

Soft genome editing based on CRISPR nickases: it takes one break to tango $% \left\{ 1,2,\ldots,n\right\}$

Wang, Q.

Citation

Wang, Q. (2024, June 26). Soft genome editing based on CRISPR nickases: it takes one break to tango. Retrieved from https://hdl.handle.net/1887/3765882

Version: Publisher's Version

License: License agreement concerning inclusion of doctoral thesis in the

Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3765882

Note: To cite this publication please use the final published version (if applicable).

Soft genome editing based on CRISPR nickases: it takes one break to tango

ISBN: 978-94-6496-101-0 Copyright © Qian Wang, Leiden, the Netherlands, 2024. All right reserved. No part of this thesis may be reproduced, stored, translated, or transmitted in any form or by any means now or hereafter, electronic or mechanical without prior written permission of the copyright owner. Cover: concept and design by Qian Wang Layout: Qian Wang Printing: GildePrint

Soft genome editing based on CRISPR nickases: it takes one break to tango

Proefschrift

ter verkrijging van

de graad van doctor aan de Universiteit Leiden,
op gezag van rector magnificus prof.dr.ir. H. Bijl,
volgens besluit van het college voor promoties
te verdedigen op woensdag 26 juni 2024
klokke 13:45 uur

door

Qian Wang geboren te Lianyungang, Jiangsu, China in 1992 **Promotor:** Prof. Dr. R. C. Hoeben **Co-promotor:** Dr. M.A.F.V. Gonçalves

Leden promotiecommissie:

Prof. Dr. C. Brakenbusch (University of Copenhagen, Denmark)

Prof. Dr. F.J.T. Staal

Prof. Dr. S.M. Chuva de Sousa Lopes

Dr. B. Pang

Dr. H.J.G. Snippert (University Medical Center Utrecht, the Netherlands)

Dr. J. Wijnholds

The research presented in this thesis was performed at the Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands. This research was supported by the Prinses Beatrix Spierfonds (W.OR11-18, W.OR16-13, W.OR21-01), the Dutch Duchenne Parent Project (17.012), the China Scholarship Council-Leiden University Joint Scholarship Program, the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 765269 (IMGENE – Improving Genome Editing Efficiency) and the European Union's Horizon Europe research and innovation programme under the Marie Skłodowska Curie Actions grant agreement No. 101072427 (GetRadi – Gene Therapy of Rare Diseases).

To My Dear Family and Friends

谨以此书献给亲爱的家人及朋友

CONTENTS

General Introduction / 009


Chapter 1	Adenoviral vectors meet gene editing: a rising partnership for the genomic
	engineering of human stem cells and their progeny / 013

- **Chapter 2** Expanding the editable genome and CRISPR-Cas9 versatility using DNA cutting-free gene targeting based on in trans paired nicking / **039**
- **Chapter 3** Precise and broad scope genome editing based on high-specificity Cas9 nickases. / **067**
- **Chapter 4** Precise homology-directed installation of large genomic edits in human cells with cleaving and nicking high-specificity Cas9 variants / **099**
- **Chapter 5** Broadening the reach and investigating the potential of prime editors through fully viral gene-deleted adenoviral vector delivery / 125
- **Chapter 6** Selection-free precise gene repair using high-capacity adenovector delivery of advanced prime editing systems rescues dystrophin synthesis in DMD muscle cells / **145**
- Chapter 7 The chromatin context differently impacts prime editors and base editors and controls the fidelity and purity of base editing / 167

Conclusions and Final Remarks / 209

Addendum Nederlandese Samenvatting / 214

List of Publications / 218 Curriculum Vitae / 220 Acknowledgments / 221

