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Abstract

Neural systems are organized in a modular way, serving multiple functionalities. This multiplicity 

requires that both positive (e.g. excitatory, phase-coherent) and negative (e.g. inhibitory, phase-

opposing) interactions take place across brain modules. Unfortunately, most methods to detect 

modules from time series either neglect or convert to positive, any measured negative correlation. 

This may leave a significant part of the sign-dependent functional structure undetected. Here 

we present a novel method, based on random matrix theory, for the identification of sign-

dependent modules in the brain. Our method filters out both local (unit-specific) noise and 

global (system-wide) dependencies that typically obfuscate the presence of such structure. The 

method is guaranteed to identify an optimally contrasted functional ‘signature’, i.e. a partition 

into modules that are positively correlated internally and negatively correlated across. The 

method is purely data-driven, does not use any arbitrary threshold or network projection, and 

outputs only statistically significant structure. In measurements of neuronal gene expression in 

the biological clock of mice, the method systematically uncovers two otherwise undetectable, 

negatively correlated modules whose relative size and mutual interaction strength are found to 

depend on photoperiod.

Author Summary

In recent years an increasing number of studies demonstrate that functional organization 

of the brain has a vital importance in the manifestation of diseases and aging processes. 

This functional structure is composed of modules sharing similar dynamics, in order to serve 

multiple functionalities. Here we present a novel method, based on random matrix theory, for 

the identification of functional modules in the brain. Our approach overcomes known inherit 

methodological limitations of current methods, breaking the resolution limits and resolves a 

cell-to-cell functional network. Moreover, the results represent a great potential for detecting 

hidden functional synchronization and de-synchronization in brain networks, which play a 

major role in the occurrence of epilepsy, Parkinson’s disease, and schizophrenia.Ab
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1. Introduction

Understanding how billions of neurons collectively self-organise into a functionally 
ordered brain able to coordinate a variety of neural, cognitive and bodily processes is 
probably the most fundamental quest in neuroscience. Over the last decades, evidence 
has accumulated that the functional organisation of the brain is modular and hierarchical 
(Meunier et al., 2010). This means that the brain appears to be partitioned into mesoscopic 
‘functional modules’ where each module is composed of neurons with a relatively similar 
dynamical activity, while different modules are comparatively less related to each other. 
Each such module may also contain submodules hierarchically nested within it. 

Reliably identifying functional modules is a nontrivial task because of their irreducibility 
to contiguous anatomical regions defined a priori and/or to local neighborhoods in the 
underlying structural network of neuron-to-neuron anatomical connections (Park & 
Friston, 2013). Indeed, while on the one hand functional modules partly reflect the local 
brain anatomy, on the other hand major deviations between functional and structural 
networks are observed. One key example is the distinctive ‘long-range’ left-right splitting 
of some functional modules: often, a single module is found to be composed of two 
or more spatially non-contiguous populations of neurons, located in possibly distant 
(sometimes symmetric, sometimes asymmetric; Corballis, 2014) regions in the left-right 
direction (Michel et al., 2013; Nicosia et al., 2013). As an opposite example, an anatomically 
well-defined brain region can be functionally heterogeneous (Antle & Silver, 2005; Buijink 
et al., 2016) and sometimes even display anti-correlation between the activity of some of 
its parts (de la Iglesia et al., 2004; Ohta et al., 2005). These examples indicate the lack of a 
one-to-one correspondence between structural and functional modules, showing that 
it is in general impossible to infer the latter purely from spatial information. Indeed, it 
is expected that the mapping between functional and structural networks is many-to-
one, thus allowing a diversity of functions to arise from a common neuronal anatomy 
(Park & Friston, 2013). On top of this, both structural and functional brain networks are 
characterized by plasticity, i.e. possibility of temporal rearrangements, but at typically 
different spatial and temporal scales. 

Precisely because they cannot be reduced to ‘spatially obvious’ brain regions, functional 
modules must entail an emergent, non-structural level of neural organisation which can 
only be investigated via the explicit analysis of time series of activity of individual neurons 
or, at a more coarse-grained level, regions of interest (ROIs). More specifically, recordings 
of multiple time series are normally used to construct an association (e.g. cross-correlation, 
mutual information, etc.) matrix capturing the mutual relations between pairs of ROIs 
(see Fig 1). Next, the matrix can be analysed in different ways to detect the presence of 
functional dependencies or structure in the system. 
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Figure 1. Illustration of the procedure of functional module identification from time series data 
(top) in the standard approach (bottom left) and in our method (bottom right). In this example 
(our empirical data), we can see that the signals share a very strong common periodic trend, which 
results in very high correlation values. In the standard approach, an arbitrary threshold is defined 
and the original matrix is projected onto a functional network. This comes at the price of discarding 
the majority of the data, most notably the negative correlations, and makes the output threshold-
dependent. Moreover, modules are searched for in the projected network using null models that 
are valid for graphs with independent edges, but not for correlation matrices. We should note 
that there are recent approaches, which will be discussed in the next section, that do not discard 
negative correlation. In our method, we compare the empirical correlation spectrum against a null 
model specifically tailored for correlation matrices. This produces a filtered correlation matrix that 
is subsequently searched for modules. These modules are guaranteed to be statistically significant, 
noise-free, overall positively correlated internally and overall negatively correlated across. By directly 
producing a partition of the original time series into modules, our method bypasses the functional 
network projection, avoiding the use of a threshold.
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Importantly, these dependencies can be positive (+) or negative (−), leading to measured 
correlation or anti-correlation. For instance, synaptic interactions between neurons will 
influence their mutual phases and lead to different states of synchronization in a brain 
circuit. The degree of synchronization (+) versus desynchronization (−) is important 
for neural function and a disturbance in this balance can contribute to neurological 
disorders. In the paradigmatic example of the central mammalian clock situated in the 
suprachiasmatic nucleus (SCN) of the hypothalamus, the state of synchronization of 
neurons can influence responses of the circadian system to light and is actually used to 
encode seasonal changes in day length. It has been suggested that inhibitory (−) as well 
as excitatory (+) neuronal interactions will contribute to the phase differences observed 
under different photoperiods (DeWoskin et al., 2015; Myung et al., 2015). The balance 
between excitatory and inhibitory activity (E/I balance), which is a hallmark of healthy 
network performance, can actually change with photoperiod (Farajnia et al., 2014).

The motivation for the present paper is the expectation that, in the brain and in possibly 
many other biological networks as well, the presence of both positive and negative 
interactions should have a significant impact on how the modular functional organization 
is both mathematically defined and empirically identified. For instance, even within a 
functionally homogeneous region there may be negatively correlated substructures 
arising from the need to create and/or modulate the internal mutual phase relationships. 
Similarly, across two functionally distinct modules there may be a need for dependencies 
of both negative and positive sign, depending on whether the two functions should 
inhibit or enhance each other. Consequently, we stress that a proper definition of 
functional modules should take the sign of the defining correlations into serious account 
and tools should be devised to reliably identify such sign dependent structure from time 
series data. This is crucial in order to map how function is distributed across the modular 
brain landscape and to properly constrain models of the underlying neural dynamics. 

In this paper, we argue that the available approaches to the theoretical definition and 
empirical detection of functional modules treat negative dependencies in essentially 
unsatisfactory ways. On one hand, most techniques either entirely dismiss negative values 
(Bullmore & Sporns, 2009), or turn them into positive ones (Rubinov & Sporns, 2011), 
thereby using no information about the sign of the dependency. On the other hand, the 
few methods that do take negative correlations into account use (null) models that treat 
all pairwise correlation coefficients as statistically independent entities, thus violating 
important structural properties of correlation matrices. Other popular approaches like 
Principal Component Analysis (PCA) or Independent Component Analysis (ICA) look for 
independent, rather than anticorrelated, components, thus serving a different purpose. 
Moreover, most of these approaches fail to provide a statistical validation of the modules 
identified, and are therefore prone to misidentification due to the presence of both ROI-
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specific noise and brain-wide common trends obfuscating the underlying mesoscopic 
modular patterns.

Here, we propose a novel method that targets specifically the positive and negative 
interactions in brain data and filters the underlying noise and common trends using an 
appropriate null model based on Random Matrix Theory (RMT). Our approach generalizes 
a recent community detection method tailored for correlation matrices (Almog et al., 
2015; MacMahon & Garlaschelli, 2015), originally formulated for financial time series that 
have an inherently random and non-periodic pattern, and extends it to the case where 
arbitrarily structured temporal trends are allowed. We also pay specific attention to the fact 
that noise and global trends have a previously overlooked coupled effect on the spectrum 
of correlations, and we rigorously correct for this coupling. Technically, the method makes 
use of a modified Wishart ensemble of random correlation matrices constructed using 
precisely the same common trend and expected noise level as the empirical time series, 
but under the null hypothesis that no modular organization is present. This ensemble 
serves as a natural, reliable and more appropriate null model for correlation matrices 
arising in brain research. A comparison between empirical and null correlation matrices 
reveals the functional modules present in the data and by construction absent in the 
model.

The resulting method is threshold-free and does not require the arbitrary projection 
onto a network (see Fig 1). Moreover, in contrast with most of the current approaches, it 
is designed to yield an optimally sign-contrasted structure, where positive interactions 
are clustered inside the modules and negative values are expelled across modules. We 
call the resulting optimized structure the functional signature of the system. This structure 
is composed of functional modules whose overall internal correlation is guaranteed 
to be positive and whose overall mutual correlation is guaranteed to be negative. The 
method only outputs statistically significant structure, if present. We should stress that 
in any stage of the process there are no presumptions about the output of the method 
(such as a predefined number or size of modules) and the results are completely and 
non-parametrically driven by the data themselves. If needed, the method can be used 
iteratively to detect sub-modules hierarchically nested within modules.

Besides formulating the method, we apply it to the analysis of the aforementioned SCN, 
which is responsible for regulating the circadian rhythms of physiology and behavior 
in mammals. We chose the SCN of mice because of its relatively small size (ca 20,000 
neurons) and high degree of functional plasticity. Single SCN neurons are capable of 
generating circadian rhythms in, amongst others, gene expression and electrical activity. 
The phase differences between the cells can vary with changes in the environment, such 
as different photoperiods or prolonged light exposure, or with an attenuation of the 
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degree of coupling between the neurons as seen in aging or disease. This makes the SCN 
an optimal case study for a dynamic network of neurons with different internal oscillations, 
mechanistically coupled to E/I processes. 

We show how our method can be used to reliably search the SCN for sign-dependent 
functional modules reflecting the phase ordering of oscillating cell populations, based 
on both strength and sign of their coupling interactions. We use samples taken from 
mice that were subjected to different photoperiods. The method identifies two otherwise 
undetectable clusters of functionally connected SCN neurons that have a strong 
resemblance to a known core/shell distinction (Morin et al., 2006) and that have never 
been found before without the use of prior knowledge. Importantly, we are able to detect 
physiological differences present in different photoperiods in the functional signature 
of the two clusters. We find that the sizes of the two modules change with photoperiod 
as the result of a majority of neurons remaining in the same module irrespective of 
photoperiod, and a minority alternating between the two modules at their interface. 
This finding highlights a possible population of alternating neurons responsible for the 
functional plasticity required for adjustment to photoperiod and circadian modulation. 

2. Results

2.1   Limitations to overcome in the identification of sign-dependent functional 
modules.

Our approach aims at overcoming various limitations of the existing methods. It is 
therefore convenient to briefly mention these limitations in order to gradually introduce 
some of the defining elements of our method. 

First, we want to avoid the use of thresholds on the entries of the correlation matrix. 
Indeed, most approaches identify functional modules via the introduction of a threshold 
used to project the original correlation matrix into a network (see Fig 1; (Power et al., 
2011; Rubinov & Sporns, 2011). On this network, various graph-theoretic quantities can 
be measured to identify modules in terms of e.g. connected components (Palla et al., 
2005), rich clubs (Colizza et al., 2006), k-cores (Seidman, 1983) or communities (Fortunato, 
2010). The well-known limitations of this approach are the uncontrolled information 
loss induced by discarding some of the observations, the complete arbitrariness of the 
choice of the threshold value, and the resulting unavoidable threshold-dependence of 
the output (Garrison et al., 2015). Moreover, since thresholds are introduced to project the 
original matrix into a sparse network, and since the number of negative entries in such 
matrix is usually smaller than that of positive ones, this procedure essentially imposes a 
positive threshold, thereby completely disregarding all the negative correlations. 
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Second, we want to avoid turning the negative correlations into positive ones. Based on the 
(correct) consideration that negative correlations indicate functional dependency (rather 
than no dependency), many approaches aim at exploiting both positive and negative 
values as cohesive interactions in the definition of functional modules. To this end, they 
take e.g. the absolute value or the square of the original correlations. However, in this way 
the negative correlations are treated just like the positive ones, making it impossible for 
the output modules to encode any information about the original sign of the functional 
dependencies. We instead believe that the sign should be retained and used as a repulsive 
interaction in the definition of modules, with the understanding that the latter should 
not be interpreted as functionally independent of each other, but rather as dependent 
sub-modules in mutual anticorrelation, possibly nested within larger modules that may 
eventually be functionally unrelated. 

Third, we want to avoid the ‘merging bias’ that affects even the few remaining methods 
that do preserve the sign of correlations in the definition of modules (Traag & Bruggeman, 
2009; Rubinov & Sporns, 2011; De Domenico et al., 2016). These methods are adaptations 
of the so-called ‘modularity maximization’ techniques introduced in the literature about 
community detection in networks and targeted at finding groups of nodes that are more 
densely connected internally, and less densely connected across, than expected under a 
random null model (Fortunato, 2010). The main null models for networks have statistically 
independent links, i.e. a link can be placed between any two nodes without affecting 
the probability of placing links elsewhere in the network. The methods that generalize 
these null models to correlation matrices extend them in the direction of allowing 
links with both positive and negative weight, but unfortunately retain the assumption 
of independent matrix entries (Traag & Bruggeman, 2009; Rubinov & Sporns, 2011; De 
Domenico et al., 2016). While justified for networks, this assumption becomes incorrect 
for correlation matrices, whose entries are subject to basic ‘metric’ properties that make 
them depend on each other (MacMahon & Garlaschelli, 2015). For instance, negative 
triangular relationships of the type Ci,j < 0, Ci,k < 0, Ck,i < 0 are in general very rare in empirical 
correlation matrices (and become impossible if Ci,j = Ci,k = Ck,i = -1), while they are much 
more likely in a null model with independent entries. This effectively creates the systematic 
bias of erroneously interpreting the absence or scarcity of such negative triangles in the 
data as strong statistical evidence for the nodes i, j and k being ‘attracted’ to each other. 
As a net result, the three nodes are likely to be merged in the same module (hence the 
merging bias), although their mutual anticorrelation represents statistical evidence that 
they should in fact belong to three separate modules. 

Fourth, we want to avoid misidentification due to the presence of common trends across 
all ROIs in the sample. Indeed, depending on the spatial and temporal resolution of the 
data, experimental time series may contain a multitude of periodic or systematic trends 
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at different frequencies (e.g. heartbeat, breathing, circadian rhythms) that impart an 
overall positive correlation to all or several ROIs, without actually representing any real 
functional relatedness among the ROIs themselves. One of the side effects of such ‘global 
mode’ is a reduction of the detectability of the underlying modular structure. Certain 
techniques aim at solving this problem by preliminary subtraction of the measured 
average trend from each time series separately (thus effectively removing the global 
mode), and then calculating the resulting correlation matrix. Along these lines, methods 
like Bazzi et al. (2016) proposed a null model in which the elements are correlated at some 
baseline level, where the amplitude of this level is determined by a tunable parameter. 
These procedures have been criticized because they tend to generate both positive and 
negative correlations by construction, with no guarantee that the corresponding signs 
represent a true signature of functional modularity, e.g. even if the original time series 
were all independent and their increments relative to the average trend were merely due 
to chance or noise. 

Fifth, and connected to the point above, we want to accurately characterize the level 
of noise in the data. This point is connected to many of the points above. For instance, 
being able to separate noise from information would allow us to avoid the use of arbitrary 
thresholds, discriminate between true and random modularity, and arrive at a safer 
definition of modules based on trends relative to the global one, thus enhancing the 
detectability of functional substructure.

2.2   A random matrix null model for correlation matrices of neural activity
We are now ready to introduce our method which is designed in order to avoid the 
limitations described above. 

Given an empirical correlation matrix constructed from multiple time series of neuronal 
activity, our method looks for functional modules upon removing the joint effects of 
noise in the data and of common temporal trends, as both features may obfuscate the 
empirical identification of possible underlying substructure. For this task the method first 
introduces a null model that serves as a random benchmark, thus accurately highlighting 
the non-random modular patterns in the empirical correlation matrix. This improved 
null model, based on random matrix theory, takes into account cell to cell variability and 
does not require the unrealistic assumption that the time series are stationary. Therefore, 
we can allow for any temporal modulation (see section Materials and methods), both in 
individual time series and in their resulting common trend. This is very important, given 
the strongly time-dependent nature of functional brain data in general, and of our time-
modulated oscillating signals in particular. So, even if the calculation and interpretation of 
correlation matrices usually assumes stationarity, here we can statistically treat correlation 
matrices calculated from nonstationary data as well. 
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The first step is an exact calculation of the combined, undesired effects of noise and 
common trends on the density of eigenvalues ρ(λ) of a theoretical cross-correlation 
matrix. This step corresponds to the definition of a null model for a correlation matrix 
without modular patterns, but with a noise level calibrated to the observed one and with 
a global trend that exactly follows the one in the empirical time series. The output of this 
first step is illustrated in Fig 2A. The density of eigenvalues, which is calculated exactly in 
the null model (see section Materials and methods), features one largest eigenvalue λmax 
due to the global trend, plus a “random bulk” extending between a minimum (λ_) and a 
maximum (λ+) eigenvalue.

Figure 2. (A) Empirical eigenvalue density versus calculated eigenvalue density for the two random 
models. (B) The community structure of the SCN as resolved by our method. On the left, is the 
community structure detected by random model without filtering the global mode (Random). On 
the right, is the community structure detected by random model once the global mode is filtered 
(Random + Global). In the bottom panels are the partitions detected, where each community is 
marked with a different colour. In the top panels are the corresponding resolved filtered correlation 
matrices displaying the resolved structure as a block matrix.

The second step is a filtering of the original correlation matrix via the identification of 
the empirical eigenvalues that deviate, in a statistically significant manner, from the ones 
predicted by the module-free null model. In practice, this reduces to the selection of the 
empirical eigenvalues that are found in the range (λ+, λmax). A crucial result in this study, 
overlooked in previous analyses (Almog et al., 2015), is a precise calculation of λ+ showing 
that the higher λmax, the lower λ+. The fact that the values of λmax and λ+ depend on each 
other is a proof that noise and global trends jointly affect the features of the expected 
eigenvalue density of the correlation matrix. Our calculation of λ+ allows us to recover 
statistically significant features of the empirical correlation matrix that would otherwise 
be incorrectly classified as noise. Looking again at Fig 2, we indeed see the presence of 
eigenvalues in the empirical spectrum (red) that deviate from our adjusted null model 
(green) and include eigenvalues that would be incorrectly classified as noisy if λ+ were not 
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corrected for λmax (blue). This step is completed by the selection of the eigencomponent 
of the correlation matrix associated with the deviating eigenvalues. The resulting, cleaned 
component of the original matrix contains statistically significant, noise and trend-filtered 
information about the presence of functional modules. 

2.3 Detecting functional signature in neural systems 
Once the original correlation matrix has been filtered by the null model, only the 
statistically significant dependencies are guaranteed to remain in the matrix. At this point 
our aim is the identification of functional modules that are positively correlated internally 
and negatively correlated externally. This can be transformed into an optimization 
problem. We employ community-detection techniques that take the filtered correlation 
matrix as input and return the optimized partition of the system into functional modules. 
The optimized partition will tend to place the positive dependencies (correlation) inside 
the clusters while expelling the negative dependencies (anti-correlation) across the 
clusters. We should stress that, by construction, the emergent functional structure will be 
detectable only if it is statistically significant. Moreover, the number of detected clusters is 
not defined a priori, and is found automatically by the method itself.

It should be noted that, while the use of information contained in the eigenvectors of the 
largest eigenvalues is common to other methods (such as Principal Component Analysis 
and it generalization, aka Independent Component Analysis; Brown et al., 2001; Stone, 
2002) as well, our approach distinguishes itself from these approaches in various respects. 
First, those methods look for the independent components in which the original signal 
can be optimally decomposed, while our aim is to pinpoint the anticorrelated groups of 
units. Second, our iterative optimization procedure reformulated for correlation matrices 
guarantees that the final output is maximally contrasted in terms of the signs of the 
detected modules. Finally, the other approaches focus on the strongest eigenvalues but 
do not implement a null model, tailored to capture both local noise and global trends, to 
assess which of the eigenvalues are informative and which are noisy. Indeed, in ICA the 
desired number of components has to be specified by the user, whereas in our method 
the optimal number of modules is given as output by the algorithm. 
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Figure 3. Illustration of misidentification due to the presence of common trends in a comparison 
between the method by Rubinov and Sporns (2011; based on a null model with independent entries 
of the correlation matrix) and our alternative approach (based on the more appropriate null model 
with dependent entries constructed from random matrix theory). (A top) 300 synthetically generated 
time series in a system with 3 modules, each containing 100 oscillating series with random phases, 
(A bottom) 300 synthetically generated time series as before, with a strong global periodic signal. (B) 
the corresponding correlation matrix, top and bottom accordingly, showing a clear block structure. 
The output of our method (C) and the Rubinov-Sporns method (D) in terms of likelihood matrices 
indicating the frequency with which two neurons are found in the same community in 1000 runs 
of both methods. We can see that the Rubinov-Sporns method is able to correctly separates the 3 
modules in the more straightforward case of clear positive and negative correlation (D top). In the 
more complex case where the correlation are obscured by a strong common trend the Rubinov-
Sporns method merges the first module with the other two clusters. Using the proper null model 
our method is able to correctly separates the 3 modules in both cases (C).

By using an appropriate null model that takes into account the presence of strong global 
trends, our method avoids the misidentification due to common trends and merging bias 
of other methods described above. To illustrate this, in Fig 3 we show a synthetic sample 
with 300 oscillating signals divided into 3 main groups, in each of which 100 signals are 
randomly assigned different phases around a ‘master signal’ (top). We also consider the 
same exact system with strong (periodic) global trend, which obscure the positive and 
negative correlations (bottom). We can clearly see that due to the differences in phase 
between the groups, the relations between different groups become negative (anti-
correlation) in sample one (top), however, in the system with the global trend all of the 
correlations are shifted to positive values (bottom). We then process the correlation matrix 
with the (independent-entries) method proposed in (Rubinov & Sporns, 2011) and with 
our method. While our method is able to cluster the 3 groups perfectly in both cases, the 
general modularity method clusters the modules correctly only in simple case where no 
global trends are present. 
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2.4 Uncovering the hidden functional signature of the SCN 
The brain region we apply our method to is the suprachiasmatic nucleus (SCN), located in 
the hypothalamus in the brain, and recognized as the site of the central circadian clock in 
mammals. This clock is important for the regulation of our daily and seasonal rhythms. It 
has been shown that the neuronal network organization of the SCN changes in different 
photoperiods (VanderLeest et al., 2007), however, the mechanisms behind these changes 
are still elusive. Furthermore, only a subset of neurons within the SCN network are directly 
responsive to light (Rohling et al., 2011), which poses the question how encoding for 
seasonally changing day length is achieved in the SCN network. The SCN is a prototypical 
example of a brain structure for which resolving functional organization is challenging for 
the reasons outlined above: it consists of about 20000 neurons that are spatially close (total 
size of 1 mm3) so, structurally speaking, these neurons form a single densely connected 
cluster, whose only anatomical substructure is a left-right split into two lobes) while at the 
same time displaying a high variability in terms of the signals of the constituent neurons.
Currently, brain networks are most often derived from data acquisition techniques that 
do not have the possibility to perform recordings at the single cell level. Techniques 
such as (functional) Magnetic Resonance Imaging ((f )MRI), Electroencephalography 
(EEG) or Magnetoencephalography (MEG) use brain regions as nodes in the network and 
statistical associations of regional/sensor temporal activity as edges. We investigate the 
SCN network at the micro-scale where nodes are single cells and edges are functional 
connections between the cells. We use single-neuron data on gene expression of a clock 
gene period2 in the SCN. The data were sampled every hour for at least three days by 
means of a bioluminescence reporter PER2::LUC.
 
We first perform a standard analysis based on the mainstream method (see Fig 1) for 
detecting communities via functional networks. This is a useful reference as a comparison 
with our own method. In Fig 4 we present the community structure, resolved by the 
standard method, for different thresholds. In blue are the nodes that belong to the large 
cluster, while in gray are isolated nodes (communities that only contain one node). In the 
right panel, we plot the fraction of nodes in the largest connected component S = LCC

N
in blue, and the fraction of communities detected M = Communities

N  in red. It is evident 
that applying different thresholds essentially detaches isolated nodes from the large 
cluster, and there is no optimal value for the threshold. Therefore, the standard method 
can only observe a “radial gradient” of connectivity, and there is no sense of multiple 
communities of neurons, which is one of the signatures of functional as opposed to 
structural connectivity. This poor performance of the method is a known limitation when 
applied to very dense networks. 
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Figure 4. The community structure of the SCN as resolved by a standard threshold approach. On the 
left, we plot the community structure, resolved by the standard method, for different thresholds. In 
blue are the nodes that belong to the large cluster, while in gray are isolated nodes (’communities’ 
that only contain one node). In the right panel, we plot the fraction of nodes in the largest connected 
component S in blue, and the fraction of communities detected M in red.

Our method detects mostly two communities which coincide with the core and shell 
distinction within the SCN (Morin et al., 2006). The core of the SCN receives light input and 
adjusts quickly to changing light schemes, while the shell of the SCN lags behind (Albus 
et al., 2005). Mostly the core-shell distinction of the SCN is interpreted as a distinction 
between the ventrolateral and the dorsomedial part of the SCN, which is predominantly 
based on anatomical data (Moore, 1996). In this study the two clusters that were found 
were more dorsolaterally and ventromedially located, and while it is based on functional 
data this may differ from known anatomical distinctions. Furthermore, the SCN is much 
more heterogeneous when looked at cellular phenotype or gene expression (Antle & 
Silver, 2005; Butler & Silver, 2009). The anatomical loci do not necessarily delineate the 
phenotypical SCN regions very precisely, which implies that functionally, the core-shell 
distinction is less clearly defined and may differ from the described anatomical division 
(see also Morin et al., 2006). 

Next, we perform the analysis using the method presented in Rubinov & Sporns (2011), 
which uses a modified modularity matrix to incorporate signed matrices. Since the 
method does not require a threshold parameter and using all the data entries in the 
correlation matrix to resolve the community structure, we anticipate a better performance 
than the standard threshold procedure. In Fig 5 we plot the community structure of four 
different samples (A, B, C, D) as resolved by the two methods. The panels represent the 
partitions detected, where each community is marked with a different color. Strikingly, 
the signed Leuven method community structure is very comparable to the clear core 
periphery structure that is detected with the random matrix approach. However, it also 
detects with high consistency three communities, when the third community is changing 
in size and location for each sample. The differences in the structures might result from 
the improve ability of the random matrix approach to filter common trends, as seen in Fig 
3. Nevertheless, the presence of the general core periphery pattern is reinforced by both 
of the methods. 
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Figure 5. The community structure of the SCN for 4 different samples (A,B,C,D) as resolved by our 
method (top) and by the Rubinov and Sporns (2011) approach. The panels represent the partitions 
detected, where each community is marked with a different colour. We can see that the Rubinov 
Sporns method shares a good resemblance to the clear core periphery structure that is detected by 
our method. In contrast to the random matrix approach, the signed Leuven consistently detects a 
third module, in a different location at each time.

Regional analysis of the SCN using functional time series has been performed by other 
groups. Evans and co-workers used a similar approach to identify single-cell-like regions 
of interest, but did not use clustering algorithms and chose the regions by hand (Evans 
et al., 2011). Silver and co-workers also used regions of interest, called superpixels, but 
these were not necessarily identified as single-cells. Based on these superpixels they used 
threshold methods to identify regional differences in the SCN (Foley et al., 2011; Pauls et al., 
2014). Abel and co-workers applied a threshold method based on mutual information on 
single-cell-like regions of interest (Abel et al., 2016). These approaches encounter similar 
problems as described in this paper when using the threshold method: they only find one 
cluster (in the core, or ventral part) and many non-clustered cell-like ROIs (in the shell or 
dorsal part). Our results presented here are in line with the regional division of the SCN 
proposed in these studies, but we were able to identify both the core and shell clusters. 
To visualize the general community structure, we plot the bioluminescence image of one 
SCN sample with the resolved average partition average partition over all the samples (Fig 
6A and 6B). We also plot the average signal of each community to observe the optimized 
anti-correlation pattern (Fig 6C and 6D), which corresponds to the functional signature 
of the SCN. Furthermore, our approach is able to identify the two clusters in different 
experimental conditions, ranging from summer conditions (long days, short nights: LD 
16h:8h) to winter conditions (short days, long nights: LD 8h:16h). On the contrary, Evans 
and co-workers identified changes occuring in the organization of the SCN, where the two 
regions similar to our clusters were found, only for very long day conditions (LD 20h:4h; 
Evans et al., 2013).
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Figure 6. (A) The bioluminescence image of one SCN sample. (B) The plotted average partition over 
all the samples. (C) The plotted average signal of the whole system (in black) versus the mean signals 
of the two detected communities (in red and blue) for one SCN sample. (D) The plotted average 
residual signals of the two communities of one SCN sample, once the global signal is subtracted.

As a next step we analyzed the values in the functional signatures and compared those 
between different photoperiods that the animals have been subjected to. With this step 
we reveal the dynamics within the population of neurons in the clusters and between 
the clusters. As the cluster-partition is based on the functional signature, we will now 
investigate the values within and between the clusters, exploring the inner and outer 
level of correlation. This extra information links physiological properties of the SCN to the 
functional signature found in the data. We measure the average residual correlation within 
each cluster detected by our method and we plot the community distribution of the 
measured values (Fig 7A and 7B). We then identify the cumulative probability of the values 
in the clusters and we see that in short photoperiods the average values are much higher 
than in long photoperiods (Fig 7C). This means that the correlation within the clusters is 
significantly higher in short photoperiods than in long photoperiods. When we examine 
the values between the clusters, we see that the average value is lower in short versus long 
photoperiod, meaning that the clusters are less correlated in short photoperiods (Fig 7D). 
These results connect directly to previous results in physiological properties as described 
in (Buijink et al., 2016) and is supported in other papers (Rohling et al., 2006; VanderLeest 
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et al., 2007). Thus, we show that the hidden functional representation reveals the phase 
ordering of oscillating cell populations caused by physiological properties of the SCN.

Figure 7. (A) The resolved functional signature and modules structure of a long photoperiod (LP, 
L16D8) sample. (B) The resolved functional signature and modules structure of a short photoperiod 
(SP, L8D16). (C) Cluster analysis: plotting the cumulative distribution of the dependencies within the 
two detected clusters, comparing the two different photoperiods. The upper graph shows cluster 
1 and the lower graph cluster 2. C represents the measured averaged correlation of a cluster, and 
δ ≡  N-/N+ is defined as the contrast ratio of a cluster, measuring the ratio of negative dependencies 
versus positive dependencies. (D) Inter-cluster analysis: plotting the cumulative distribution of 
the external dependencies between the two detected clusters, comparing the two different 
photoperiods. C represents the measured averaged anti-correlation between clusters, and δ ≡ N+/N- 
is defined as the contrast ratio of a cluster, measuring the ratio of positive dependencies versus 
negative dependencies.

3. Discussion

Our method reveals hidden functional dependencies that are obfuscated by the presence 
of a global mode in the neuronal gene expression, which imparts an overall positive 
correlation. This problem becomes particularly evident when searching for functional 
structure in neuronal systems where the global signal is very strong, making the 
identification of functional modules very challenging. Our method is able to deal with the 
effects of noise and common global trends in the original data in a robust manner. In fact, 
we have shown that the effects of noise and those of the global signal are coupled, as their 
signatures in the spectrum of the correlation matrix depend on each other.
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We found a distinctive left-right functional symmetry with core-shell features in the SCN. 
This structure reveals non-contiguous regions that display strongly synchronized activity, 
despite being at a relatively large distance from each other, similar to Nicosia et al. (2013). 
Remarkably, here we detect this functional symmetry on a micro-scale level where nodes 
are single cells. In this respect, it is important to notice that while the traditional threshold 
method applied to the SCN resolves only a radial gradient of functional connectivity that 
closely mirrors the anatomical proximity of neurons without singling out any modularity 
or boundary, our method systematically reveals two sharp modules, a ventral core and a 
dorsal periphery. These modules feature distinct signatures of functional (as opposed to 
structural) connectivity, namely left-right symmetry, spatial non-contiguity, and almost 
perfect dynamical anti-correlation once the global SCN-wide signal is filtered out. The 
left and right shell regions of the SCN, despite being spatially disconnected into two 
non-contiguous regions, are functionally joined into a single module. These symmetrical 
structures in the SCN raise important questions with respect to the mechanism in the 
system, and can possibly be explored in the future. 

The ability to exploit all the information from the correlation matrix, i.e. both the negative 
and the positive dependencies (correlation and anti-correlation), in order to detect the 
functional modules is very powerful. The strength of our method is to detect communal 
phase differences in neuronal networks by analyzing time series data without using 
any presumptions or threshold definitions. Phase differences and phase adjustments 
in neuronal networks are a key feature for physiological function and can be used to 
define the functional state of a network in health and disease. Our method allows the 
identification of synchronized clusters of cells. Synchronization within a neuronal network 
was suggested to play a major role in the occurrence of epilepsy (Jiruska et al., 2010; Jiruska 
et al., 2013), Parkinson’s disease (Babiloni et al., 2017; Lipski et al., 2017) and schizophrenia 
(Uhlhaas & Singer, 2010; 2015). It is noteworthy that the clusters determined with our 
methods are not influenced by the functional change in E-I balance occurring in different 
photoperiods. This is advantageous since our analysis will also detect functional clusters 
within neuronal networks with altered E/I balance often found in neurological disease 
(e.g. epilepsy, RETT, FragileX, autism) and in the aging brain.

The results presented here show that our method offers great potential for detecting 
hidden functional synchronization and desynchronization in brain networks and are not 
limited to gene expression rhythms. Time series from other modalities, such as electrical 
action potential recordings, EEG recordings and fMRI recordings can also be interpreted 
through this new method. As such, the method may offer diagnostic or pre-diagnostic 
applications in medical health care.
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4. Materials and methods

4.1 Ethics statement
The experiments were performed in accordance to the Dutch law on Animal welfare and 
approved by the Dutch government (DEC 11010).

4.2 Bioluminescence imaging
Experimental methods and results are treated in our accompanying paper (Buijink et al., 
2016). Briefly, male homozygous PER2::LUCIFERASE knock-in mice (Yoo et al., 2004) were 
bred in the animal facility of the Leiden University Medical Center (LUMC). The animals 
were entrained to different photoperiods, being either summer days with 16 hours of 
light and 8 hours of darkness (LD 16h:8h) or to winter days with 8 hours of light and 
16 hours of darkness (LD 8h:16h). The mice were entrained for at least 28 days to their 
respective photoperiod. Animals were sacrificed within two hours before lights off, since 
dissection during that period is found to least affect the SCN rhythm (Yoshikawa et al., 
2005; vanderLeest et al., 2009).

Organotypic cultures of the SCN were prepared as described previously (Buijink et al., 
2016). In brief, mice were truncated and the brain immediately dissected and placed in 
ice cold, low Ca2+ and high Mg2+ artificial cerebrospinal fluid (ACSF), containing (in mM): 
NaCl (116.4), KCl (5.4), NaH2PO4 (1.0), MgSO4 (0.8), CaCl2 (1.0), MgCl2 (4.0), NaHCO3 (23.8), 
D-glucose (16.7) and 5 mg/L gentamicin (Sigma Aldrich) saturated with 95% O2—5% CO2 
(pH 7.4). From each animal, the hypothalamus containing the SCN was cut in 200 μm thick 
slices, using a VT 1000S vibrating microtome (Leica). From two consecutive coronal slices 
(the SCN was isolated and placed on a Millicell membrane insert (PICMORG50, Millipore). 
Membrane inserts were placed in a 35 mm dish, which contained 1.2 mL of Dulbecco’s 
Modified Eagles Medium (D7777, Sigma-Aldrich) supplemented with 10 mM HEPES-
buffer (Sigma-Aldrich), 2% B-27 (Gibco), 5 U/ml penicillin and 5 μg/ml streptomycin (0.1% 
penicillin-streptomycin, Sigma-Aldrich) and 0.2 mM D-luciferine—sodium salt (Promega), 
adjusted to pH 7.2 with NaOH. The dish was sealed with vacuum grease (details) and a 40 
mm coverslip. 

The dish containing the cultured SCN tissue were immediately transferred to a light 
tight and temperature-controlled chamber, kept at 37 ˚C (Life Imaging Services, Reinach, 
Switzerland). The chamber was equipped with an upright microscope (BX51WIF, Olympus) 
with a long-working distance objective (HN10X/22, Olympus) and a cooled CCD camera 
(ORCA – UU-BT-1024, Hamamatsu). The bioluminescence images were obtained from 
two SCN cultures per experiment, with an exposure time of 29 min, resulting in one 
image per hour. Stage and focus position, as well as image acquisition was controlled 
by Image Pro Plus software (MediaCybernetics, Warrendale PA USA; StagePro plug-in, 
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Objective Imaging, Cambridge, UK), driving a motorized stage (XY-shifting table 240, 
Luigs & Neumann Ratingen, Germany) and a focus control (MA-42Z, Märzhaüser, Wetzlar, 
Germany) both connected to an OASIS- 4i Four Axis Controller.

4.3 Data processing
A MATLAB-based (Mathworks, Natick, MA) custom-made program was used to analyze 
the images. An automated detection procedure identified cell-like regions of interest 
(ROIs) consisting of groups of pixels with luminescence intensity above the noise level. 
The time series from the cell-like ROIs were smoothed and the data was resampled to one 
data point per minute to reduce noise and increase the efficiency for subsequent analyses 
(Eilers, 2003). The cell-like ROIs were evaluated on consistency of location throughout 
the recording, and the smoothed signals on sustained PER2::LUC signal and circadian 
rhythmicity. All single cells had a minimum of three consecutive cycles, where the average 
peak interval was in the circadian range (20-28h). Both raw data as well as smoothed data 
were tested using the mathematical method described in this paper, which did not yield 
significantly different results.

4.4 Modularity for correlation matrix
We describe the redefined modularity for correlation matrices (MacMahon & Garlaschelli, 
2015). Let us consider a system with N cells. One can introduce a number of partitions 
of the N cells into non-overlapping sets. The different partitions will be represented by 
an N-dimensional vector σ where the i-th component σi denotes the set in which cell i 
is placed by that particular partition. Now, we introduce the modularity measure Q(σ)
,which indicates the quality of a particular choice of partition σ measured by a high degree 
of inter-community connectivity and a low degree of intra-community connectivity. So-
called modularity optimization algorithms look for the specific partition that maximizes 
the value of (Q(σ)), the objective function. The latter is defined as
 

where 〈Cij〉 is a null model that needs to identify the random properties of empirical 
correlation matrices. 

In this approach, the empirical correlation matrix is first decomposed and then 
reconstructed using only the eigenvalues (and eigenvectors) that are not reproduced by 
the random null model. Once compared with the observed spectrum of the empirical 
correlation matrix, the model will identify the non-random eigenvalues (by elimination). 
The non-random eigenvalues will be later used to generate the new filtered matrix. 
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4.5 Null model for neural system 
Here we proceed to the exact calculation of the null model, that will be used as a random 
benchmark in the modularity. The aim is to calculate the density of eigenvalues ρ(λ) 
ρ(λ) of a theoretical cross-correlation matrix, however, here we look at a special case of 
a random system with common trends. As a crucial difference with respect to a similar 
method introduced in (MacMahon & Garlaschelli, 2015), we do not require the unrealistic 
assumption that the time series are stationary. Therefore, we can allow for any temporal 
modulation (see Fig 8), both in individual time series and in their resulting common 
trend (see section Materials and methods). This is very important, given the strongly 
time-dependent nature of functional brain data in general, and of our time-modulated 
oscillating signals in particular. So, even if the calculation and interpretation of correlation 
matrices usually assumes stationarity, here we can statistically treat correlation matrices 
calculated from nonstationary data as well.

A second and related improvement takes into account the effects of common 
(nonstationary) trends for a system with N cells, and in particular the largest eigenvalue 
λmax. We realize that the effects of noise are inseparably coupled to those of the global 
trend (Laloux et al., 1999), as the presence of the latter modifies and left-shifts the density 
of eigenvalues that we would otherwise observe in presence of noise only. So we do 
not simply superimpose the two effects as in (MacMahon & Garlaschelli, 2015); on the 
contrary, we calculate the modification of the random bulk exactly, given the system’s 
empirical λmax. In particular, we calculate the shifted value of an original Wishart matrix 
(MacMahon & Garlaschelli, 2015) to find

where Q = T/N is the ratio between the number of time steps in the data T and the number 
of cells N. Fig 2 shows both the modified and unmodified spectral densities. It also shows 
that taking the left-shift of the random bulk into account is very important, as it unveils 
informative empirical eigenvalues that would otherwise be classified as consistent with 
the random spectrum and hence discarded.
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Figure 8. Temporal modulation. Different temporal modulation in the data result in an identical 
correlation matrix. A comparison between the empirical data and reorganized versions of the 
empirical data, highlighting the influence of a presence of a global trend on a correlation matrix. We 
show that by construction a Pearson correlation matrix can not differentiate between the dynamics 
of the global trend. Hence, the effects of different (dynamics of ) global modes can be filtered at the 
level of the correlation matrix.

4.6 Community detection algorithm
We employ a popular community-detection technique that take the filtered correlation 
matrix as input and return the best partition of the system into functional modules 
(Blondel et al., 2008; Fortunato, 2010). In this set-up the algorithm is clustering positive 
dependencies within the clusters and expelling negative dependencies outside. The 
optimized partition, which maximizes the modularity Eq 1, is considered the binary 
signature of the system. 

We should stress that while standard community-detection methods are based on null 
models that are justified only for networks, but not for time series, our method builds on 
the appropriate null model described above and calculated exactly in the first step. 

The use of a correct null model allows for a recursive analysis of specific time series in the 
data, i.e. analyze different hierarchical levels of the community structure. Here, unlike in 
the analysis of a network topology, further analyzing the communities for the detection of 
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subclusters is not acting on missing information (ignoring inter-clusters links). We take the 
original time series of each cluster and construct a new correlation matrix, this matrix will 
then be filtered and analyzed with the same approach. In Fig 9 we present an hierarchical 
community structure of an SCN sample as resolved by our method. In this study we only 
explore the first partition, since the data contains a limited number of cells, which makes 
the next partitions unreliable. However, this feature marks a great potential for future data 
sets and studies.

Acknowledgments

We thank Carlo Nicolini for stimulating discussions and for making a code implementing 
our method publicly available. We thank Dr. Gabriella Lundkvist, Swedish Medical 
Nanoscience Center, Department of Neuroscience, Karolinska Institutet, for providing the 
PER2::LUC mice. We thank Dr. Henk-Tjebbe van der Leest and Trudy van Kempen for their 
contribution to the development of the bioluminescence imaging technique and analysis.



Chapter 3

96

References

Abel, J.H., Meeker, K., Granados-Fuentes, D., St John, P.C., Wang, T.J., Bales, B.B., Doyle, F.J., 3rd, 

Herzog, E.D. & Petzold, L.R. (2016) Functional network inference of the suprachiasmatic nucleus. 

Proceedings of the National Academy of Sciences, 113, 4512-4517.

Albus, H., Vansteensel, M.J., Michel, S., Block, G.D. & Meijer, J.H. (2005) A GABAergic mechanism is 

necessary for coupling dissociable ventral and dorsal regional oscillators within the circadian 

clock. Current biology, 15, 886-893.

Almog, A., Besamusca, F., MacMahon, M. & Garlaschelli, D. (2015) Mesoscopic Community Structure 

of Financial Markets Revealed by Price and Sign Fluctuations. PLoS One, 10, e0133679.

Antle, M.C. & Silver, R. (2005) Orchestrating time: arrangements of the brain circadian clock. Trends 

in Neuroscience, 28, 145-151.

Babiloni, C., Del Percio, C., Lizio, R., Noce, G., Cordone, S., Lopez, S., Soricelli, A., Ferri, R., Pascarelli, 

M.T., Nobili, F., Arnaldi, D., Aarsland, D., Orzi, F., Buttinelli, C., Giubilei, F., Onofrj, M., Stocchi, F., 

Stirpe, P., Fuhr, P., Gschwandtner, U., Ransmayr, G., Caravias, G., Garn, H., Sorpresi, F., Pievani, M., 

Frisoni, G.B., D’Antonio, F., De Lena, C., Güntekin, B., Hanoğlu, L., Başar, E., Yener, G., Emek-Savaş, 

D.D., Triggiani, A.I., Franciotti, R., De Pandis, M.F. & Bonanni, L. (2017) Abnormalities of cortical 

neural synchronization mechanisms in patients with dementia due to Alzheimer’s and Lewy 

body diseases: an EEG study. Neurobiology of Aging, 55, 143-158.

Bazzi, M., Jeub, L. G., Arenas, A., Howison, S. D., & Porter, M. A. (2016). Generative benchmark models 

for mesoscale structure in multilayer networks. arXiv preprint, 1608.06196, 20.

Blondel, V.D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. (2008) Fast unfolding of communities in 

large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008, P10008.

Brown, G.D., Yamada, S. & Sejnowski, T.J. (2001) Independent component analysis at the neural 

cocktail party. Trends in Neuroscience, 24, 54-63.

Buijink, M.R., Almog, A., Wit, C.B., Roethler, O., Olde Engberink, A.H., Meijer, J.H., Garlaschelli, D., 

Rohling, J.H. & Michel, S. (2016) Evidence for Weakened Intercellular Coupling in the Mammalian 

Circadian Clock under Long Photoperiod. PLoS One, 11, e0168954.

Bullmore, E. & Sporns, O. (2009) Complex brain networks: graph theoretical analysis of structural and 

functional systems. Nature Reviews Neuroscience, 10, 186-198.

Butler, M.P. & Silver, R. (2009) Basis of Robustness and Resilience in the Suprachiasmatic Nucleus: 

Individual Neurons Form Nodes in Circuits that Cycle Daily. Journal of biological rhythms, 24, 

340-352.

Colizza, V., Flammini, A., Serrano, M.A. & Vespignani, A. (2006) Detecting rich-club ordering in 

complex networks. Nature Physics, 2, 110-115.

Corballis, M.C. (2014) Left Brain, Right Brain: Facts and Fantasies. PLOS Biology, 12, e1001767.



Ch
ap

te
r 3

Uncovering functional signature in neural systems via random matrix theory

97

De Domenico, M., Sasai, S. & Arenas, A. (2016) Mapping Multiplex Hubs in Human Functional Brain 

Networks. Frontiers in Neuroscience, 10.

de la Iglesia, H.O., Cambras, T., Schwartz, W.J. & Diez-Noguera, A. (2004) Forced desynchronization of 

dual circadian oscillators within the rat suprachiasmatic nucleus. Current Biology, 14, 796-800.

DeWoskin, D., Myung, J., Belle, M.D., Piggins, H.D., Takumi, T. & Forger, D.B. (2015) Distinct roles for 

GABA across multiple timescales in mammalian circadian timekeeping. Proceedings of the 

National Academy of Sciences, 112, E3911-3919.

Eilers, P.H.C. (2003) A Perfect Smoother. Analytical Chemistry, 75, 3631-3636.

Evans, J.A., Leise, T.L., Castanon-Cervantes, O. & Davidson, A.J. (2011) Intrinsic regulation of 

spatiotemporal organization within the suprachiasmatic nucleus. PLoS One, 6, e15869.

Evans, J.A., Leise, T.L., Castanon-Cervantes, O. & Davidson, A.J. (2013) Dynamic interactions mediated 

by nonredundant signaling mechanisms couple circadian clock neurons. Neuron, 80, 973-983.

Farajnia, S., van Westering, T.L., Meijer, J.H. & Michel, S. (2014) Seasonal induction of GABAergic 

excitation in the central mammalian clock. Proceedings of the National Academy of Sciences, 111, 9

Foley, N.C., Tong, T.Y., Foley, D., Lesauter, J., Welsh, D.K. & Silver, R. (2011) Characterization of orderly 

spatiotemporal patterns of clock gene activation in mammalian suprachiasmatic nucleus. 

European Journal of Neuroscience, 33, 1851-1865.

Fortunato, S. (2010) Community detection in graphs. Physics Reports, 486, 75-174.

Garrison, K.A., Scheinost, D., Finn, E.S., Shen, X. & Constable, R.T. (2015) The (in)stability of functional 

brain network measures across thresholds. NeuroImage, 118, 651-661.

Jiruska, P., Csicsvari, J., Powell, A.D., Fox, J.E., Chang, W.-C., Vreugdenhil, M., Li, X., Palus, M., Bujan, 

A.F., Dearden, R.W. & Jefferys, J.G.R. (2010) High-Frequency Network Activity, Global Increase in 

Neuronal Activity, and Synchrony Expansion Precede Epileptic Seizures In Vitro. The Journal of 

Neuroscience, 30, 5690-5701.

Jiruska, P., de Curtis, M., Jefferys, J.G.R., Schevon, C.A., Schiff, S.J. & Schindler, K. (2013) Synchronization 

and desynchronization in epilepsy: controversies and hypotheses. The Journal of Physiology, 

591, 787-797.

Laloux, L., Cizeau, P., Bouchaud, J.-P. & Potters, M. (1999) Noise Dressing of Financial Correlation 

Matrices. Physical Review Letters, 83, 1467-1470.

Lipski, W.J., Wozny, T.A., Alhourani, A., Kondylis, E.D., Turner, R.S., Crammond, D.J. & Richardson, R.M. 

(2017) Dynamics of human subthalamic neuron phase-locking to motor and sensory cortical 

oscillations during movement. Journal of Neurophysiology, 118, 1472-1487.

MacMahon, M. & Garlaschelli, D. (2015) Community Detection for Correlation Matrices. Physical 

Review X, 5, 021006.

Meunier, D., Lambiotte, R. & Bullmore, E. (2010) Modular and Hierarchically Modular Organization of 

Brain Networks. Frontiers in Neuroscience, 4.



Chapter 3

98

Michel, S., Marek, R., vanderLeest, H.T., vanSteensel, M.J., Schwartz, W.J., Colwell, C.S. & Meijer, J.H. 

(2013) Mechanism of bilateral communication in the suprachiasmatic nucleus. European 

Journal of Neuroscience, 37, 964-971.

Moore, R.Y. (1996) Chapter 8 Entrainment pathways and the functional organization of the circadian 

system Progress in Brain Research Volume 111, pp. 103-119.

Morin, L.P., Shivers, K.Y., Blanchard, J.H. & Muscat, L. (2006) Complex organization of mouse and rat 

suprachiasmatic nucleus. Neuroscience, 137, 1285-1297.

Myung, J., Hong, S., DeWoskin, D., De Schutter, E., Forger, D.B. & Takumi, T. (2015) GABA-mediated 

repulsive coupling between circadian clock neurons in the SCN encodes seasonal time. 

Proceedings of the National Academy of Sciences, 112, E3920-3929.

Nicosia, V., Valencia, M., Chavez, M., Díaz-Guilera, A. & Latora, V. (2013) Remote Synchronization 

Reveals Network Symmetries and Functional Modules. Physical Review Letters, 110, 174102.

Ohta, H., Yamazaki, S. & McMahon, D.G. (2005) Constant light desynchronizes mammalian clock 

neurons. Nature Neuroscience, 8, 267-269.

Palla, G., Derényi, I., Farkas, I. & Vicsek, T. (2005) Uncovering the overlapping community structure of 

complex networks in nature and society. Nature, 435, 814-818.

Park, H.-J. & Friston, K. (2013) Structural and Functional Brain Networks: From Connections to 

Cognition. Science, 342, 1238411.

Pauls, S., Foley, N.C., Foley, D.K., LeSauter, J., Hastings, M.H., Maywood, E.S. & Silver, R. (2014) 

Differential contributions of intra-cellular and inter-cellular mechanisms to the spatial 

and temporal architecture of the suprachiasmatic nucleus circadian circuitry in wild-type, 

cryptochrome-null and vasoactive intestinal peptide receptor 2-null mutant mice. European 

Journal of Neuroscience, 40, 2528-2540.

Power, Jonathan D., Cohen, Alexander L., Nelson, Steven M., Wig, Gagan S., Barnes, Kelly A., Church, 

Jessica  A., Vogel, Alecia  C., Laumann, Timothy  O., Miezin, Fran  M., Schlaggar, Bradley  L. & 

Petersen, Steven E. (2011) Functional Network Organization of the Human Brain. Neuron, 72, 

665-678.

Rohling, J., Meijer, J.H., VanderLeest, H.T. & Admiraal, J. (2006) Phase differences between SCN 

neurons and their role in photoperiodic encoding; a simulation of ensemble patterns using 

recorded single unit electrical activity patterns. Journal of Physiology-Paris, 100, 261-270.

Rohling, J.H.T., vanderLeest, H.T., Michel, S., Vansteensel, M.J. & Meijer, J.H. (2011) Phase Resetting 

of the Mammalian Circadian Clock Relies on a Rapid Shift of a Small Population of Pacemaker 

Neurons. PLoS One, 6, e25437.

Rubinov, M. & Sporns, O. (2011) Weight-conserving characterization of complex functional brain 

networks. NeuroImage, 56, 2068-2079.

Seidman, S.B. (1983) Network structure and minimum degree. Social Networks, 5, 269-287.



Ch
ap

te
r 3

Uncovering functional signature in neural systems via random matrix theory

99

Stone, J.V. (2002) Independent component analysis: an introduction. Trends in Cognitive Sciences, 6, 

59-64.

Traag, V.A. & Bruggeman, J. (2009) Community detection in networks with positive and negative 

links. Physical Review E, 80, 036115.

Uhlhaas, P.J. & Singer, W. (2010) Abnormal neural oscillations and synchrony in schizophrenia. Nature 

Reviews Neuroscience, 11, 100-113.

Uhlhaas, P.J. & Singer, W. (2015) Oscillations and Neuronal Dynamics in Schizophrenia: The Search for 

Basic Symptoms and Translational Opportunities. Biological Psychiatry, 77, 1001-1009.

VanderLeest, H.T., Houben, T., Michel, S., Deboer, T., Albus, H., Vansteensel, M.J., Block, G.D. & Meijer, 

J.H. (2007) Seasonal encoding by the circadian pacemaker of the SCN. Current Biology, 17, 468-

473.

vanderLeest, H.T., Vansteensel, M.J., Duindam, H., Michel, S. & Meijer, J.H. (2009) phase of the 

electrical activity rhythm in the SCN in vitro not influenced by preparation time. Chronobiology 

International, 26, 1075-1089.

Yoo, S.-H., Yamazaki, S., Lowrey, P.L., Shimomura, K., Ko, C.H., Buhr, E.D., Siepka, S.M., Hong, H.-K., Oh, 

W.J., Yoo, O.J., Menaker, M. & Takahashi, J.S. (2004) PERIOD2::LUCIFERASE real-time reporting 

of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. 

Proceedings of the National Academy of Sciences, 101, 5339-5346.

Yoshikawa, T., Yamazaki, S. & Menaker, M. (2005) Effects of preparation time on phase of cultured 

tissues reveal complexity of circadian organization. Journal of Biological Rhythms, 20, 500-512.




