbert space, we can write the first term of
Eq. (6.29) as

1
2
∑
α∈S−

∑
µ,ν∈S−

⟨α(t)|µ⟩ ⟨µ|A |ν⟩ ⟨ν|α(t)⟩ =

1
2
∑
µ∈S−

⟨µ|A |µ⟩

−1
2
∑
α∈S+

∑
µ,ν∈S−

⟨Cα(t)|µ⟩ ⟨µ|A |ν⟩ ⟨ν|Cα(t)⟩

(6.30)

If we plug this in Eq. (6.29) and then in Eq. (6.28), a few simplifications
happen. The first term of this equation will cancel with the second term of
Eq. (6.28), and the second term of Eq. (6.30) is real and equal to the last
term of Eq. (6.29) (this follows from the properties of C). In addition, the
second and third terms of Eq. (6.29) are each other’s complex conjugate.
Taking all of this into account we can write down Eq. (6.28) as

⟨Â(t)⟩ − ⟨Â(0)⟩ =

Re
∑
α∈S−

∑
µ,ν∈S+

(
⟨α(t)|µ⟩ ⟨µ|A |ν⟩ ⟨ν|α(t)⟩

+ ⟨α(t)|µ⟩ ⟨µ|A |Cν⟩ ⟨Cν|α(t)⟩
) (6.31)
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Figure 6.10: Convergence of the charge at the exit with two methods. Left:
with charge expressed in the local basis using Eq. (6.27) where Emax is the
maximum energy of the states in the sum over α. Right: With charge expressed
in the basis of eigenstates of H(0) using Eq. (6.32) where Emax is the maximum
energy of the states in the sums over α, µ and ν.

which we write more simply in the main text as

⟨Â(t)⟩ − ⟨Â(0)⟩ = Re
∑
α∈S−

µ∈S+

∑
ν∈S

⟨α(t)|µ⟩ ⟨µ|A |ν⟩ ⟨ν|α(t)⟩ (6.32)

This formula includes overlaps between positive energy and evolved neg-
ative energy states which ensures non-zero contributions to only exist
around E = 0. In Fig. 6.10 we show how the contribution of the terms in
the sum vanishes as we go further away from the Fermi energy, which lets
us avoid having to evolve all negative energy states.
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6.A.3. Proof of time evolution method
In this section we prove the following statement:

Proposition. Let Ψ̂ be the Nambu spinor of fermion creation and anni-
hilation operators as defined in Eq. (6.22) satisfying {ψ̂α, ψ̂†

β} = δα,β and
{ψ̂α, ψ̂β} = δα,Cβ where Cα is the index of (ψ̂α)† in Ψ̂ (i.e. ψ̂Cα = ψ̂†

α).
Let

Ĥ(t) = 1
2Ψ̂†H(t)Ψ̂

be the time-dependent BdG Hamiltonian describing a tight-binding super-
conducting system of fermions. Let Û(t) be its corresponding evolution
operator. Let C be the antiunitary charge conjugation operator satisfying
C2 = 1 and {C, H} = 0. Let V (t) be a matrix that diagonalises H(t) and
let d = (d1, d2, · · · , d2n) be the spinor of Bogoliubov operators diagonalising
Ĥ(0).

Then, the time evolution of Ψ̂ can we written as

Ψ̂(t) := Û(t)†Ψ̂Û(t) = Φ(t)d (6.33)

where Φ obeys

iℏ∂tΦ(t) = H(t)Φ(t), Φ(0) = V (0) (6.34)

Proof. According to Heisenberg’s picture evolution equation we have

i∂tψ̂α(t) =
[
ψ̂α(t), Û(t)†Ĥ(t)Û(t)

]
. (6.35)

Since Ĥ is quadratic in Ψ̂, we know that ψ̂α(t) can be expanded in terms
of the initial ψ̂’s as

ψ̂α(t) =
∑
β

ζαβ(t)ψ̂β , (6.36)

or in matrix notation
Ψ̂(t) = ζ(t)Ψ̂. (6.37)

Notice that the unitarity of Û imposes that the operators in Ψ̂(t) satisfy
the same commutation algebra as the initial ones. In turn, this imposes
unitarity on ζ. We can use Eq. (6.36) to write the commutator in Eq. (6.35)
as [

ψ̂κ(t), Û(t)†Ĥ(t)Û(t)
]

= 1
2
∑
αβµνλ

Hαβζ
∗
αµζβνζκλ[ψ̂λ, ψ̂†

µψ̂ν ] (6.38)
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It is easy to check that

[ψ̂λ, ψ̂†
µψ̂ν ] = ψ̂νδλ,µ − ψ̂†

µδλ,Cν , (6.39)

so we get [
ψ̂κ(t), Û(t)†Ĥ(t)Û(t)

]
= 1

2
∑
αβµν

Hαβζ
∗
αµζβνζκµψ̂ν

− 1
2
∑
αβµν

Hαβζ
∗
αµζβνζκCνψ̂

†
µ.

(6.40)

Using ψ̂†
µ = ψ̂Cµ and relabeling in the last term we can rewrite[
ψ̂κ(t), Û(t)†Ĥ(t)Û(t)

]
=

1
2
∑
αβµν

Hαβζ
∗
αµζβνζκµψ̂ν − 1

2
∑
αβµν

Hαβζ
∗
αµζβνζκ,Cνψ̂Cµ =

1
2
∑
αβµν

Hαβζ
∗
αµζβνζκµψ̂ν − 1

2
∑
αβµν

Hαβζ
∗
α,Cνζβ,Cµζκµψ̂ν .

(6.41)

Comparing with the left-hand side of Eq. (6.35) we can deduce that

i∂tζκν = 1
2
∑
αβµ

Hαβζ
∗
αµζβνζκµ − 1

2
∑
αβµ

Hαβζ
∗
α,Cνζβ,Cµζκµ (6.42)

From ψ̂†
α(t) = ψCα(t), we have ζαβ = ζ∗

Cα,Cβ so the previous equation
becomes

i∂tζκν = 1
2
∑
αβµ

Hαβζ
∗
αµζβνζκµ − 1

2
∑
αβµ

HαβζCα,νζ
∗
Cβ,µζκµ (6.43)

The particle-hole symmetry of H (CHC = −H) can be expressed element-
wise as HCα,Cβ = −Hβ,α. After some relabeling on the last term, this lets
us rewrite the previous equation as

i∂tζκν =
∑
αβµ

Hαβζ
∗
αµζβνζκµ (6.44)

The unitarity of ζ implies
∑
µ ζ

∗
αµζκµ = δακ so the previous expression
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becomes
i∂tζαβ =

∑
µ

Hαµζµβ (6.45)

or in matrix notation

i∂tζ = Hζ, ζ(0) = 1 (6.46)

Now notice that we can compose Eq. (6.36) with Ψ̂ = V (0)d and define
Φ(t) = ζ(t)V (0) that satisfies Eq. (6.33). Since V (0) is time-independent,
Eq. (6.34) follows immediately from Eq. (6.46).

6.B. Parity

6.B.1. Time evolution of the parity operator

The parity operator is defined as:

P̂ = (−1)
∑n

α=1
ψ̂†

αψ̂α =
n∏
α=1

(
1 − 2ψ̂†

αψ̂α

)
. (6.47)

Since it commutes with Ĥ, its ground state is an eigenstate of parity. This,
together with the fact that the BdG operators switch the parity of a state,
implies that we can also write down our parity operator in terms of them:

P̂ = pΩ

n∏
α∈S+

(
1 − 2d†

αdα
)

(6.48)

where pΩ = ±1 stands for the parity of the ground state. In general, we
can express the parity of a set of quasi-particle states S as

P̂S =
∏
α∈S

(
1 − 2d†

αdα
)

(6.49)

The time evolution of this operator is given by substituting each dα for
dα(t) = Û†dαÛ . From the results of App. 6.A.1, it is straightforward to
obtain the expression of dα(t) in terms of {dα}α∈S :

Û†dÛ = Û†V (0)†Ψ̂Û = V (0)†Ψ̂(t) = V (0)†Φ(t)d (6.50)
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Thus, if we define χ(t) = V (0)†Ψ̂(t) we have

Û†dαÛ =
∑
β∈S

χ(t)αβdβ χ(t)αβ = ⟨α|β(t)⟩ (6.51)

We can expand the product in Eq. (6.49) and use Wick’s theorem to
obtain an expression for the time evolution of ⟨P̂S⟩

⟨P̂S(t)⟩ =
nS∑
m=0

(−2)m
∑

0<α1
<...<αm

∑
c∈Cm

(−1)s(c)
m∏
k=1

ΘXk(c)Yk(c)
αik(c)αjk(c)

. (6.52)

This formula contains several elements. First, we have a sum over all
orders 0 < m < nS (the term corresponding to m = 0 is equal to 1). For
each order m we sum over all unordered choices of m states among nS .
For every such choice, we sum over all possible Wick contractions of that
order (Cm denotes the set of all Wick contractions of order m). For some
order m, each contraction (c denotes a specific contraction) in this sum
results in a specific product of m numbers of the form ΘXY

αβ defined as

Θ00
αβ =

∑
µ∈S−

χ∗
α,µχβ,µ

Θ01
αβ =

∑
µ∈S−

χ∗
α,µχ

∗
β,Cµ

Θ10
αβ =

∑
µ∈S−

χα,Cµχβ,µ = Θ01∗
βα

Θ11
αβ =

∑
µ∈S−

χα,Cµχ
∗
β,Cµ = δαβ − Θ00∗

αβ

(6.53)

Each contraction c of order m corresponds to a permutation of the numbers
{1, 2, · · · , 2m} under the following restriction: when the elements of the
permutation are split in pairs {(ak(c), bk(c))}mk=1 they must satisfy ak(c) <
bk(c) ∈ {1, . . . , 2m} and a1(c) < a2(c) < · · · < am(c). Each pair yields
ik(c) = ⌊(ak(c)+1)/2⌋, jk(c) = ⌊(bk(c)+1)/2⌋, Xk(c) = (ak(c)+1) mod 2
and Yk(c) = bk(c) mod 2. The overall sign s(c) is the sign of the permuta-
tion. It is possible to write a script that procedurally generates all valid
permutations and calculates the indices Xk(c), Yk(c), αik(c) and αjk(c)
corresponding to every contraction c.
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6.B.2. Convergence of parity
The amount of terms in equation Eq. (6.52) is

1 +
nS∑
m=1

(
nS
m

)
(2m− 1)!!. (6.54)

This number is out of reach in practice, so we are forced to truncate the
sums. It was checked that restricting ourselves to order mmax = 4 is
sufficient to get an accurate result. In addition, the operator ⟨P ′⟩ defined
in 6.14 in principle contains nS = n − 1 Bogoliubov operators, but in
practice we must truncate the product to a maximum number of states
nmax, or equivalently, a cut-off energy Emax. In Sec. 6.3.2, we have argued
that it is necessary to keep Emax < ∆J so that ⟨P̂ ′⟩ represents the parity
of the edges. This is true for the case where vtinj/W = 2.3 studied in
Sec. 6.3. We show this explicitly in Fig. 6.11, where convergence is reached
approximately at 0.85∆J, ensuring that no junction states participate in
the calculation of the parity. We also show a few other cases with smaller
values of vtinj/W . For these values, convergence of parity requires includ-
ing up to 35 states with energies above ∆J. In this case the calculation
includes the hybridized edge and bound states of the junction, which does
not allow us to isolate the edge parity sector from the junction.

6.C. Supplemental results
In this section, we present the results of our simulation for variable

quenching times, supplementing the results in the main text.

6.C.1. Local representation of observables
The calculations of current and quasi-particle number made in the main

text have been integrated over specific areas. Here we show a few snapshots
of the local current density and the local excitation density for two values
of vtinj/W (left and right panels of Fig. 6.12). We show three different
times in which the injection and fusion can be observed.

In the left panels, for long injections, the excitation entirely leaves
the junction. In the right panel (which corresponds with Fig. 6.8), the
excitation density slowly decays from the junction, at times even after
t > τ = 50a/v when the quench is over.
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Figure 6.11: Convergence of the parity sector P̂ ′ at final time tf as a function of
the index nmax which counts the number of eigenstates included in the calculation.
This is done for different values of vtinj/W which are displayed on the curves.
For energies above Emax = ∆J, the hybridized edge-junction states are necessary
in the convergence of the operator.

The current density is zero in the superconducting region as the Majorana
fermions are chargeless. Only upon fusion, the excitations produce charge.
Here, the charge production at short injection times is much smaller, which
is shown quantitatively in the next part. It is worth noting that while the
excitations can remain trapped in the junction, they do not carry charge.

6.C.2. Current density in the long junction regime
For completeness, we include the calculations of charge at the exit for the

different quenching times. In Fig. 6.13 we show the excitation spectrum,
quasi-particle number, current and charge for different values of vtinj/W
discussed in Sec. 6.4. We can see how the the occupancy of the junction
increases when the injection time becomes shorter.

As the contribution of the excitations in the junction became sufficient
the predictions for quantized charge are no longer valid. This can be seen
in the bottom part of Fig. 6.13 charge is no longer quantized. In the cases
vtinj/W = 0.1, 0.2, not only the lowest mode but also the next higher
mode of the junction is populated by excitations. Additionally as shown
in Fig. 6.12, a fast injection causes a large path-length difference as the
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Figure 6.12: Three snapshots of the braiding protocol for two values of vtinj/W
(left column and right column). the top panel shows the snapshots in terms of
the local excitation density, and the bottom panel shows them in terms of the
local current density.

junction traps the excitations and leaks them into the top and bottom
edges at different rates. This results in further interference effects upon
fusion.
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