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CHAPTER 1

Introduction

1.1. Preface
A fundamental concept in condensed matter physics is that the effective

behavior of electrons is strongly influenced by the medium in which they
exist. An example of this is graphene, in which electrons are effectively
massless. The symmetry of its celebrated honeycomb lattice imposes a
band structure with two gap closings at two points in the Brillouin zone
(BZ) [1, 2] around which the dispersion relation is a Dirac cone (Fig. 1.1)

E2 = v2(p2
x + p2

y). (1.1)

These points are called Dirac points and the Hamiltonian describing the
low energy excitations around each of them is respectively

H± = −iℏv(∂xσx ± ∂yσy). (1.2)

This Hamiltonian realises the Dirac equation for massless fermions with
velocity v in 2D, where the sign choice fixes the chirality of the particles.1
The presence of two species of massless Dirac fermions with opposite
chirality is not an accident but a consequence of a fundamental fact about

1For massless particles chirality and helicity coincide.
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1 Introduction

lattice Hamiltonians. Nielsen and Ninomiya [3] proved, in the context
of high energy physics, that the following statements about a lattice
Hamiltonian cannot be simultaneously true:

The Hamiltonian is local.

The Hamiltonian preserves chiral symmetry.

The sum of chiralities of the Dirac points in the Brillouin zone is not
zero.

This no-go theorem seems to imply that we cannot have a crystal with
a single species of massless fermions. However, nature often manages to
find a way around our expectations, and 3D topological insulators (3DTIs)
are an example of this. These materials have a gapped bulk but a gapless
surface whose low energy dispersion relation consists of a single Dirac cone.
Nature is showing us that we can have a single species of massless chiral
fermions as long as they are embedded in a lattice of larger dimension.

Yet, this does not mean that in order to simulate the 2D surface modes of
a 3DTI we need to spend resources representing the whole 3D lattice. The
problem of building a lattice model with a single Dirac cone is commonly
referred to as the fermion doubling problem and it is well known in the
field of lattice gauge theories where there have been many ways of tackling
it [4–7]. The main part of this thesis focuses on addressing this problem
within the framework of topological condensed matter by developing the
tangent fermions approach, a scheme pioneered by Stacey that breaks the
locality assumption [8].

The present chapter is dedicated to laying out some fundamental con-
cepts related to the fermion doubling problem, as well as showing how
3DTIs can be used to build chiral superconductors and introducing the
concept of non-Abelian braiding.

1.2. Topological protection of the Dirac
cone and no-go theorem in 2D

Since disorder is unavoidable in real materials, we would like it to be
accurately featured by our discretization scheme. One crucial trait of
massless fermions on the surface of topological materials is the gapless
nature of the Dirac cone even when disorder is present. This robustness is
referred to as topological protection, and it relies on the presence of either
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1.2 Topological protection of the Dirac cone and no-go theorem in 2D

Figure 1.1: Band structure of graphene in the first Brillouin zone. Inset:
Conical dispersion relation (Dirac cone) around the gap closings (Dirac points).

chiral or symplectic symmetries2 but also on the Dirac cone to be the only
one in the Brillouin zone.

In this section, we demonstrate how chiral and symplectic symmetries
provide this topological protection for local Hamiltonians in 2D. By doing
it, we also uncover the main obstacle to achieving it in a lattice model.
Namely, that a local discretization of the 2D Dirac Hamiltonian cannot
have an unpaired Dirac cone, unless it breaks both chiral and symplectic
symmetries.

Chiral symmetry

A system has chiral symmetry if there exists a unitary and hermitian chi-
rality operator Γ that anticommutes with the Hamiltonian. The conditions
on Γ imply that it has two eigenspaces with eigenvalues ±1 respectively
and Γ2 = 1. Also, the anticommutation with the Hamiltonian implies

⟨ψ±|H |ϕ±⟩ = ⟨ψ±| Γ2H |ϕ±⟩ = − ⟨ψ±| ΓHΓ |ϕ±⟩ = − ⟨ψ±|H |ϕ±⟩ ,
(1.3)

being |χ+⟩ (|χ−⟩) a state of positive (negative) chirality. So in the basis
of eigenstates of Γ, the diagonal blocks of H are zero. We can then write

2Crystalline symmetries can also stabilize the Dirac point, in which case we talk about
“fragile” topological protection [9].
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1 Introduction

our Hamiltonian by blocks as3

H(k) =
(

0 A†(k)
A(k) 0

)
. (1.4)

Given a closed loop γ in the reciprocal space along which detA ̸= 0, we
can define a winding number as

W = 1
2π Im

∮
γ

∇k log (detA(k)) · dk. (1.5)

If the Hamiltonian is local, A(k) is continuous and single valued. This
implies that W must be integer and therefore we can use it as a topological
invariant to classify Hamiltonians and loops. If there are no zeros of detA
inside of γ, then the loop can be contracted to a point and W = 0.

From equation (1.2), it follows that at a Dirac point detA(kD) vanishes.
This means that a loop containing a Dirac point cannot be contracted
to a point. Indeed, calculating the winding number along such loop, one
finds that it is equal to the chirality of the cone W = ±1. If we then
continuously deform the Hamiltonian (always making sure that detA does
not vanish on the loop), since W cannot change, the Dirac cone can only
move around, but never gap out. Therefore, we say that the Dirac cone is
topologically protected.

In general, the winding number of a loop is equal to the sum of the
chiralities of the Dirac points that it encloses, so a loop surrounding two
Dirac points with opposite chiralities has W = 0. In consequence, pairs
of Dirac cones with opposite chiralities can gap each other out without
changing W . This means that only unpaired Dirac cones are protected.

The winding number can also help us derive the no-go theorem in 2D.
The winding number of the loop γe that goes along the edges of the
Brillouin zone will be equal to the sum of the chiralities of all the Dirac
cones in the Brillouin zone.4 For this loop, the integral (1.5) can be
separated into four integrals along each of the edges of the Brillouin zone.
Due to the periodicity of H(k), these integrals must cancel out by pairs,
so the sum of the chiralities of the Dirac points in the BZ is always zero.

3In the most general case, A does not need to be a square matrix. In that case,
there is always a set of states of fixed chirality pinned to zero energy, and the
following discussion must be slightly adapted. Since this is not the case for the
Dirac Hamiltonian, we will not get into these details.

4If there is a Dirac point on the edges of the Brillouin zone, we can always sligthly
deform our path γe to avoid it while making sure that the whole BZ is contained in
the loop and the argument still applies.
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1.3 Methods to discretize the Dirac equation

This proves that if the Hamiltonian is local and has chiral symmetry, it
cannot have a single unpaired Dirac cone.

Symplectic symmetry

The time reversal symmetry of spinful systems is called symplectic
symmetry. If it holds, Kramers theorem applies [10]. This theorem
dictates that all eigenstates of the Hamiltonian must be doubly degenerate.
Since time reversal maps k → −k, a band crossing is necessary at time
reversally invariant momenta (TRIMs) for any local Hamiltonian (namely,
continuous in reciprocal space).5 Therefore, a Dirac cone at a TRIM is
protected by symplectic symmetry.

If both chiral and symplectic symmetries are maintained, the Brillouin
zone contains a Dirac point at zero energy at each TRIM. There are 2d
such time-reversally invariant momenta in d dimensions, so 4 in 2D. If we
then break symplectic symmetry we can move the Dirac points around and
gap them out pairwise by merging two Dirac cones with opposite winding
number. However, we can not end up with an unpaired Dirac cone unless
we also break chiral symmetry, spoiling the topological protection.

In the next section, we review the most commonly used discretization
methods for the Dirac Hamiltonian, and in 1.3.5 we introduce the tangent
fermions approach which breaks the locality condition to find a work
around: a nonlocal discretization can have discontinuities or poles in the
dispersion relation, which may “hide” a Dirac point.

1.3. Methods to discretize the Dirac
equation

We now turn to the overview of methods to discretize the 2D Dirac
Hamiltonian,

H0 = ℏv(kxσx + kyσy) = ℏv
(

0 −i∂x − ∂y
−i∂x + ∂y 0

)
, (1.6)

focusing on the case that the massless electrons can move freely on the
x–y plane, without any electromagnetic fields. The Dirac fermions have
energy independent velocity v. The Pauli spin matrices σ are coupled
to the momentum k = −i∂r. In Eq. (1.6) the spin-momentum locking
is such that the spin points parallel to the momentum. The alternative

5a point kT of the Brillouin zone is at a TRIM if 2kT is a reciprocal lattice vector.
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1 Introduction

perpendicular spin-momentum locking (kxσy − kyσx) can be obtained by
a unitary transformation of H0, so we need not distinguish the two cases
here.

The energy-momentum relation (dispersion relation) of the Dirac Hamil-
tonian,

E(k)2 = (ℏv)2(k2
x + k2

y), (1.7)

consists of a pair of cones that touch at the point k = 0 — the Dirac point.
When the Hamiltonian is discretized on a lattice the dispersion relation
becomes periodic: E(k + K) = E(k) for any reciprocal lattice vector K.
Momenta which are not related by a reciprocal lattice vector form the
Brillouin zone. For some discretization methods the Dirac point at k = 0
is copied at other points in the Brillouin zone (fermion doubling).

The Dirac Hamiltonian (1.6) satisfies the two symmetry relations intro-
duced in the previous section,

chiral symmetry: σzH0σz = −H0,

symplectic symmetry: σyH∗
0σy = H0.

(1.8)

The complex conjugation is taken in the real-space basis, so the sign of both
momentum and spin is inverted by the symplectic symmetry operation.
For each discretization method we will check whether the symmetries (1.8)
are preserved or not.

The topological protection of the Dirac point relies on the absence
of fermion doubling and on the conservation of at least one of the two
fundamental symmetries (1.8). The linearity of the dispersion relation,
E ∝ |k|, may be a desirable feature, but it is not essential for the protection.
What is essential for a practical method is that the eigenvalue problem
can be solved using linear algebra of sparse matrices.

In Table 1.1 we summarize the properties of the various discretization
schemes that we will discuss. Each discretization has its own dispersion
relation, which reduces to the linear dispersion near the physical Dirac
point at the center k = 0 of the Brillouin zone. The distinguishing
properties include:

the symmetries that the discretization does or does not preserve —
the chiral symmetry which defines the handedness of the particles
and the symplectic symmetry which is the time-reversal symmetry
for spin-1/2 particles;

the number of Dirac points in the Brillouin zone (1 if there is no
fermion doubling);
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1.3 Methods to discretize the Dirac equation

dispersion chiral symplectic Dirac locality top.
symm. symm. points prot.

sine ✓ ✓ 4 ✓ ×
sine+cosine ([11]) × × 1 ✓ ×
staggered ([12]) ✓ × 2 ✓ ×

linear sawtooth ([13]) ✓ ✓ 1 × ×
tangent ([8]) ✓ ✓ 1 ×(✓) ✓

Table 1.1: Five approaches to discretize the Dirac equation on a 2D lattice.
The presence or absence of a property is indicated by ✓ or ×, respectively. The
tangent dispersion has a nonlocal Hamiltonian, but it allows a local formulation
of a generalized eigenproblem (hence the ✓ in parentheses). Only the tangent
dispersion has an unpaired and topologically protected Dirac point.

the locality of the discretization, meaning whether the discretized
Hamiltonian only couples nearby lattice points;

and finally the presence or absence of the protection against gap
opening by disorder.

1.3.1. Sine dispersion
We start with a square lattice, lattice constant a, and discretize the

derivative operator by the first order finite difference:

∂xf(x, y) 7→ (2a)−1[f(x+ a, y) − f(x− a, y)], (1.9)

and similarly for ∂yf(x, y). Notice that ea∂x = eiakx is the translation
operator, ea∂xf(x) = f(x+ a). The discretization (1.9) therefore gives the
Hamiltonian

Hsine = (ℏv/a)(σx sin akx + σy sin aky), (1.10)

with the sine dispersion

Esine(k)2 = (ℏv/a)2(sin2 akx + sin2 aky). (1.11)

Chiral symmetry and symplectic symmetry (1.8) are both preserved by
the Hamiltonian Hsine, but there is fermion doubling: In the Brillouin zone
|kx| < π/a, |ky| < π/a there are Dirac points at each of the time-reversally
invariant momenta: the center k = 0, the corners |kx| = |ky| = π/a
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1 Introduction

and the midpoints kx = 0, |ky| = π/a and ky = 0, |kx| = π/a. The four
corners and opposite midpoints are related by a linear combination of
reciprocal lattice vectors K = (2π/a, 0) and K ′ = (0, 2π/a), so there are
4 inequivalent Dirac points in the Brillouin zone.

1.3.2. Sine plus cosine dispersion

An effective way to remove the spurious Dirac points is to gap them
by the addition of a momentum dependent magnetization µ(k)σz to the
Dirac Hamiltonian. If µ vanishes at k = 0 the physical Dirac point at the
center of the Brillouin zone is unaffected. This is the approach introduced
by Wilson [11, 14]. A quadratic µ ∝ k2 is discretized on a square lattice,
resulting in the Hamiltonian

HWilson = (ℏv/a)(σx sin akx + σy sin aky) +m0σz(2 − cos akx − cos aky),
(1.12)

with the sine plus cosine dispersion

EWilson(k)2 = (ℏv/a)2(sin2 akx + sin2 aky) +m2
0(2 − cos akx − cos aky)2.

(1.13)
The Dirac points of the sine dispersion acquire a gap ∝ m0, only the Dirac
point at k = 0 remains gapless.

Fermion doubling in Wilson’s approach is avoided at expense of a
breaking of both chiral and symplectic symmetries. The product of these
two symmetries is preserved,

σxH
∗
Wilsonσx = −HWilson, (1.14)

which is sufficient for some applications [15–18].

1.3.3. Staggered lattice dispersion

Much of the particle physics literature follows Susskind’s approach
[12, 19], which applies a different lattice to each of the two components of
the spinor wave function Ψ = (u, v). The two lattices are staggered, see Fig.
1.2, displaced by half a lattice constant. The momentum operator transfers
from one lattice to the other, which amounts to a diagonal displacement by
a distance of a/

√
2, as expressed by the translation operators eia(kx±ky)/2.

The discretized Dirac Hamiltonian still acts on the original lattice (black

8



1.3 Methods to discretize the Dirac equation

Figure 1.2: Left: Staggered pair of grids for the discretization of Dirac fermions
in Susskind’s approach. The black and white dots distinguish the u and v
amplitudes of the spinor wave function Ψ = (u, v). Right: The square shows the
Brillouin zone in momentum space, the red dots indicate two inequivalent Dirac
points.

dots in Fig. 3.1). The unitary transformation with operator

Ustagger =
(

1 0
0 eia(kx+ky)/2

)
(1.15)

initializes the pair of staggered lattices (u component on the black dots,
v-component on the white dots). The Hamiltonian then takes the form

HSusskind =
√

2ℏv
a
U†

stagg.
(
σx sin[a(kx−ky)/2]+σy sin[a(kx+ky)/2]

)
Ustagg..

(1.16)
Check that the 2π/a periodicity in the kx and ky components is maintained:
the minus sign picked up by the sine terms is canceled by the unitaries.

In terms of the rotated momenta qx = (kx−ky)/
√

2, qy = (kx+ky)/
√

2,
normalized such that |q|2 = |k|2, one has

HSusskind = ℏv[qxσx + qyσy + O(q2)], (1.17)

so the Dirac Hamiltonian (1.6) is recovered in the continuum limit.
The corresponding dispersion relation

ESusskind(k)2 = 2(ℏv/a)2(sin2[(kx − ky)/2] + sin2[(kx + ky)/2]
)

(1.18)

has two inequivalent Dirac points in the Brillouin zone, at the center and
at the corner. Compared to the sine discretization the staggered lattice
has reduced the number of Dirac points from four to two, but fermion
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doubling has not been fully eliminated. Chiral symmetry is preserved, but
symplectic symmetry is broken by the relative displacement of the two
spinor components.

More generally, on a d-dimensional lattice the sine dispersion has 2d
inequivalent Dirac points in the Brillouin zone (one at each time-reversally
invariant momentum), and the staggered lattice reduces that by one half.
For d = 1 this is sufficient to avoid fermion doubling. In that case the
Susskind Hamiltonian (1.16) is equivalent (up to a unitary transformation)
to the 1D Wilson Hamiltonian

HWilson(kx, ky = 0) = (ℏv/a)σx sin akx +m0σz(1 − cos akx) (1.19)

for the special value m0 = ℏv/a. The resulting sin(akx/2) dispersion is
shown in Fig. 1.3 (green curve).

1.3.4. Linear sawtooth dispersion

The discretization schemes discussed in the previous subsection are all
local, in the sense that they produce a sparse Hamiltonian: each lattice
site is only coupled to a few neighbors. If one is willing to abandon the
locality of the Hamiltonian, one can eliminate the fermion doubling by a
discretization of the spatial derivative that involves all lattice points,

∂xf(x, y) 7→ a−1
∞∑
n=1

(−1)nn−1[f(x− na, y) − f(x+ na, y)]

= a−1
∞∑
n=1

(−1)nn−1(e−na∂x − ena∂x)f(x, y) = a−1(ln ea∂x)f(x, y).

(1.20)

This discretization scheme goes by the name of slac fermions [13, 20] in
the particle physics literature. It has also been implemented in a condensed
matter context [21–24].

In momentum representation, the Hamiltonian takes the form

HSLAC = −i(ℏv/a)
(
σx ln eiakx + σy ln eiaky

)
, (1.21)

where the branch cut of the logarithm is taken on the negative real axis.
The corresponding dispersion

ESLAC(k)2 = (ℏv)2 (k2
x + k2

y) for |kx|, |ky| < π/a, (1.22)

10



1.3 Methods to discretize the Dirac equation

Figure 1.3: Dispersion relations of Dirac fermions on a 1D lattice, for four
different discretization schemes. One with fermion doubling (black curve, Esine)
and three without fermion doubling: EWilson (green curve, for m0 = ℏv/a, when
ESusskind = EWilson), ESLAC (red curve), and EStacey (blue curve). Inequivalent
Dirac points are indicated by a red dot. The first Brillouin zone is the interval
|k| < π/a, the plot is extended to |k| < 2π/a to show the dispersion on both
sides of the Brillouin zone boundary.

is a linear sawtooth, with a cusp at the edge of the Brillouin zone (see
Fig. 1.3, red curve). Fermion doubling is avoided and both chiral and
symplectic symmetries are preserved.

1.3.5. Tangent dispersion

The approach pioneered by Stacey [8, 25] seems a minor modification of
the slac approach — but it has far reaching consequences. The nonlocal
derivative (1.20) is modified by removal of the 1/n factor,

∂xf(x, y) 7→ 2a−1
∞∑
n=1

(−1)n[f(x− na, y) − f(x+ na, y)]

= 2a−1
∑
n

(−1)n(e−na∂x − ena∂x)f(x, y)

= −(2i/a) tan(ia∂x/2)f(x, y). (1.23)

11
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The corresponding Hamiltonian

HStacey = (2ℏv/a)
[
σx tan(akx/2) + σy tan(aky/2)

]
, (1.24)

has a tangent dispersion,

EStacey(k)2 = (2ℏv/a)2 [tan2(akx/2) + tan2(aky/2)
]
. (1.25)

The cusp at the Brillouin zone boundary has been replaced by a pole (see
Fig. 1.3, blue curve).

As in the slac approach, the Stacey approach avoids fermion doubling
while preserving chiral and symplectic symmetries, at the expense of a
nonlocal Hamiltonian. The key merit of the tangent dispersion is that the
nonlocality can be removed by transforming the eigenproblem HΨ = EΨ
into a generalized eigenproblem HΨ = EPΨ, with local operators H and
P on both sides of the equation. This transformation is possible because
the tangent is the ratio of two operators, sine and cosine, that have a local
representation on the lattice.

Ref. [8] formulated the generalized eigenproblem by means of finite
differences on a pair of staggered grids. This produces operators H and
P that are local but not Hermitian, which is problematic in a numerical
implementation. The alternative formulation of Ref. [26] resolves this issue,
resulting in the generalized eigenproblem

HΨ = EPΨ, P = 1
4 (1 + cos akx)(1 + cos aky),

H = ℏv
2a
[
σx(1 + cos aky) sin akx + σy(1 + cos akx) sin aky

]
.

(1.26)

Both operators H and P are Hermitian and P is also positive definite.6
Both are sparse matrices, only nearby sites on the lattice are coupled. This
combination of properties allows for an efficient calculation of the energy
spectrum. In order to do this in practice, it is essential to formulate this
problem in real space.

6To avoid the complications from a noninvertible P, one can choose a lattice with
periodic boundary conditions over an odd number of sites; then all eigenvalues of P
are strictly positive.
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1.3 Methods to discretize the Dirac equation

Real-space formulation of the generalized eigenproblem.

The generalized eigenproblem (1.26) of tangent fermions can be formu-
lated in the position basis upon the substitution

eiakα 7→
∑

n

|n⟩⟨n + eα|. (1.27)

The sum over n = nxex + nyey, with nx, ny ∈ Z, is a sum over lattice
sites on the 2D square lattice (lattice constant a).

We thus have the equation HΨ = EPΨ, with on the left-hand-side the
operator

H = − iℏv
a

D · σ, D = (Dx, Dy), (1.28a)

Dx = 1
8

∑
n

(
2|n⟩⟨n + ex| + |n⟩⟨n + ex + ey| + |n⟩⟨n + ex − ey|

)
− H.c.,

(1.28b)

Dy = 1
8

∑
n

(
2|n⟩⟨n + ey| + |n⟩⟨n + ex + ey| + |n⟩⟨n + ey − ex|

)
− H.c.,

(1.28c)

and on the right-hand-side the operator P = Φ†Φ with

Φ = 1
4

∑
n

(
|n⟩⟨n| + |n⟩⟨n + ex| + |n⟩⟨n + ey| + |n⟩⟨n + ex + ey|

)
.

(1.29)

The abbreviation H.c. stands for “Hermitian conjugate”. Both operators
H and P are local, only nearby lattice points are connected.

By way of illustration, we work out the expectation value

⟨ψ|Φ†Φ|ψ⟩ =
∑

n

|ψ̃n|2, ψ̃n = 1
4 (ψn+ψn+ex

+ψn+ey
+ψn+ex+ey

). (1.30)

One can interpret this in terms of the two staggered lattices shown in Fig.
1.4. The field ψ̃ = Φψ is defined on a white lattice point as the average of
the amplitudes of the wave function ψ on the four adjacent black lattice
points.

13
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Figure 1.4: Staggered pair of grids to represent the two fields ψ and ψ̃ = Φψ.
Figure from Ref. [26]. CC BY 4.0 license

1.4. Chiral superconductors
As shown by Fu and Kane, a 3DTI can be used to engineer a chiral

superconductor [27] by proximitizing it with an s-wave superconductor.
The Bogoliubov-de Gennes Hamiltonian corresponding to such system is

H =
(
ℏvk · σ − µ ∆∗

∆ −ℏvk · σ + µ

)
. (1.31)

The unitary transformation given by

U =
(

exp
(
−iπ4 (sin θkσx − cos θkσy)

)
0

0 exp
(
iπ4 (sin θkσx − cos θkσy)

)) ,
(1.32)

being θk the polar angle of k, transforms our Hamiltonian into

UHU† =


ℏv|k| − µ 0 0 ∆∗e−iθk

0 −ℏv|k| − µ −∆∗eiθk

0 −∆e−iθk ℏv|k| + µ 0
∆eiθk 0 0 −ℏv|k| + µ

 . (1.33)

For µ ≫ |∆|, the low energy spectrum is given by the first and fourth
blocks, so we can project on them to obtain

HC =
(
ℏv|k| − µ ∆∗e−iθk

∆eiθk −ℏv|k| + µ

)
. (1.34)

Since the superconducting phase along the normal Fermi surface winds
once, this effective Hamiltonian realises a chiral superconductor. These

14

https://creativecommons.org/licenses/by/4.0/


1.5 Non-abelian anyons and braiding
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Figure 1.5: Low energy band structure in x direction of a tight-binding version
of the Hamiltonian 1.31 for a periodic system in y direction (left) and a finite
system with magnetic boundaries (right). In the finite system, we can appreciate
two gapless edge modes with opposite velocity. The boundaries also lift the
degeneracy of the bulk bands.

systems are topological [28], and they can host chiral edge modes. This is
only possible if time reversal symmetry is broken. Since Hamiltonian 1.31
does not break it, the boundaries must. This is achieved by a magnetization
term in z direction. The corresponding band structure is shown in Fig.
1.5.

In [29], they used this realisation of a chiral superconductor to observe
the gap closing caused by a net superconducting current [30]. This happens
due to the Doppler shift δE of the bands ε(p) caused by the Cooper pair
momentum ps [31],

δE(p) = ps · ∂ε(p)
∂p

. (1.35)

In chapter 5, we study the effect of a net supercurrent on the chiral edge
modes of such system.

1.5. Non-abelian anyons and braiding

A fundamental property that distinguishes fermions from bosons is
their exchange statistics. This term refers to how the state of a system
transforms when two particles are exchanged. We can express it as

|Ψ21⟩ = U |Ψ21⟩ . (1.36)
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For fermions the wavefunction changes sign, U = −1, while for bosons it
stays the same, U = 1. A detail that is often overlooked in this regard is
the fact that we can mean two different things by “particle exchange” [32].
On one hand, we can switch the quantum numbers of two particles. The
statistics of fermions under this notion of exchange is responsible for the
Pauli exclusion principle.

On the other hand, we can think of exchanging two particles by adiabati-
cally driving them to each other’s position without encountering each other
along the way. In 3D, the Berry phase associated to such an exchange can
only take the values ±1, corresponding to bosons and fermions respectively.
However, in 2D there can exist particles that acquire any phase.7 We call
this particles anyons, and for them U = eiθ.

If the ground state of a 2D system with two particles is degenerate, there
is still a more general scenario. In such case, it is possible for the exchange
to produce a linearly independent state. Particles with this behavior are
called non-Abelian anyons and their exchange is described by a unitary
transformation U rather than just a phase.

Kitaev managed to show how this property can be exploited to build
a fault-tolerant quantum computer [33]. The idea is to encode a set of
qubits in the ground state of a system of non-Abelian quasiparticles and
use exchange operations to implement quantum gates on them. The world
lines of the quasiparticles during this process interlace each other, and
every possible braid results in a specific unitary transformation, hence the
term non-abelian braiding. These systems store information non-locally
and this makes the process immune to decoherence.

The first physical systems found to host non-Abelian anyons were frac-
tional quantum Hall states at some specific filling factors (e.g. ν = 5/2)
[34, 35], but recently more attention has been given to topological super-
conductors like the ones described in the previous section. A φ = h/2e
magnetic flux tube threading a 2D topological superconductor creates an
Abrikosov vortex in the superconducting pairing that binds a zero energy
state. This state is called Majorana zero mode (MZM) because it is its
own particle-hole partner.

A qubit can be encoded in the parity of two MZMs, i.e. in the filling
of the fermionic degree of freedom that is split between them. Since the
total parity of a superconductor is fixed, the minimal example of braiding
with MZMs requires two pairs of these quasiparticles. Braiding one MZM
from the first pair around another from the other pair induces a transfer

7The reason behind this difference comes down to the fact that in the 2D space, a
loop around the origin cannot be contracted to a point without crossing it, while in
3D this can be done by lifting up the loop in the third dimension.
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1.5 Non-abelian anyons and braiding

Figure 1.6: Schematics of the implementation of a σx gate on the state ψin =
|+⟩ |−⟩ to turn it into ψout = |−⟩ |+⟩.

of a fermion between the pairs. This transformation corresponds to a σx
gate (see [36]). A measurement of the state can be carried out by fusing a
pair and measuring the corresponding parity.

A big obstacle stands in the way of implementing this protocol in practice,
namely the fact that adiabatically moving around individual Abrikosov
vortices is beyond our current technical capabilities. Fortunately, another
kind of non-Abelian quasiparticles that can exist on the chiral edges of
topological superconductors provides us with a solution. We are not
referring to the ordinary edge Majorana fermions, which are Bogoliubov
excitations with fermionic statistics, but to a special kind of many-body
excitation called edge-vortex. They consist of a π-phase kink on the
Majorana edge ground state, which is stable due to the reality condition of
Majorana wavefunctions [37]. These excitations have non-Abelian statistics
and they propagate along the edge of the superconductor at the edge mode
velocity.

In chapter 6, we demonstrate a protocol to inject, braid and fuse edge
vortices proposed by Beenakker et al. [38]. Although we model the
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1 Introduction

process with a proximitised Chern insulator, a proximitised 3DTI surface
surrounded by magnetic regions with opposite magnetizations would realise
the same low energy phenomenology.

1.6. This thesis
Although the overarching theme of this thesis falls within the topic of

lattice massless fermions, two distinct parts can be established. Chapters 2,
3 and 4 are devoted to developing various aspects of the tangent fermions
discretization method, such as the implementation of time evolution or the
inclusion of a magnetic field in a gauge invariant way. In contrast, chapters
5 and 6 study specific phenomena associated to chiral superconductors,
using both analytical and numerical methods.

Chapter 2
As discussed in section 1.2, symmetries are crucial for the topological

protection of a single Dirac cone. However, they will only provide such
protection if the Hamiltonian is continuous in the whole reciprocal space,
including across the edges of the Brillouin zone. This is often overlooked
in many discretization methods.

In this chapter, we introduce a way to solve the time-dependent Dirac
equation for massless fermions on a lattice that is discrete not only in
space but also in time. The resulting evolution operator has unique
properties. It preserves chiral and symplectic symmetries, it avoids fermion
doubling and, remarkably, it is continuous across the edge of the energy-
momentum Brillouin zone. We explicitly show how other methods fail to
keep the gaplessness of the Dirac cone while in ours it is robust against
any chiral or symplectic symmetry preserving perturbations. Since our
dispersion relation reads tan2(ε/2) = tan2(kx/2) + tan2(ky/2), we refer to
our approach as the method of tangent fermions.

Chapter 3
Apart from the robustness of the Dirac cone, another well known property

of massless fermions is a phenomenon known as “Klein tunneling”. It
consists on the impossibility of backscattering of electrons that encounter
a potential step perpendicular to their direction of motion, irrespective of
the size of the barrier. This happens because such backscattering would
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1.6 This thesis

Figure 1.7: Band structure for slac (left) and tangent fermions (right). The
bands are discontinuous accross the edge of the Brillouin zone only in the former.

require a spin switch, which is forbidden in chiral symmetry preserving
systems.

However, this phenomenon may be spoiled by fermion doubling because
of scattering to another Dirac cones in the Brillouin zone. To avoid this,
a staggered space-time lattice discretization has been developed in the
literature, with one single Dirac cone in the Brillouin zone of the original
square lattice. In this chapter we show that the staggering doubles the size
of the Brillouin zone, which actually contains two Dirac cones. We find
that this fermion doubling causes a spurious breakdown of Klein tunneling,
which can be avoided by the alternative single-cone discretization scheme
introduced in chapter 2.

Chapter 4
The presence of a magnetic field B in a system of fermions induces Lan-

dau quantization, a phenomenon consisting on the emergence of separate
flat energy bands known as Landau levels. While this happens for both
massive and massless fermions, in the latter case the spectrum contains a
particular Landau level at zero energy that is absent in the former. This
“zeroth Landau level” is special because it has a well defined chirality,
which makes its flatness robust against chirality preserving disorder.

However, a lattice discretization with fermion doubling or chiral sym-
metry breaking can spoil this protection, inducing a broadening of the
zeroth Landau level when B has spatial fluctuations. In this chapter, we
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Figure 1.8: Klein tunneling. The incoming electron (red) can only be trans-
mitted, switching its momentum and keeping its spin and velocity (green).

extend the tangent fermions approach to allow for the incorporation of
magnetic fields and show how this can be used to obtain robust zeroth
Landau levels.

Chapter 5
The right panel of Fig. 1.5 shows the band structure of a spinful chiral

superconductor –more specifically, a Fu-Kane heterostructure– for zero
supercurrent. In this chapter we explore the effect a non-zero net super-
current parallel to the edges of such system and find out that something
special happens at a critical value of the Cooper pair momentum ∆2

0/µvF.
At this point, the velocity of one of the Majorana edge modes switches
sign –we call this a chirality inversion–, a process that is accompanied by
the emergence of two new states at the Fermi energy.

This chirality inversion leaves traces in the transport properties of the
system. Firstly, the heat conductance is doubled because now there are
twice as many modes that can transport energy. Secondly, the newly
generated modes have non-zero charge, so electrical current can now
be transported, and therefore the system acquires a non-zero electrical
conductance. We also show that the chirality inversion is a unique signature
of Majorana fermions in a spinful topological superconductor: it does not
exist for spinless chiral p-wave pairing.

20



1.6 This thesis

Figure 1.9: Edge vortex injector of [38].

Chapter 6
As introduced in section 1.5, the chiral edge modes of a topological

supercondutor can carry non-Abelian excitations. These so-called edge-
vortices are a π-phase “twist” of the wavefunctions of the edge Bogoliubov
quasiparticles below the Fermi energy. These many-body excitations are
made up of chiral edge modes which propagate along the edge of the
system at the same velocity. Therefore, edge-vortices themselves must do
the same.

In [38], Beenakker et al. proposed that such edge-vortices can be
injected on the edges of a topological superconductor by splitting it with a
Josephson junction and applying an h/2e flux bias over it. In this chapter,
we demonstrate it by dynamically simulating the process using a lattice
model. Essentially, this amounts to numerically solving the time-dependent
Schrödinger equation for the ground state of the superconducting device.

We show how the braiding of edge-vortices with bulk vortices results in a
parity switch analogous to the one represented in Fig. 1.6. We also confirm
the prediction made in [38] that the braiding process can be detected
electrically. More crucially, our approach allows us to account for the
dynamics of the junction and go beyond exisiting analytic descriptions
that rely on the adiabatic approximation. Our study also reveals that
if the flux bias is implemented too fast, residual excitations can remain
trapped in the Josephson junction, spoiling the parity switch.

21




