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CHAPTER 3

Reflectionless Klein tunneling of Dirac fermions:
Comparison of split-operator and staggered-lattice

discretization of the Dirac equation

3.1. Introduction
Massless Dirac fermions have an energy-independent velocity, so if they

move uphill in a potential landscape they are not slowed down. Even an
infinitely high potential barrier cannot stop a particle approaching along
a field line. This counterintuitive behavior is referred to as the Klein
paradox, and the perfect transmission through a potential barrier is called
Klein tunneling. It plays a central role in the “electron quantum optics”
of Dirac materials, such as graphene, topological insulators, and Weyl
semimetals [57, 58].

The Dirac fermions on the two-dimensional (2D) surface of a 3D topo-
logical insulator are of particular interest because they work around the
“no-go” theorem for the impossibility to place a single species of massless
Dirac fermions on a lattice [3]. The work-around consists in spatially
separating two Dirac cones, one on the top surface and one on the bottom
surface of the insulating material [59, 60]. An unpaired Dirac cone is
topologically protected: electrostatic disorder cannot open up a gap and
Klein tunneling is fully reflectionless.

43
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Computer simulations of the electron dynamics on the 2D surface could
work with a 3D lattice, but because this is computationally expensive
there is a need for methods to implement a single Dirac cone on a 2D
lattice.1 Here we compare two such methods, using Klein tunneling as a
test case for the presence or absence of fermion doubling.

Both methods discretize the time-dependent Dirac equation,

iℏ
∂

∂t
Ψ(r, t) = v0

∑
α=x,y

(pα + eAα)σαΨ(r, t) + VΨ(r, t), (3.1)

where v0 is the energy-independent velocity of the massless electrons (Dirac
fermions), V and A are scalar and vector potentials, and the σα’s are Pauli
spin matrices. One method works in real space on a staggered space-time
lattice [61, 62], the other method is the one introduced in chapter 2, and
it works in Fourier space using a split-operator technique [63].

The staggered-lattice discretization is due to Hammer, Pötz, and Arnold
(HPA) [61, 62], and has been applied to a variety of problems in con-
densed matter physics [64–67]. For free fermions (V,A ≡ 0) it has the
bandstructure

sin2(εδt/2) = γ2
∑
α=x,y

sin2(a0kα/2), γ ≡ v0δt

a0
≤ 1√

2
. (3.2)

Here a0 and δt are the lattice constants in space and time; k and ε are
crystal momentum and quasi-energy.2

The split-operator discretization [63] builds on early work of Stacey
[8, 26, 46]. The bandstructure has the same form as Eq. (3.2) — but with
the sine replaced by a tangent,3

tan2(εδt/2) = γ2
∑
α=x,y

tan2(a0kα/2). (3.3)

A unique property of the HPA technique is that it is fully gauge invariant
[61, 62]. It is also highly efficient, because the time evolution is governed by

1An overview of methods to avoid fermion doubling in the context of lattice gauge
theory can be found in chapter 4 of David Tong’s lecture notes: https://www.damtp.
cam.ac.uk/user/tong/gaugetheory.html.

2The quasi-energy ε is such that Ψ(t+ δt) = eiεδtΨ(t), so the quasi-energy spectrum
repeats itself with period 2π/δt.

3The tangent tan(a0kα/2) has a pole at the Brillouin zone boundary kα = ±π/a0,
but the pole cancels from Eq. (3.3), which has a continuous quasi-energy dispersion
ε(k) for any real γ.
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3.2 Brillouin zone doubling

a direct, rather than implicit, difference equation, which moreover is local
in real space. These features are lacking in the split-operator discretization
[63], which motivated us to compare the two approaches in some detail.

Our central finding, presented in Sec. 3.2, is that the bandstructure
(3.2) from the staggered-lattice discretization actually has two inequivalent
Dirac cones in the first Brillouin zone: The Dirac points at k = 0 and
k = (2π/a0, 0) are not related by a reciprocal lattice vector. This Brillouin
zone doubling is avoided in the split-operator discretization. We assess
the consequences for Klein tunneling in Sec. 3.3 and conclude in Sec. 4.5.

3.2. Brillouin zone doubling
The HPA technique modifies a staggered lattice discretization known as

Susskind fermions [12, 19] and implemented in 2+1 space-time dimensions
in Ref. 68. In that approach the two components of the spinor Ψ = (u, v)
are discretized on separate lattices, displaced (staggered) from each other
by a0/2 and evaluated at alternating time slices (see Fig. 3.1a).

The Susskind fermion quasi-energy bandstructure [68],

cos2 εδt = (1 − γ2 + γ2 cos a0kx cos a0ky)2, γ ≤ 1, (3.4)

has two inequivalent Dirac cones in the first Brillouin zone B shown in Fig.
3.1c, defined by

B = {kx, ky ∈ R| − π/a0 < kx, ky ≤ π/a0}. (3.5)

This is an improvement over the naive discretization, without staggering,
which would have four inequivalent Dirac cones, at (a0kx, a0ky) = (0, 0),
(π, π), (π, 0), and (0, π). Susskind fermions do not have the last two, but
the first two Dirac cones remain.

In Fig. 3.1b,d we show the HPA modification of the staggered lattice
discretization. Comparison with Fig. 3.1a,c shows that the HPA unit
cell has one half the area of the unit cell of the original square lattice.
Accordingly, the first Brillouin zone B′, defined by

B′ = {kx, ky ∈ R| − 2π/a0 < |kx ± ky| ≤ 2π/a0}, (3.6)

has twice the area of B.
Inspection of the HPA dispersion (3.2) then shows that, indeed, within

B there is only a single Dirac cone, at k = 0. However, within B′ there
is a second cone at the corner k = (2π/a0, 0), see Fig. 3.2. (The other
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Figure 3.1: Comparison of two types of staggered grids for the spatial discretiza-
tion of Dirac fermions, in the Susskind fermion approach (panel a, corresponding
Brillouin zone B in panel c) and in the HPA modification (panel b, Brillouin zone
B′ in panel d). The black and white dots distinguish the u and v amplitudes of
the spinor wave function Ψ = (u, v). The blue squares give the unit cell of the
lattice in real space, the grey square is the first Brillouin zone in momentum
space, the red dots indicate two inequivalent Dirac points.

Brillouin zone corners are related by a reciprocal lattice vector, so they
are equivalent.) We conclude that, once we account for the Brillouin zone
doubling, the HPA discretization still suffers from fermion doubling.

3.3. Klein tunneling
The second Dirac cone at the corner of the Brillouin zone B′ is at a

relatively large momentum, so it will not play a role if the potentials are
smooth: only momenta near k = 0 then matter and fermion doubling
becomes irrelevant. But realistic disorder potentials may well vary on the
scale of the lattice constant, and then fermion doubling has noticeable
consequences.

We investigate that here for Klein tunneling [57, 58]: Massless Dirac
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3.3 Klein tunneling

Figure 3.2: Quasi-energy bandstructure (3.2) of the HPA staggered lattice
discretization, for γ = 1/

√
2, in the first Brillouin zone B′ given by Eq. (3.6).

There are two inequivalent Dirac cones, at center and corner of the Brillouin
zone.

fermions are transmitted with unit probability when they approach a
potential barrier at normal incidence, because conservation of chirality
does not allow backscattering within a single Dirac cone. Coupling to a
second cone will spoil that.

We contrast the numerical results following from the HPA staggered
lattice technique [61] with those obtained using a manifestly single-cone
discretization method [63] — a split-operator implementation of the Stacey
discretization [8, 26, 46]. Both methods are summarized in App. 3.A and
our numerical codes are available in a repository.4

We calculate the time dependence of a state Ψ(x, y, t) incident along the
x-axis on a rectangular barrier of height V0 and width 50 a0. The initial
state is a Gaussian wave packet,

Ψ(x, y, 0) = (4πw2)−1/2eik0xe−(x2+y2)/2w2
(

1
1

)
, (3.7)

with parameters k0 = 0.5/a0, w = 30 a0 and normalization condition

4Our numerical codes are available at DOI:10.5281/zenodo.5877460.
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Figure 3.3: Three snapshots of the time-dependent simulation of Klein tun-
neling, in two alternative methods of discretization of the Dirac equation. A
potential barrier of height V0 = 1.41 ℏ/δt is located between the dotted lines. A
wave packet at lower energy (Ē = 0.35 ℏ/δt) is normally incident on the barrier.
The color scale shows |Ψ|2 normalized to unit peak height at each of the three
times.

∫
|Ψ|2 dr = 1. We choose the time step δt such that γ = v0δt/a0 = 1/

√
2.

The mean energy is Ē = ℏv0k0 = 0.35 ℏ/δt, much less than the barrier
height. The transmission probability T is obtained from the integral of
|Ψ|2 over the area to the right of the barrier, at the late time t = 549 δt.

As shown in Figs. 3.3 and 3.4, when V0 is larger than Ē the wave packet
is fully transmitted when the Dirac equation is discretized using the split-
operator method, but not in the HPA staggered lattice discretization.5
For example, when V0 = 2Ē we find, respectively, T = 1.00 and T = 0.87.
We attribute the difference to fermion doubling.

To establish this, we have repeated the calculation with a periodic

5When V0 is close to Ē the wave packet disperses side ways and backwards in the
barrier region, hence the dashed dip in Fig. 3.4. This is not a lattice artefact, the
dip would also appear in the continuum description.
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3.3 Klein tunneling

Figure 3.4: Transmission probability T through the potential barrier of Fig. 3.3,
as a function of the barrier height V0. The blue and red curves are for, respectively,
the split-operator discretization and the staggered lattice discretization. The
mean energy Ē = 0.35 ℏ/δt of the incident wave packet (3.7) is indicated, as
well as the finite bandwidth πℏ/δt of the staggered discretization. For the split-
operator discretization T ≈ 1 once V0 ≳ Ē, while for the staggered discretization
T drops significantly below 1 well before V0 − Ē reaches the bandwidth.

modulation of the barrier height,

V (x, y) =
{

0 if |x/a0 − 300| > 25,
V0 + δV sin q0x if |x/a0 − 300| < 25.

(3.8)

The wave number q0 = 2π/a0 − 2k0 is chosen such that it couples a right-
moving state at energy Ē = ℏv0k0 in the Dirac cone centered at k = (0, 0)
to a left-moving state in the Dirac cone centered at k = (2π/a0, 0). As
explained in Fig. 3.5, this coupling is forbidden by chirality conservation for
the split-operator discretization, while it is allowed for the staggered lattice
discretization. Fig. 3.6 shows that, indeed, a small potential modulation
causes a nearly complete suppression of the transmission (T = 0.06) for
the latter discretization only.

The suppressed transmission can be understood as the consequence of
the opening of a gap at the Dirac point in the barrier region. The gapless
Dirac cone is protected by time-reversal symmetry if there is only a single
cone, but fermion doubling breaks that topological protection [41]. In App.
3.B we calculate the bandstructure for the staggered lattice discretization
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Figure 3.5: Dispersion relation along the kx-axis for the split-operator dis-
cretization [solid curve, given by tan(εδt/2) = ±γ tan(a0kx/2)], and for the stag-
gered lattice discretization [dashed curve, given by sin(εδt/2) = ±γ sin(a0kx/2)],
both plotted for γ = 1/

√
2. The color red or blue distinguishes the eigenvalue

±1 of σx (the chirality). The vectors K and K′ are reciprocal lattice vectors
for, respectively, the tangent and sine dispersions. A scalar potential can only
couple branches of the same chirality. The momentum transfer q0 thus leads
to backscattering for the sine dispersion but it is forbidden for the tangent
dispersion.

in the presence of the periodic potential V (x, y) = V0 cos(2πx/a0). Along
the ky = 0 axis it is given by

sin2(εδt/2) = (V0δt/2)2 + γ2 sin2(a0kx/2)
1 + (V0δt/2)2 . (3.9)

The gap at k = 0 equals 2V0 for V0δt ≪ 1.

One might wonder at this stage whether the staggered lattice discretiza-
tion is in any way an improvement over the naive discretization of the
Dirac equation, without any staggering of the grid points. The staggering
reduces the number of Dirac points in the 2D Brillouin zone from four to
two — this is one advantage. But the coupling between the Dirac points
is equally detrimental to Klein tunneling in the two discretization schemes,
see App. 3.C.
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3.4 Conclusion

Figure 3.6: Same as Fig. 3.3, but for the modulated potential step (3.8) (with
parameters V0 = 0.71 ℏ/δt, δV = 0.071 ℏ/δt, Ē = 0.35 ℏ/δt).

3.4. Conclusion
In conclusion, we have uncovered a difficulty of staggered space-time

lattice discretizations of the Dirac equation. In 2D staggered fermions a la
Susskind have two Dirac cones in the Brillouin zone [12]. To eliminate this
lattice artefact known as fermion doubling, Hammer, Pötz, and Arnold
[61] introduced a space-time lattice with bandstructure

ε = ±2 arcsin
(
v
√

sin2(kx/2) + sin2(ky/2)
)

(3.10)

(in units where a0 and δt are 1). The Susskind fermion Brillouin zone is
−π < kx, ky < π and in that Brillouin zone the bandstructure (3.10) has
only a Dirac cone at the origin k = 0.

What we have found is that this bandstructure is accompanied by
Brillouin zone doubling: Along the kx-axis it extends from −2π < kx < 2π,
so the Dirac cone at k = (2π, 0) is independent from the one at the origin

— they are not related by a reciprocal lattice vector. We have shown that
this fermion doubling has physical consequences in the breakdown of Klein
tunneling.

To ascertain that fermion doubling is at the origin of these effects,
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we have compared with an alternative space-time discretization using a
split-operator technique [63], with bandstructure

ε = ±2 arctan
(
v
√

tan2(kx/2) + tan2(ky/2)
)
. (3.11)

The replacement of sine by tangent avoids the Brillouin zone doubling,
essentially because sin(k/2) is 4π-periodic in k, while tan(k/2) is 2π-
periodic. The Dirac cones at k = 0 and k = (2π, 0) are now equivalent,
related by a reciprocal lattice vector, and indeed we recover the Klein
tunneling with unit probability expected for massless Dirac fermions.

The staggered lattice discretization has one feature that the split-
operator discretization lacks: the possibility to include the vector potential
in a fully gauge invariant way via the Peierls substitution [61, 62]. In
chapter 4 we adapt the real space formulation of App. 2.C.1 to do precisely
this.

3.A. Two methods of space-time
discretization of the Dirac equation

In the main text we compare results from two space-time lattice dis-
cretizations of the Dirac equation, the staggered lattice approach of Ref.
61 and the split-operator approach of Ref. 63. We summarize these two
methods.

3.A.1. Staggered lattice approach

Hammer, Pötz, and Arnold [61] discretize the 2 + 1 dimensional Dirac
equation on the space-time lattice shown in Fig. 3.7. The two components
of the wave function Ψ = (u, v) are evaluated on two different lattices,
staggered in both space and time. The v-lattice is obtained from the
u-lattice by a translation of δt/2 in the time direction and by a0/2 in
the x-direction. A translation of either u-lattice or v-lattice by a0/2 in
the x-direction without a time translation defines a third lattice of points
Snms = (xn, ym, ts), the red points in Fig. 3.7. Each of these three lattices
is face-centered square in the x–y plane, with the unit cell and Brillouin
zone B′ of Fig. 3.1b,d.

The finite-difference equation for the u component is (abbreviating
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3.A Two methods of space-time discretization of the Dirac equation

Figure 3.7: Space-time lattice in the HPA method of staggered lattice dis-
cretization of the 2+1 dimensional Dirac equation [61]. The u and v components
of the spinor wave function Ψ = (u, v) are indicated by black and white dots,
respectively. The finite differences are evaluated at the red points.

γ = v0δt/a0)

i[u(xn, ym, ts + 1
2δt) − u(xn, ym, ts − 1

2δt)] =
= − iγ[v(xn + 1

2a0, ym, ts) − v(xn − 1
2a0, ym, ts)]

− γ[v(xn, ym + 1
2a0, ts) − v(xn, ym − 1

2a0, ts)]

+ δt

2ℏV (xn, ym, ts)[u(xn, ym, ts + 1
2δt) + u(xn, ym, ts − 1

2δt)], (3.12a)

for (xn, ym, ts ± 1
2δt) on the u-lattice. The arguments of the v-component

are then located on the v-lattice. Similarly, the finite-difference equation
for the v-component is
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i[v(xn, ym, ts + 1
2δt) − v(xn, ym, ts − 1

2δt)] =
= − iγ[u(xn + 1

2a0, ym, ts) − u(xn − 1
2a0, ym, ts)]

+ γ[u(xn, ym + 1
2a0, ts) − u(xn, ym − 1

2a0, ts)]

+ δt

2ℏV (xn, ym, ts)[v(xn, ym, ts + 1
2δt) + v(xn, ym, ts − 1

2δt)], (3.12b)

for (xn, ym, ts ± 1
2δt) on the v-lattice. The computational cost of the

solution of these difference equations scales linearly in N on an N -site
lattice.

The quasi-energy bandstructure for V = 0 is given by

sin2(εδt/2) = γ2[sin2(a0kx/2) + sin2(a0ky/2)]. (3.13)

The requirement of a real quasi-energy ε restricts γ2 ≤ 1/2. The band-
structure in the first Brillouin zone is plotted in Fig. 3.2, for γ = 1/

√
2.

Figs. 3.3 and 3.6 show at time slice ts both |v(xn, ym, ts)|2 and |u(xn +
1/2, ym, ts + 1/2)|2, each on its own staggered lattice. Because these
amplitudes vary little over a lattice spacing other ways to compute |Ψ|2,
by averaging over nearby sites [61], do not make a significant difference.

3.A.2. Split-operator approach
The split-operator approach of Ref. 63 uses the same regular square

lattice for both u and v components (Brillouin zone |kx|, |ky| < π/a0). The
time evolution Ψ(t+ δt) = UΨ(t) is given by the unitary operator product
(“split operator”)

U = e−iV (r)δt/2ℏF−1 1 − iγ
∑
α σα tan(a0kα/2)

1 + iγ
∑
α σα tan(a0kα/2)

· Fe−iV (r)δt/2ℏ. (3.14)

The Fourier transform F performs a change of basis, so that the r-
dependent operators are evaluated in the real-space basis and the k-
dependent operators are evaluated in the momentum basis — at minimal
computational cost. The cost of a Fast Fourier Transform scales as N logN
on an N -site lattice.

The eigenvalues eiεt of U for V = 0 depend on k according to

tan2(εδt/2) = γ2[tan2(a0kx/2) + tan2(a0ky/2)]. (3.15)
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3.B Gap opening for the staggered lattice discretization

Figure 3.8: Quasi-energy bandstructure (3.15) of the split-operator discretiza-
tion, for γ = 1/

√
2, in the first Brillouin zone B given by Eq. (3.5). There is

only a single Dirac cone, at the center of the Brillouin zone.

The quasi-energy ε is real for any γ > 0. The bandstructure in the first
Brillouin zone is plotted in Fig. 3.8, for γ = 1/

√
2.

3.B. Gap opening for the staggered lattice
discretization

Because the staggered lattice discretization has two Dirac cones in the
Brillouin zone, the gapless Dirac point is not protected by time-reversal
symmetry — a gap can open without violating Kramers degeneracy. Here
we show this by an explicit calculation.

The gap opening mechanism can be described as “fold and split”: a
potential that varies on the scale of the lattice constant a0 folds the Dirac
cone at k = (2π/a0, 0) onto the cone at k = (0, 0), and then the upper and
lower cone can split apart while preserving the double degeneracy required
by Kramers theorem.

We consider the periodic potential V (x, y) = V (x+a0, y) = V (x, y+a0)
and solve the finite difference equations (3.12) for the Bloch state Ψ(x+
a0, y, t) = eia0kxΨ(x, y, t), Ψ(x, y+ a0, t) = eia0ky Ψ(x, y, t). There are four
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independent equations, involving the spinor amplitudes

u1(t) = u(0, 0, t− δt/2), u2(t) = u(a0/2, a0/2, t− δt/2),
v1(t) = v(a0/2, 0, t), v2(t) = v(0, a0/2, t), (3.16)

and potential values VA = V (0, 0), VB = V (a0/2, a0/2), VC = V (a0/2, 0),
VD = V (0, a0/2). The four equations can be written in the matrix form

P


u1(t+ δt)
u2(t+ δt)
v1(t+ δt)
v2(t+ δt)

 = Q


u1(t)
u2(t)
v1(t)
v2(t)

 ,

P =


i/δt− VA/2 0 0 0

0 i/δt− VB/2 0 0
i(eia0kx − 1) e−ia0ky − 1 i/δt− VC/2 0

1 − eia0ky i(1 − e−ia0kx) 0 i/δt− VD/2

 ,

(3.17a)

Q =


i/δt+ VA/2 0 i(e−ia0kx − 1) e−ia0ky − 1

0 i/δt+ VB/2 1 − eia0ky i(1 − eia0kx)
0 0 i/δt+ VC/2 0
0 0 0 i/δt+ VD/2

 .

(3.17b)

The eigenvalues eiεδt of the matrix product P−1Q give the bandstructure
ε(kx, ky). One readily recovers Eq. (3.2) for V (x, y) ≡ 0. For the potential
V (x, y) = V0 cos(2πx/a0) we set VA = VD = V0, VB = VD = −V0. Along
the line ky = 0 we then find the result (3.9), with a gap at k = 0 of size

∆ε = 4
δt

arcsin
(

V0δt/2√
1 + (V0δt/2)2

)
. (3.18)

We note that the topological protection of the Dirac cone for the split-
operator discretization (3.14) was established in chapter 2 and in Ref.
63.

3.C. Klein tunneling of naive fermions
Fig. 3.4 compares the Klein tunneling probability for staggered-lattice

and split-operator discretizations. For completeness, here we compare to
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3.C Klein tunneling of naive fermions

Figure 3.9: Same as Fig. 3.4, but now comparing the staggered-fermion dis-
cretization (solid curve) with the naive discretization (dashed curve). To have
the same band width πℏ/δt in both cases we rescaled v0 such that γ = 1/

√
2 in

the former case and γ = 2 in the latter case.

the naive discretization, without any staggering.
We discretize the Dirac equation (3.1) on a space-time lattice by means

of the Crank-Nicolson method,(
1 − iδt

2ℏH
)

Ψ(r, t+ δt) =
(

1 + iδt

2ℏH
)

Ψ(r, t), (3.19)

HΨ(r, t) = V (r)Ψ(r, t)

+ ℏv0

2ia0

∑
α=x,y

σα[Ψ(r + a0r̂α, t) − Ψ(r − a0r̂α, t)]. (3.20)

The unit vectors r̂x, r̂y point in the x- and y-directions. The vector
potential may be included by Peierls substitution, but here we take zero
magnetic field.

The naive-fermion bandstructure

tan2(ϵδt/2) = 1
4γ

2(sin2 a0kx + sin2 a0ky), γ = v0δt/a0, (3.21)

has four inequivalent Dirac points in the first Brillouin zone, at a0k =
(0, 0), (0, π), (π, 0), and (π, π). The staggered discretization reduces that
to two Dirac points.

The naive-fermion band width in the x-direction is (4ℏ/δt) arctan(γ/2).
This is smaller than the band width (4ℏ/δt) arcsin γ of the staggered dis-
cretization — as expected, because the staggering introduces additional
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lattice points in the unit cell (see Fig. 3.1). To compare the two discretiza-
tion schemes at the same band width, we take γ = 1/

√
2 for the staggered

discretization and γ = 2 for the naive discretization — then in both cases
the band width is πℏ/δt.

Results are shown in Fig. 3.9. We conclude that the staggering does not
significantly improve the Klein tunneling.
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