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CHAPTER 4

Method to preserve the chiral-symmetry protection of
the zeroth Landau level on a two-dimensional lattice

4.1. Introduction

4.1.1. Objective

We address, in a different context, a problem originating from lattice
gauge theory: How to place fermions on a lattice in a way that respects
both gauge invariance and chiral symmetry [3, 8, 11, 12, 19, 69–71]. Our
context is topological insulators [72], three-dimensional (3D) materials
having an insulating bulk and a conducting surface, with massless Dirac
fermions as the low-energy excitations. The Landau level spectrum of
massless Dirac fermions is anomalous, the zeroth Landau level is a flat
band pinned to zero energy irrespective of the magnetic field strength
[73, 74].

Our objective is to model the surface states on a two-dimensional (2D)
lattice, without breaking the chiral symmetry that protects the zeroth
Landau level from broadening by disorder. Let us introduce the problem
in some detail.
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Figure 4.1: Slab of a topological insulator in a perpendicular magnetic field
B. Landau levels form on the top and bottom surface at energy |E| ∝

√
n,

n = 0, 1, 2, . . ., symmetrically arranged around E = 0. The density of states
(DOS) of the zeroth Landau level is not broadened by a spatially fluctuating B,
provided that the slab thickness d is sufficiently large that the two surfaces are
decoupled.

4.1.2. Zeroth Landau level

In a magnetic field B, perpendicular to the surface of the topological
insulator, Landau levels form at energies En = ±ℏω

√
n, n ∈ N, with

ω ∝
√
B. The zeroth Landau level E0 = 0 is magnetic-field independent

[75–78]. If the perpendicular field strength has spatial fluctuations, for
example, because of ripples on the surface, all Landau levels are broadened
except the zeroth Landau level [79].

The E = 0 flat band is protected by a chiral symmetry, a unitary
and Hermitian operator Γ that anti-commutes with the Hamiltonian [80].
Indeed, the massless 2D Dirac Hamiltonian

HD = vℏkxσx + vℏkyσy (4.1)

anticommutes with the Pauli matrix σz, and this symmetry is preserved if
one introduces a space-dependent vector potential by ℏk 7→ ℏk − eA(r).

Topological considerations [81–83] then enforce the existence of an N -
fold degenerate eigenstate at E = 0, with N the number of flux quanta
through the surface. The flat band has a definite chirality, meaning that
it is an eigenstate of Γ = σz with eigenvalue ±1 determined by the sign of
the magnetic field.

If we consider a topological insulator in the form of a slab (see Fig.
6.1), the top and bottom surfaces each support a zeroth Landau level,
of opposite chirality. The two flat bands will mix and split if the slab is
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4.1 Introduction

so thin that the wave functions of opposite surfaces overlap, but in thick
slabs this breakdown of the topological protection is exponentially small
in the ratio of slab thickness and penetration depth.

4.1.3. 2D lattice formulation

A numerical simulation of the 3D system is costly, it would be more
efficient to retain only the surface degrees of freedom. If we discretize the
2D surface on a square lattice (lattice constant a), the Hamiltonian must
be periodic in the momentum components with period 2π/a. The sin ak
dispersion has the proper periodicity, but it suffers from fermion doubling
[71]: a spurious massless degree of freedom appears at k = π/a.

We contrast two lattice formulations that avoid fermion doubling: an
approach due to Wilson [11] with a sine+cosine dispersion, and an approach
due to Stacey [8] with a tangent dispersion.

In Wilson’s approach [11] the discretized Dirac Hamiltonian is

HWilson = (ℏv/a)
∑
α=x,y

σα sin akα

+ ∆σz
∑
α=x,y

(1 − cos akα). (4.2)

The cosine term ∝ ∆σz avoids fermion doubling, the only low-energy
excitations are near k = 0, but it breaks chiral symmetry: HWilson no
longer anticommutes with Γ = σz.

The alternative approach due to Stacey [8] has a tangent dispersion,

HStacey = (2ℏv/a)
∑
α=x,y

σα tan(akα/2). (4.3)

Fermion doubling is avoided without breaking chiral symmetry, at the
expense of a nonlocal Hamiltonian: While sines and cosines of momentum
only couple nearest neighboring sites, the tangent of momentum represents
a long-range coupling.

The merit of Stacey’s approach is that the nonlocal Schrödinger equation
HStaceyΨ = EΨ can be cast in the form of a generalized eigenvalue problem,

HΨ = EPΨ, (4.4)
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with local operators H,P given by [26]

H = ℏv
2aσx(1 + cos aky) sin akx

+ ℏv
2aσy(1 + cos akx) sin aky, (4.5a)

P = 1
4 (1 + cos akx)(1 + cos aky). (4.5b)

Because H and P are sparse Hermitian operators, and P is positive
definite,1 the generalized eigenvalue problem (4.4) can be solved efficiently.

4.1.4. Outline

We wish to show that the topological protection of the zeroth Landau
in a 3D topological insulator can be obtained in a purely 2D formulation.
To preserve chiral symmetry we work with the tangent dispersion, in the
local representation (4.5).

The first step is to introduce the vector potential in a gauge invariant
way — without breaking the locality of the generalized eigenvalue problem.
We do this in the next Section 4.2. In Sec. 4.3 we calculate the Landau
level spectrum. The zeroth Landau level contains states of both chiralities,
we show that these can be spatially separated by adjoining +B and −B
regions. The robustness of the flat band is assessed in Sec. 4.4. We
conclude in Sec. 4.5.

4.2. Gauge invariant lattice fermions with a
tangent dispersion

In Ref. 26 it was shown how the magnetic field can be incorporated in
the generalized eigenvalue problem (4.5) in a way that is gauge invariant
to first order in the flux through a unit cell. Here we will go beyond that
calculation, and preserve gauge invariance to all orders.

For ease of notation we set ℏ and the lattice constant a both equal to
unity in most equations that follow. The electron charge is taken as +e,
so that the vector potential enters in the Hamiltonian as k 7→ k − eA.

1The operator P is in general only positive semidefinite. It becomes positive definite
if we choose an odd number of lattice points with periodic boundary conditions in
the x– and y–directions.
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We recall the definition of the translation operator,

Tα ≡ eik̂α =
∑

n

|n⟩⟨n + eα|. (4.6)

The sum over n is a sum over lattice sites on the 2D square lattice, and
eα ∈ {ex, ey} is a unit vector in the α-direction. The Peierls substitution
ensures gauge invariance by the replacement

Tα 7→ Tα =
∑

n

eiϕα(n)|n⟩⟨n + eα|,

ϕα(n) = e

∫ n

n+eα

Aα(r) dxα.
(4.7)

Note that the A-dependent translation operators no longer commute,

TyTx = e2πiφ/φ0TxTy, (4.8)

where φ is the flux through a unit cell in units of the flux quantum
φ0 = h/e.

One could now apply the Peierls substitution directly to the Hamiltonian
HStacey from Eq. (4.3), but then one runs into the obstacle noted in Ref.
26: The transformation to a local generalized eigenvalue problem only
succeeds to first order in A, higher order terms become nonlocal. Here we
therefore follow a different route.

We rewrite the operators H and P from Eq. (4.5) in terms of the
translation operators (4.6) and apply the Peierls substitution (4.7) at that
level. Noting that 1 + cos kα = 1

2 (1 + Tα)(1 + T †
α), sin kα = 1

2i (Tα − T †
α),

we define

H = ℏv
8iaσx(1 + Ty)(Tx − T †

x )(1 + T †
y )

+ ℏv
8iaσy(1 + Tx)(Ty − T †

y )(1 + T †
x ), (4.9a)

P = ΦΦ†, (4.9b)
Φ = 1

8 (1 + Tx)(1 + Ty) + 1
8 (1 + Ty)(1 + Tx). (4.9c)

Since Tx and Ty do not commute the order matters: In Eq. (4.9) we have
ordered these translation operators such that H and P remain Hermitian,
and moreover P remains positive definite. Both these properties are
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essential for an efficient solution of the generalized eigenvalue problem

HΨ = EΦΦ†Ψ. (4.10)

For completeness we note that a scalar potential V and a magnetization
M can be included by adding to H the terms

H 7→ H + ΦV Φ† + Φ(M · σ)Φ†. (4.11)

The potential V and perpendicular magnetization Mz break chiral sym-
metry, while the parallel magnetizations Mx and My preserve it.

4.3. Chirality-resolved zeroth Landau level

4.3.1. Lattice obstruction to chirality polarization
The Landau levels of the Dirac Hamiltonian (4.1) are dispersionless flat

bands at energies ±En given by [73, 74]

En = v
√

2nℏe|B|, n = 0, 1, 2, . . . . (4.12)

Each Landau level has the same degeneracy N = number of flux quanta
through the system. Both chiralities C = ±1 (eigenvalues of σz) contribute
equally to each nonzero Landau level: ⟨n|σz|n⟩ = 0 for n ≥ 1. The zeroth
Landau level, however, is polarized: ⟨0|σz|0⟩ = signB.

The topological protection of the zeroth Landau level rests on this
chirality polarization: The chirality index I of the zero-mode, equal to the
number of states with C = +1 minus the number of states with C = −1,
is equal to I = (signB)N . If chiral symmetry is maintained the index is a
topological invariant [81–83], preventing a broadening of the flat band.

All of this is for the continuum description. The fundamental obstacle
faced by lattice fermions is that the chirality polarization of the zeroth
Landau level is lost: A no-go theorem by Stacey [69] enforces that any
gauge invariant lattice regularization of the Dirac Hamiltonian which
preserves chiral symmetry must have the same number of zero-modes for
either chirality. Hence, on the lattice I = 0 and the topological protection
breaks down.

That gauge invariance on a lattice is incompatible with a nonzero
chirality index might be understood by a topological argument: A uniform
magnetic field can be concentrated into an array of h/e flux tubes, each
of which is fully contained within a unit cell. The chirality index cannot
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Figure 4.2: Solid lines: Dispersionless Landau levels in a uniform magnetic field
B0 = (1/201)(h/ea2), calculated from the generalized eigenvalue equation (4.10)
in the gauge A = −B0yx̂. (Energies are plotted in units of E1 =

√
2ℏev2B0.)

The dashed lines indicate the continuum limit (4.12). At each kx-value there are
two independent eigenstates in the zeroth Landau level, one with spin up and
one with spin down. The other Landau levels each have only a single eigenstate
at a given kx, without any spin polarization.

change by such a smooth deformation, but the resulting magnetic field
distribution may be gauged away on the lattice, hence I must be equal to
zero.

4.3.2. Proposed work-around
In accord with these general considerations we have verified by explicit

calculation (see Fig. 4.2) that the generalized eigenvalue problem (4.10)
has an N -fold degenerate zero-mode E0 = 0 in both the C = +1 and
C = −1 manifold.

To recover the chirality-resolved zeroth Landau we propose a method to
spatially separate the opposite chirality manifolds: We double the system
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Figure 4.3: Same calculation as in Fig. 4.2, but for the non-uniform magnetic
field profile with separate regions of ±B0 = ±(1/202)(h/ea2). The full profile
of length 4L0 + a = 405 a is repeated periodically along the y-axis and is
translationally invariant along the x-axis. The scattered data points near the
Brillouin zone boundaries (with a nearly vertical dispersion, see expanded inset)
are a lattice artefact.

by adjoining a +B and −B region. Since then I = 0 by construction, the
zeroth Landau level in each of the two regions could be chirality polarized
without violating the no-go theorem.

Our numerics, see Figs. 4.3 and 4.4, shows that this is indeed what
happens: the states in the zeroth Landau level with C = ±1 are fully
contained in the ±B region.

In the next section we will check to what extent this spatial separation
of the chiralities is sufficient to protect the flat band.

4.4. Robustness of the flat band
We introduce chirality-preserving disorder by randomly varying the

perpendicular magnetic field component B(x, y). The random field is
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Figure 4.4: Wave function intensity profile in the zeroth Landau level for the
band structure of Fig. 4.3, evaluated at kx = 0. As indicated, the eigenstates
with chirality C = ±1 (eigenvalue of σz) are spatially separated in the regions
with magnetic field ±B0.

drawn independently on each lattice site, uniformly in the interval (0, 2B0)
in the positive field region and in the interval (−2B0, 0) in the negative
field region.

For the sake of illustration, it is helpful to first keep the translational
invariance in the x-direction, so that B(y) fluctuates only as function of y.
We can then still plot a band structure as a function of kx, see Fig. 4.5.
All flat bands are destroyed by the disorder, except for the zeroth Landau
level, which remains completely dispersionless. The spatial separation of
the states of opposite chirality is crucial for this topological protection: In
Fig. 4.6 we show that without it the zeroth Landau does broaden in the
presence of disorder.

We next consider a disordered field B(x, y) that fluctuates in both x–
and y–directions. The wave number kx is then no longer a good quantum
number, instead of a band structure we plot the density of states near
E = 0, to assess whether the zeroth Landau level is broadened. As shown
in Fig. 4.7a the density of states peak persists with only a slight broadening
in the disordered system.

Earlier studies of the Landau level spectrum of lattice fermions use
Wilson’s sine+cosine dispersion [84, 85], which breaks the chiral symmetry.
In the Wilson Hamiltonian (4.2) the zeroth Landau level is displaced from
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Figure 4.5: Same calculation as in Fig. 4.3, but now for a magnetic field that
varies randomly in the y-direction. The zeroth Landau level is protected from
broadening because the states of opposite chirality are spatially separated.

E = 0 by the ∆-dependent offset

δE = 1
2eBa

2∆/ℏ. (4.13)

The Wilson mass ∆ is of order ℏv/a to effectively gap out the low energy
excitations at k = π/a, hence δE ≃ eBav.

In Fig. 4.7b we show results for the density of states, computed from
the Wilson Hamiltonian for the same magnetic field value as in Fig. 4.7a.
Without disorder the only difference with the tangent dispersion is the
shift (4.13) of the zeroth Landau level, but with disorder the difference is
quite dramatic.

4.5. Conclusion
In summary, we have shown how the quantum Hall effect in a 3D

topological insulator can be simulated on a 2D lattice. In a sense, the top
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Figure 4.6: Same calculation as in Fig. 4.2, but now for a magnetic field that
varies randomly in the y-direction. The zeroth Landau level contains states of
opposite chirality which are not spatially separated, so they split in the presence
of disorder.

and bottom surfaces in the slab geometry of Fig. 6.1 are unfolded onto a
plane. The inward and outward pointing magnetic field then corresponds
to adjoining +B and −B regions, each with a zeroth Landau level of
opposite chirality.

From a methodological point of view our work provides a gauge invariant
way to discretize the Dirac equation on a lattice without breaking chiral
symmetry. We note that earlier attempts to achieve this were not succesful
[53, 62]. The defining equation (4.10) of tangent fermions has the form
of a generalized eigenvalue problem, HΨ = EPΨ, with local Hermitian
operators H,P on both sides of the equations — allowing for an efficient
solution.

The alternative method of Wilson fermions works with a conventional
eigenvalue problem, HWilsonΨ = EΨ, that is local and gauge invariant,
so it is certainly efficient. However, it breaks chiral symmetry, and it
therefore lacks the topological protection of the zeroth Landau level.
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Figure 4.7: Density of states per unit cell for the tangent dispersion (a) and
for the sine+cosine dispersion (b), with and without disorder in the magnetic
field. (The disordered data is averaged over 1000 realizations.) The energy
resolution is 2 · 10−4 E1, so that a peak of height 25/E1 corresponds to a
degeneracy of 1 state per 200 unit cells. Both panels refer to the same magnetic
field B0 = (1/202)(h/ea2), and the same disorder strength B ∈ (0, 2B0). The
geometry of panel a) is the ±B0 field profile of Fig. 4.4 (L0 = 101 a), while panel
b) is for a single square of dimensions 202 a× 202 a. In both cases we impose
periodic boundary conditions in the x– and y–directions. The parameter ∆ in
the Wilson Hamiltonian (4.2) is set at ℏv/a.

In the previous chapters and Ref. 63 we have established the topological
protection of the Dirac cone of tangent fermions in zero magnetic field.
The present chapter completes this line of investigation by showing how
the topological protection can be extended to the zeroth Landau level in a
magnetic field. Our computer codes and numerical data are available at a
repository DOI:10.5281/zenodo.7495175.
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