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CHAPTER 2

Massless Dirac fermions on a space-time lattice with a
topologically protected Dirac cone

2.1. Introduction

2.1.1. Objective
A three-dimensional (3D) topological insulator has gapless surface states

with a conical dispersion [39, 40]. This Dirac cone is protected by Kramers
degeneracy, no perturbation that preserves time-reversal symmetry can
gap it out — provided that the top and bottom surfaces remain uncoupled,
to prevent Dirac cones from annihilating pairwise [41].

To study the dynamics of Dirac fermions on a computer, one needs to
discretize the Dirac equation

iℏ
(
∂

∂t
+ vσ · ∂

∂r

)
Ψ(r, t) = V (r)Ψ(r, t) (2.1)

for the two-component spinor Ψ(r, t) (with velocity v and Pauli spin matri-
ces σα). The electrostatic potential V preserves time-reversal symmetry, so
one would expect the Dirac cone to remain gapless for any time-reversally
invariant discretization scheme that avoids fermion doubling [3] (only
zero-energy states at momentum k = 0).
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2 Massless Dirac fermions on a space-time lattice with a topologically
protected Dirac cone

Figure 2.1: Quasi-energy bandstructure ε(kx, ky) for the linear sawtooth dis-
persion (red) and for the tangent dispersion (yellow). The surfaces are computed,
respectively, from the two equations (εδt+ 2πn)2 = (a0kx)2 + (a0ky)2, n ∈ Z,
and tan2(εδt/2) = tan2(a0kx/2) + tan2(a0ky/2). Only the first Brillouin zone is
shown, the full bandstructure is periodic in momentum kα with period 2π/a0 and
periodic in quasi-energy ε with period 2π/δt. Near k = 0 both discretizations
have the Dirac cone ε2 = v2(k2

x + k2
y) of the continuum limit, with velocity

v = a0/δt. A potential that varies rapidly on the scale of the lattice constant
can gap out the Dirac cone for the linear sawtooth dispersion, but not for the
tangent dispersion.

The objective of this chapter is, firstly, to demonstrate that this expecta-
tion is incorrect, it does not apply to the split-operator technique [42] for
the discretization of the time-evolution operator, which is commonly used
[43–45] because of its computational efficiency. Then, secondly, we will
show how a “drop-in” modification of the algorithm can restore a gapless
Dirac cone — without reducing the computational efficiency (scaling as
N lnN in the number of lattice sites).

We consider a 2+1-dimensional space-time lattice with lattice constants
a0 in space and δt in time. In the split-operator technique the derivative
operator d/dx is evaluated in momentum representation as the linear func-
tion k in the first Brillouin zone |k| < π/a0 — periodically repeated as a
sawtooth for larger momenta. The drop-in modification that we propose is
to replace k by (2/a0) tan(a0k/2). The computational efficiency of the al-
gorithm is not compromised, but the effect on the quasi-energy–momentum
band structure is crucially important: While the linear sawtooth disper-
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2.1 Introduction

Figure 2.2: Three 1D dispersion relations, corresponding to a local discretiza-
tion of the derivative operator d/dx (black curve) and to two alternative nonlocal
discretizations (red and blue curves).

sion introduces discontinuous derivatives at Brillouin zone boundaries, the
tangent dispersion produces a smooth band structure, see Fig. 2.1. As we
will show, a potential that varies rapidly on the scale of a0 is able to gap
out the Dirac cone in the former case but not in the latter case.

By way of introduction, before we embark on the space-time discretiza-
tion, we first discuss the simpler time-independent problem, when only
space is discretized.

2.1.2. Time-independent problem

Consider a one-dimensional (1D) lattice along the x-axis, and first take
V ≡ 0. Different ways to discretize the derivative d/dx will produce
different energy-momentum dispersion relations ±E(k). (The ± sign
distinguishes the chirality of the massless Dirac fermions, left-movers
versus right-movers.) What all dispersions have in common is that they
are periodic with period 2π/a0 and vanish linearly at k = 0. We compare
three alternatives, see Fig. 2.2.

The local discretization df/dx 7→ [f(x+ a0) − f(x− a0)]/(2a0) gives a
sine dispersion

Elocal(k) = ℏv
a0

sin(a0k), (2.2)

which vanishes also at the boundary |k| = π/a0 of the first Brillouin zone
(fermion doubling). A nonlocal discretization, which couples f(x) to distant
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2 Massless Dirac fermions on a space-time lattice with a topologically
protected Dirac cone

lattice points, can remove the spurious Dirac cone at nonzero momentum.
The socalled “slac discretization” [13, 20] produces a dispersion relation
that is strictly linear within the first Brillouin zone |k| < π/a0. The
dispersion has the 2π-periodic sawtooth form1

ESLAC(k) = ℏv
a0

mod (a0k, 2π,−π). (2.3)

Now apply the staggered potential V (x) = V cos(πx/a0), switching from
+V to −V between even and odd-numbered lattice sites. This potential
couples the states at k and k + π/a0, as described by the Hamiltonian

HV (k) =
(
E(k) V/2
V/2 E(k + π/a0)

)
. (2.4)

The Brillouin zone is halved to |k| < π/2a0, with the band structure

EV (k) = 1
2E(k)+ 1

2E(k+π/a0)± 1
2

√
V 2 + [E(k) − E(k + π/a0)]2. (2.5)

A gap opens in the Dirac cone for both the local and slac discretizations,
of size

δElocal = V, δESLAC = V 2a0

2πℏv + O(V 4). (2.6)

What we learn from this simple calculation is that removing the second
cone at |k| = π/a0 is not enough to protect the Dirac cone at k = 0 from
becoming gapped if the potential varies rapidly on the scale of the lattice
constant. What happens is that the large gap ∆ in the dispersion at
k = π/a0 is folded onto k = 0 by the staggered potential, resulting in a
minigap δE = V 2/∆ for V ≪ ∆. To avoid the gap opening we thus need
a pole ∆ → ∞ in the dispersion at the Brillouin zone boundary.

An alternative discretization due to Stacey [8] gives the dispersion

E(k) = (2ℏv/a0) tan(a0k/2), (2.7)

with a pole at k = π/a0. And indeed, substitution of Eq. (2.7) into Eq.
(2.5) shows that no gap opens at k = 0 (see Fig. 2.3).

1The function mod (q, 2π,−π) ≡ q − 2π
⌊

q+π
2π

⌋
∈ [−π, π) gives q modulo 2π with an

offset −π. (The floor function ⌊x⌋ returns the greatest integer ≤ x.) The mod
function is discontinuous at q = π, jumping from −π to π, we arbitrarily assign to
mod (π, 2π,−π) the value of −π. The choice mod (π, 2π,−π) ≡ 0 would produce in
Fig. 2.3 an isolated doubly degenerate state at E = 0 = k, disconnected from the
slac bands.
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2.1 Introduction

Figure 2.3: Band structure for three different spatial discretizations of the 1D
Dirac Hamiltonian, with a staggered potential equal to ±2ℏv/a0 on even and
odd-numbered lattice sites. The curves are computed from Eq. (2.5), with E(k)
given by Eqs. (2.2), (2.3), and (2.7) for the three discretizations. A gap opens
at k = 0 for the local discretization and for the slac discretization, but not for
the Stacey discretization.

The merits of the Stacey discretization for the time-independent problem
were studied in Refs. [46] (at the level of the scattering matrix) and in Ref.
[26] (at the level of the Hamiltonian). It was shown that the eigenvalue
equation HΨ = EΨ can be discretized into a generalized eigenvalue
problem HΨ = EPΨ with local Hermitian tight-binding operators on both
sides of the equation.2 Basically, a local formulation of the generalized
eigenvalue problem is possible because tangent is the ratio of sine and
cosine, which represent local tight-binding operators on a lattice. If all
one would care about would be the presence of a pole in the dispersion at
k = π/a0, one could work with other functions than the tangent, but the
tangent dispersion combines this property with the possibility of a local
algorithm.

2The Stacey discretization is local in the sense that the operators H and P in the
generalized eigenvalue problem HΨ = EPΨ can be represented by sparse Hermitian
matrices. If we would write this as a strict (non-generalized) eigenvalue problem,
P−1HΨ = EΨ, we would find that the operator P−1H is nonlocal (it is not sparse).
There is therefore no violation of the Nielsen-Ninomiya no-go theorem [3], which
only applies to strict eigenvalue problems.
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2 Massless Dirac fermions on a space-time lattice with a topologically
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2.1.3. Outline

So much for the introduction to the time-independent discretization.
In what follows we turn to the dynamical problem, by generalizing the
approach of Refs. [8, 26, 46] to the discretization of space and time. In the
next section 2.2 we show that the time discretization removes the pole in
the tangent dispersion, which becomes a smooth function of momentum k
and quasi-energy ε (yellow bands in Fig. 2.1). In Sec. 2.3 we then prove
that the Dirac point remains gapless for any perturbation that preserves
either time-reversal symmetry or chiral symmetry — even if it varies
rapidly on the scale of the lattice constant.

In contrast, the quasi-energy bandstructure of the linear sawtooth dis-
persion has discontinuous derivatives at the Brillouin zone boundaries (red
bands in Fig. 2.1). These spoil the protection of the Dirac cone, which is
gapped by a staggered potential.

A key feature of the approach presented in Sec. 2.2 is that it requires
only a small modification of the usual split-operator technique, involving
the replacement of the linear momentum operator appearing in the time-
evolution operator by its tangent. Since this operator is evaluated in
momentum representation, the replacement is immediate. It does not
degrade the computational efficiency of the algorithm, which retains the
favorable N lnN scaling in the number of lattice sites (limited only by the
efficiency of the fast Fourier transform).

An alternative implementation which is fully in real space is possible,
taking the form of an implicit finite-difference equation AΨ(t+δt) = BΨ(t)
with sparse matrices A and B. This formulation is a bit more cumbersome
to explain, we present it an appendix.

2.2. Space-time discretization without zone
boundary discontinuities

2.2.1. Split-operator technique

The Dirac Hamiltonian

H = vk · σ + V (r) (2.8)

is the sum of a kinetic term that depends on momentum k and a potential
term that depends on position r. (We set ℏ to unity.) The split-operator
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2.2 Space-time discretization without zone boundary discontinuities

Figure 2.4: Momentum dependence of the quasi-energy for the free evolution
operator U , given by Eq. (2.9) with V = 0, computed from Eq. (2.11) in the
2+1 dimensional case. The space and time discretization units are related by
a0 = vδt. Only the first Brillouin zone (2.12) is shown.

technique [42] separates these two terms in the time-evolution operator,

Ψ(t+ δt) = e−iHδtΨ(t), e−iHδt = U + O(δt)3,

U = e−iV (r)δt/2e−ivδtk·σe−iV (r)δt/2,
(2.9)

with an error term that is of third order in the time slice δt [47].

Space is discretized on a square or cubic lattice (lattice constant a0 in
each direction). The periodicity of the Brillouin zone is enforced by the
substitution

k · σ 7→ a−1
0

∑
α

σα mod (a0kα, 2π,−π). (2.10)

In 1D this is the linear sawtooth dispersion of Fig. 2.2, red curve. A discrete
fast Fourier transform is inserted between the kinetic and potential terms,
so that each is evaluated in the basis where the operators k and r are
diagonal. The computational cost scales as N lnN for N lattice sites.

The eigenvalues eiεδt of the unitary operator U define the quasi-energies
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2 Massless Dirac fermions on a space-time lattice with a topologically
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Figure 2.5: Cut through the bandstructure of Fig. 2.4 along the line kx = ky ≡
k (left panel) and along the kx-axis (right panel). In the former direction the
dispersion has a discontinuous slope at the Brillouin zone boundaries (dotted
lines).

ε modulo 2π/δt. For free motion, V = 0, these are given by

(ε+ 2πn/δt)2 = v2
∑
α

k2
α, n ∈ Z, |kα| < π/a0. (2.11)

The 2+1 dimensional band structure in the first Brillouin zone

B = {kx, ky, ε| − π < εδt, kxa0, kya0 < π} (2.12)

is plotted in Fig. 2.4 for v = a0/δt, when the dispersion is strictly linear
along the kx and ky-axes. (Alternatively, for v = 2−1/2 a0/δt the dispersion
is strictly linear along the diagonal lines kx = ±ky, the corresponding
plots are in App. 2.A.)

The band structure repeats periodically upon translation by ±2π/a0 in
the kx, ky directions and by ±2π/δt in the ε direction. Upon crossing a
zone boundary the dispersion has a discontinuous derivative, see Fig. 2.5.

2.2.2. Smooth zone boundary crossings

To remove the discontinuity at the Brillouin zone boundary we modify
the kinetic term in the evolution operator (2.9) in two ways: Firstly
we approximate the exponent by a rational function (Cayley transform
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2.2 Space-time discretization without zone boundary discontinuities

[48, 49]),

e−ivδtk·σ =
1 − 1

2 ivδtk · σ

1 + 1
2 ivδtk · σ

+ O(δt3). (2.13)

The error of third order in the time slice is of the same order as the error
in the operator splitting, Eq. (2.9).

Secondly we replace kα by (2/a0) tan(a0kα/2), defining the modified
evolution operator

Ũ = e−iV (r)δt/2 1 − i(vδt/a0)
∑
α σα tan(a0kα/2)

1 + i(vδt/a0)
∑
α σα tan(a0kα/2)e

−iV (r)δt/2. (2.14a)

The inverse of the sum of Pauli matrices can be worked out, resulting in

Ũ = e−iV (r)δt/2 [1 −
∑
α χ

2(kα)]σ0 − 2i
∑
α σαχ(kα)

1 +
∑
α χ

2(kα) e−iV (r)δt/2. (2.14b)

We abbreviated χ(k) = (vδt/a0) tan(a0k/2) and σ0 is the 2×2 unit matrix.
This looks more complicated than Eq. (2.9), but it can be computed equally
efficiently since in both equations each operator is evaluated in the basis
where it is diagonal.

The required periodicity when kα 7→ kα+2π/a0 is automatically ensured
by the replacement of the linear momentum by the tangent, it does not
need to be enforced by hand as in Eq. (2.10). Although tan(a0kα/2) has a
pole when kα = π/a0, this pole is removed in the evolution operator (2.14)

— which has no singularity at the Brillouin zone boundaries.

The eigenvalues eiεδt of Ũ for free motion, V = 0, are given by

tan2(εδt/2) = (vδt/a0)2
∑
α

tan2(a0kα/2), (2.15)

plotted in Figs. 2.6 and 2.7. Comparison with Figs. 2.4 and 2.5 shows
that the zone boundaries are now joined smoothly. The dispersion is
approximately linear near k = 0 and exactly linear along the lines kx = 0
and ky = 0 if we choose the discretization units such that v = a0/δt. (See
App. 2.A for the case v = 2−1/2 a0/δt, when the linear dispersion is along
kx = ±ky.)
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Figure 2.6: Same as Fig. 2.4, but now for the modified evolution operator
(2.14) (with vδt/a0 = 1).

2.3. Stability of the Dirac point

2.3.1. Protection by time-reversal symmetry
The condition of time-reversal symmetry for the unitary evolution oper-

ator U reads
σyU

∗σy = U−1, (2.16)

where the complex conjugation should be taken in the real space rep-
resentation, when k = −i∇ changes sign. The time-reversal operator,
σy × complex conjugation, squares to −1, so Kramers theorem applies:
In the presence of a periodic potential V , when momentum k remains a
good quantum number, the eigenvalues at k = 0 should be at least doubly
degenerate.3

Kramers degeneracy implies a band crossing at k = 0 — provided that
the bands depend smoothly on k — hence this applies to the evolution

3Kramers theorem may be more familiar for a Hermitian operator, the proof for a
unitary operator proceeds similarly: If Uψ = eiϕψ with ϕ ∈ R, and σyU∗σy = U−1,
then Uσyψ∗ = σy(σyU∗σyψ)∗ = σy(U−1ψ)∗ = eiϕσyψ∗, thus ψ and σyψ∗ are
eigenstates of U with the same eigenvalue. They cannot be linearly related, because
if ψ = λσyψ∗ for some λ ∈ C, then σyψ∗ = −λ∗ψ = −|λ|2σyψ∗, which is impossible
for ψ ̸= 0. Hence the eigenvalue eiϕ is at least doubly degenerate.
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2.3 Stability of the Dirac point

Figure 2.7: Cut through the bandstructure of Fig. 2.6 along the line kx = ky ≡
k (left panel) and along the kx-axis (right panel). In all directions the dispersion
smoothly crosses the Brillouin zone boundaries (dotted lines).

operator Ũ for the tangent dispersion, but not to the operator U for the
linear sawtooth dispersion. We conclude that the Dirac point of Ũ is
protected by time-reversal symmetry, while the Dirac point of U is not.

We demonstrate this difference for the checkerboard potential

V (x, y) = V cos[(π/a0)(x+ y)]. (2.17)

(The calculation is described in App. 2.B.) In Fig. 2.8 we show the three
ways in which this potential can affect the Dirac point. The evolution
operator Ũ shows the modification T0, while U shows T−, see Fig. 2.9.
The other option T+ appears in Fig. 2.3 and in App. 2.A.

2.3.2. Protection by chiral symmetry

Chiral symmetry of the evolution operator is expressed by

σzUσz = U−1. (2.18)

Since U−1 = U†, this implies that U can be decomposed in the block form

U =
(

A B
−B† C

)
, A = A†, C = C†. (2.19)
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2 Massless Dirac fermions on a space-time lattice with a topologically
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Figure 2.8: Top row: Dirac point in the quasi-energy dispersion ε(k). Bottom
row: Three topologically distinct modifications of the dispersion by the checker-
board potential. Only the Dirac point preserving modification T0 is allowed for
an evolution operator that depends smoothly on momentum.

We consider a 2D periodic potential, so that momentum k = (kx, ky) is a
good quantum number. The band structure has winding number [50]

W = 1
2π Im

∮
Γ
dk · ∂k ln detB(k) ∈ Z (2.20)

along a contour Γ in the Brillouin zone on which detB does not vanish.4
This is a topological invariant, it cannot change in response to a continuous
perturbation [51]. A Dirac point within the contour is signaled by W = ±1.
While pairs of Dirac points of opposite winding number can annihilate, a
single Dirac point is protected by chiral symmetry — provided that the
evolution operator is continuous.

The 2D Dirac Hamiltonian has chiral symmetry when V ≡ 0. An
in-plane magnetization

M(x, y) = µx(x, y)σx + µy(x, y)σy (2.21)

preserves the chiral symmetry. We are thus led to compare the two

4One has detB ̸= 0 on Γ if the quasi-energy ε(k) does not cross 0 or π on that contour
[50]. This prevents us from extending the contour along the entire first Brillouin
zone, when the winding number should vanish.
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2.3 Stability of the Dirac point

Figure 2.9: Quasi-energy bandstructure for the evolution operators U (panels
a,c) and Ũ (panels b,d), in the presence of the 2D checkerboard potential (2.17)
(for V = 2/δt = 2 v/a0). Panels c,d show a cut through the bandstructure for
kx = ky ≡ k.

evolution operators

U = e−iM(x,y)δt/2e
−i(vδt/a0)

∑
α=x,y

σα mod (a0kα,2π,−π)
e−iM(x,y)δt/2,

(2.22)

Ũ = e−iM(x,y)δt/2 1 − i(vδt/a0)
∑
α=x,y σα tan(a0kα/2)

1 + i(vδt/a0)
∑
α=x,y σα tan(a0kα/2)e

−iM(x,y)δt/2.

(2.23)

Both satisfy the chiral symmetry relation (2.18), Ũ is a continous function
of k while U is not.

The implication for the stability of the Dirac point is shown in Fig. 2.10,
where we compare the bandstructure in the presence of the checkerboard
magnetization

M(x, y) = µσx cos[(π/a0)(x+ y)] (2.24)

(see App. 2.B). A gap opens for U (linear sawtooth dispersion), while the
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Figure 2.10: Quasi-energy bandstructure for the evolution operators U (panel
a) and Ũ (panel b), in the presence of the checkerboard magnetization (2.24)
(for µ = 2/δt = 2 v/a0).

Dirac point for Ũ (tangent dispersion) remains unaffected.

2.4. Conclusion
In conclusion, we have presented a method to cure a fundamental

deficiency of the split-operator technique for the space-time discretization
of the Dirac equation [42]. The linear sawtooth representation of the
momentum operator preserves the time-reversal and chiral symmetries
of the continuum limit, but it breaks the topological protection of the
Dirac cone that these symmetries should provide. The deficiency originates
from the discontinuity of the discretized time-evolution operator at the
boundaries of the Brillouin zone. We have demonstrated the breakdown
of the topological protection for a simple model: a periodic potential (or
magnetization) on a 2D square lattice (lattice constant a0) which couples
the Dirac point at k = 0 to the zone boundaries at k = π/a0.

To restore the topological protection we modify the split-operator tech-
nique without compromising its computational efficiency, basically by
replacing a0k in the evolution operator by 2 tan(a0k/2). Since the momen-
tum operators are evaluated in the basis where they are diagonal, this is a
“drop-in” replacement — it does not degrade the N lnN efficiency of the
split-operator algorithm.

One open problem of the split-operator technique that is not addressed
by our modification is the difficulty to incorporate the vector potential in a
gauge invariant way [52]. For that purpose it would be useful to formulate

36



2.A Bandstructures for v = 2−1/2 a0/δt

Figure 2.11: Free evolution (V = 0) bandstructures of U (left panel) and of Ũ
(right panel), for v = 2−1/2 a0/δt.

the split-operator technique fully in real space. This is done in Ref. [45]
for the original approach with the linear sawtooth momentum operator.
In App. 2.C we show that our tangent modification also allows for a real
space formulation.

The availability of a single-cone discretization scheme which is efficient
and which does not break the topological protection is a powerful tool for
dynamical studies of massless Dirac fermions. One application to Klein
tunneling has been published recently [53].

2.A. Bandstructures for v = 2−1/2 a0/δt
The bandstructures in the main text are for space-time discretization

units such that v = a0/δt, when the dispersion is strictly linear along the
lines kx = 0 and ky = 0. Alternatively, one can have a strictly linear
dispersion along the diagonals kx = ±ky, by choosing v = 2−1/2 a0/δt.
The bandstructures of U and Ũ for free evolution are shown in Fig. 2.11.

For v = 2−1/2 a0/δt the checkerboard potential in the main text varies
along the diagonals where U is continuous, so it does not affect the Dirac
point. Instead we choose here a staggered potential V (x, y) = V cos(πx/a0)
that varies along the x-axis. [In Eq. (2.26) we thus replace (kx +π, ky +π)
by (kx + π, ky).] The effect on U is the T+ gap-opening process of Fig. 2.8,
while the Dirac point of Ũ is unaffected, see Fig. 2.12. We can also take the
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2 Massless Dirac fermions on a space-time lattice with a topologically
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Figure 2.12: Same as Fig. 2.11, but now in the presence of the potential
V (x, y) = V cos(πx/a0) with V = 2 δt. The bandstructures for the staggered
magnetization M(x, y) = µσx cos[(π/a0)x] look very similar.

staggered magnetization M(x, y) = µσx cos[(π/a0)x], with bandstructures
very similar to those in Fig. 2.12.

2.B. Bandstructure in the checkerboard
potential

In this appendix we choose v = a0/δt and set the discretization units
a0, δt to unity. We compute the eigenvalues of the evolution operators
U and Ũ in the presence of the 2D checkerboard potential V (x, y) =
V cos[π(x+y)]. This potential couples states at (kx, ky) and (kx+π, ky+π)
with amplitude V/2.

We denote by U0(k) and Ũ0(k) the free evolution operators, for V = 0,
given by

U0(k) = exp (−i
∑
ασα mod (kα, 2π,−π)) , (2.25a)

Ũ0(k) =
1 − i

∑
α σα tan(kα/2)

1 + i
∑
α σα tan(kα/2) . (2.25b)

38



2.C Real-space formulation of the split-operator discretized evolution
operator

The quasi-energies eiε are the eigenvalues of the 4 × 4 matrices

U = V
(
U0(kx, ky) 0

0 U0(kx + π, ky + π)

)
V, (2.26a)

Ũ = V
(
Ũ0(kx, ky) 0

0 Ũ0(kx + π, ky + π)

)
V. (2.26b)

The 2 × 2 blocks at (kx, ky) and (kx +π, ky +π) are coupled by the matrix

V = exp
[
− i

2

(
0 V/2
V/2 0

)]
=
(

cos(V/4) −i sin(V/4)
−i sin(V/4) cos(V/4)

)
. (2.27)

Results for V = 2 are plotted in Fig. 2.9.
For Ũ the Dirac point at k = 0 is not affected by the checkerboard

potential. In contrast, for U the T− modification of Fig. 2.8 replaces the
band crossing at k = 0 by four band crossings at ±(q, q) and ±(q,−q),
with

cos
(
π − 2q√

2

)
= cos

(
π√
2

)
cos(V/2) ⇒ q = 0.067V 2 + O(V 4). (2.28)

The calculation for a checkerboard magnetization M(x, y) = (µxσx +
µyσy) cos[π(x+ y)] proceeds entirely similar, upon replacement of V by

M = exp
[
− i

4

(
0 µx − iµy

µx + iµy 0

)]
. (2.29)

The bandstructure for µx = 2, µy = 0 is shown in Fig. 2.10. For evolution
operator U the spectrum acquires a gap ∆ϵ = 0.095µ2

x + O(µ4
x). For Ũ

the Dirac cone remains gapless.

2.C. Real-space formulation of the
split-operator discretized evolution
operator

2.C.1. Implicit finite-difference equation
The discretized Dirac equation for the tangent dispersion, Ψ(t+ δt) =

ŨΨ(t) with Ũ given by Eq. (2.14), can be rewritten as a local implicit
finite-difference equation in real space — without requiring a Fourier
transform to momentum space.
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We introduce the translation operator rα 7→ rα + a0 on a square or
cubic lattice, given by Tα = ea0∂α , with ∂α = ∂/∂rα = ikα. We note the
identity

i tan(a0kα/2) = Tα − 1
Tα + 1 . (2.30)

The product operators

D0 = 1
4

∏
α

(Tα + 1), Dα = 1
2 (Tα − 1)

∏
α′ ̸=α

(Tα′ + 1) (2.31)

couple nearby sites on the lattice.

The split-operator evolution equation

Ψ(t+ δt) = e−iV (r)δt/2 1 − i(vδt/a0)
∑
α σα tan(a0kα/2)

1 + i(vδt/a0)
∑
α σα tan(a0kα/2)e

−iV (r)δt/2Ψ(t)

(2.32)
can be rewritten identically in terms of these local operators,(
D0 + vδt

2a0

∑
α

σαDα

)
eiV (r)δt/2Ψ(t+ δt) =

=
(
D0 − vδt

2a0

∑
α

σαDα

)
e−iV (r)δt/2Ψ(t).

(2.33)

The finite-difference equation (2.33) of the form AΨ(t+ δt) = BΨ(t) is
called “implicit”, because one needs to solve for the unknown Ψ(t + δt)
given the known Ψ(t). The matrices A and B are both sparse, each of
the N sites on the 2D square lattice is only coupled to its four nearest
neighbors. The method of nested dissection then allows for an efficient
solution of the finite difference equation [54–56]: There is an initial N3/2

overhead from the LU decomposition of the matrix A, but subsequently
the computational cost per time step scales as N lnN with the number of
lattice sites, which is the same scaling as the split-operator algorithm.
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2.C Real-space formulation of the split-operator discretized evolution
operator

2.C.2. Computational efficiency
To check the efficiency of the discretization schemes we have calculated5

the spreading of a wave packet in a 2D disordered lattice (of M × M
sites, with periodic boundary conditions in x- and y-directions). We take
a random potential V (x, y) which varies independently on each of the
N = M2 sites, uniformly in the interval (−0.5, 0.5) × ℏv/a0. The initial
state is

Ψ(x, y, 0) = (4πw2)−1/2eik0xe−(x2+y2)/2w2
(

1
1

)
, (2.34)

with parameters k0 = 0.5/a0, w = 30 a0. We follow the time evolution for
T = 103 time steps δt = 2−1/2a0/v.

We compare the run time of the finite-difference code for a range of values
of N , distinguishing the time tinitial spent on the initial LU decomposition
from the run time tevolution per time step needed for the subsequent
evolution of the wave packet. (The full run time of the code is tinitial +
Ttevolution.)

The data shown in Fig. 2.13 is consistent with the expected scaling
tinitial ∝ N3/2 and tevolution ∝ N lnN . The storage requirements also scale
as N lnN , governed by the number of nonzero matrix elements in the LU
decomposition.

We also show in the same plot the run time per time step for the split-
operator algorithm. There is no initialization overhead in that case, the
full run time is set by the N lnN cost of the fast Fourier transform.

5The computer code used in Sec. 2.C.2 to test the efficiency of the split-operator and
finite-difference algorithms is available at the Zenodo repository: https://dx.doi.
org/10.5281/zenodo.7057254

41

https://dx.doi.org/10.5281/zenodo.7057254
https://dx.doi.org/10.5281/zenodo.7057254


2 Massless Dirac fermions on a space-time lattice with a topologically
protected Dirac cone

Figure 2.13: Demonstration of the favorable N lnN scaling with the number
N of lattice points of the single-cone discretization scheme with the tangent
dispersion. The plot at the left shows the run time tevolution per time step for the
evolution of the wave packet (3.7) through a disordered 2D system: red symbols
for the split-operator approach, blue symbols for the implicit finite-difference
approach. The latter approach has an initial overhead tinitial ∝ N3/2 from the
LU decomposition, shown in the right plot.
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