Modeling vascular disease using self-assembling human induced pluripotent stem cell derivatives in 3D vessels-on-chip Nahon. D.M. #### Citation Nahon, D. M. (2024, June 26). *Modeling vascular disease using self-assembling human induced pluripotent stem cell derivatives in 3D vessels-on-chip*. Retrieved from https://hdl.handle.net/1887/3765789 Version: Publisher's Version Licence agreement concerning inclusion of doctoral License: thesis in the Institutional Repository of the University of Leiden Downloaded from: https://hdl.handle.net/1887/3765789 **Note:** To cite this publication please use the final published version (if applicable). # Modeling vascular disease using self-assembling human induced pluripotent stem cell derivatives in 3D vessels-on-chip Dennis M. Nahon #### Colophone Modeling vascular disease using self-assembling human induced pluripotent stem cell derivatives in 3D vessels-on-chip Dennis Martijn Nahon Thesis Leiden University Medical Center ISBN: 978-94-6496-141-6 Printing: Gildeprint, www.gildeprint.nl Cover: immunofluorescence microscopy image taken by Dennis M. Nahon, adapted and extended using Stable Diffusion by Jeroen M. Stein. Copyright: © Dennis M. Nahon, Zoetermeer, the Netherlands All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without permission of the author, or, when applicable, of the publishers of the scientific papers. The research described in this thesis was conducted at the department of Anatomy & Embryology of the Leiden University Medical Center, the Netherlands. It was supported by the following grants: The Netherlands Organ-on-Chip Initiative (NOCI), an NWO Gravitation project funded by the Ministery of Education, Culture and Science of the government of the Netherlands (024.003.001) and The Novo Nordisk Foundation Center for Stem Cell Medicine supported by Novo Nordisk Foundation grants (NNF21CC0073729). Publication of this thesis was financially supported by the Dutch Heart Foundation and Stichting Proefdiervrij. ### Modeling vascular disease using self-assembling human induced pluripotent stem cell derivatives in 3D vessels-on-chip #### Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Leiden, op gezag van rector magnificus prof. dr. ir. H. Bijl, volgens besluit van het college voor promoties te verdedigen op woensdag 26 juni 2024 klokke 15:00 uur door Dennis Martijn Nahon geboren te Voorburg in 1993 **Promotor** Prof. dr. C.L. Mummery **Co-promotor** Dr. V.V. Orlova **Promotiecommissie** Prof. dr. M.J.T.H. Goumans Prof. dr. A.M.J.M. van den Maagdenberg Prof. dr. A.J. van Zonneveld Prof. dr. P.L. Hordijk (VU Medical Center Amsterdam) Prof. dr. A.D. van der Meer (University of Twente) ### Index | Chapter 1 | General introduction | 8 | |-----------|--|-----| | Chapter 2 | Taking microphysiological systems to the next level: Why quantification of physiological features is essential | 20 | | Chapter 3 | Genetic repair of human induced pluripotent cell line from patient with Dutch-type cerebral amyloid angiopathy | 86 | | Chapter 4 | Characterization of endothelial cell functionality in RVCL-S using patient-derived hiPSCs | 102 | | Chapter 5 | Vascular defects associated with hereditary hemorrhagic
telangiectasia revealed in patient-derived isogenic hiPSCs in
3D vessels on chip | 128 | | Chapter 6 | Self-assembling vessel-on-chip model with hiPSC-derived astrocytes | 158 | | Chapter 7 | Discussion and future perspectives | 194 | | Appendix | | | | | Summary | 208 | | | Nederlandse samenvatting | 210 | | | Curriculum vitae | 214 | | | List of publications | 216 | | | Dankwoord | 218 |