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assessment of apical endpoints in experimental animals (Hayes 
and Kruger, 2014). However, ethical and legislative constraints 
have motivated the development and application of animal-free 
methods, in particular in vitro systems, in regulatory chemical 

1  Introduction

Safety testing of chemical compounds has historically been fo-
cusing on hazard identification and as such largely relied on the 

Abstract
Next generation risk assessment of chemicals revolves around the use of mechanistic information without 
animal experimentation. In this regard, toxicogenomics has proven to be a useful tool to elucidate the 
mechanisms underlying the adverse effects of xenobiotics. In the present study, two widely used human 
hepatocyte culture systems, namely primary human hepatocytes (PHH) and human hepatoma HepaRG 
cells, were exposed to liver toxicants known to induce liver cholestasis, steatosis, or necrosis. Benchmark 
concentration (BMC) response modelling was applied to transcriptomics gene co-expression networks 
(modules) to derive BMCs and to gain mechanistic insight into the hepatotoxic effects. BMCs derived 
by concentration-response modelling of gene co-expression modules recapitulated concentration-
response modelling of individual genes. Although PHH and HepaRG cells showed overlap in the genes 
and modules deregulated by the liver toxicants, PHH demonstrated a higher responsiveness, based on 
the lower BMCs of co-regulated gene modules. Such BMCs can be used as transcriptomics points of 
departure (tPOD) for assessing module-associated cellular (stress) pathways/processes. This approach 
identified clear tPODs of around maximum systemic concentration (Cmax) levels for the tested drugs, 
while for cosmetics ingredients the BMCs were 10-100-fold higher than the estimated plasma concen-
trations. This approach could serve next generation risk assessment practice to identify early responsive 
modules at low BMCs that could be linked to key events in liver adverse outcome pathways. In turn, this 
can assist in delineating potential hazards of new test chemicals using in vitro systems and be used in a 
risk assessment where BMCs are paired with chemical exposure assessment.
 
Plain language summary
Risk assessment of chemicals has traditionally been focused on animal experiments. In contrast, next 
generation risk assessment uses biological information obtained from experiments in cell culture models 
without animals to identify potential hazards. Since the liver is the main target organ of toxicity, many liver 
cell models have been developed and applied for hazard assessment. In this study, two widely used 
human liver cell models were exposed to liver toxic chemicals. Biological changes in gene expression 
were measured in a concentration range to identify the concentration at which a biological response 
started to be perturbed using a mathematical modelling approach. Genes belonging to the same bio-
logical process were linked based on co-expression to derive an average concentration for this process. 
This animal-free approach could be applied to risk assessment by relating the biological response con-
centrations to the expected human exposure to identify the potential hazard of test chemicals.
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tion from TXG data is not yet standard practice in regulatory risk 
assessment. Presently, TXG approaches predominantly focus on 
analysis of differentially expressed genes (DEGs) or enrichment 
analysis tools using gene annotations (Barel and Herwig, 2018). 
These methods depend on ontologies with a high degree of redun-
dancy, which can result in a bias towards well-annotated genes and 
result in a flawed interpretation of mechanisms of toxicity applied 
to specific test systems (Callegaro et al., 2021; Vahle et al., 2018). 
Moreover, there is currently no consensus regarding the selection 
of individual genes for the prediction of adverse effects (Farmahin 
et al., 2017). Instead, gene co-expression analysis can be used to 
identify sets of genes expressed downstream of a (stress-respon-
sive) common control mechanism, such as transcription factors. 
In the context of NGRA, analysis of co-expressed gene sets may 
provide mechanistic insights into observed adverse effects follow-
ing exposure to toxicants or specific patterns of drug toxicity (Cal-
legaro et al., 2021; Podtelezhnikov et al., 2020; Sutherland et al., 
2018; Yin et al., 2021) and possibly serve as a solid basis for PoD 
derivation. Importantly, reproducibility of gene expression is high-
er when data are compared at the pathway level rather than at the 
gene level (Fan et al., 2010; Guo et al., 2006; Wang et al., 2014), 
thereby rendering co-expression networks better suited for inclu-
sion in risk assessment (Sutherland et al., 2016). Several methods 
have been developed to identify and quantify co-expression net-
works, of which weighted gene co-expression analysis (WGCNA) 
is often applied and used for the development of the TXG-MAPr 
tools for mechanistic analysis of TXG data (Callegaro et al., 2021). 
The module eigengene score (EGS) provides a quantitative meas-
ure of the activity of a gene co-expression network (module) based 
on the log2 fold change (log2FC) expression of the module genes 
as described previously (Sutherland et al., 2016, 2018).

The aim of the present study was to systematically compare the 
temporal transcriptional responses in collagen sandwich cultures 
of PHH and HepaRG cells cultured on collagen in a conventional 
monolayer. These liver-based in vitro systems were exposed to 
chemical substances known and/or suspected to induce selected 
liver adverse effects (i.e., steatosis, cholestasis, or necrosis). 
Benchmark concentration (BMC) modelling was applied to in-
dividual genes as well as gene co-expression networks from the 
PHH TXG-MAPr tool to derive in vitro transcriptomics BMCs 
and assess their suitability to be used as tPOD in chemical risk 
assessment.

2  Materials and methods

Cell cultures 
PHH (10-donor, LIVERPOOL cryoplateable hepatocytes (5 male  
and 5 female, age 0 to 70 years); BioIVT, #X008001-P, LOT: KCB) 
were thawed in 25 mL Sekisui XenoTech OptiThaw Hepatocyte 

safety testing. Major advances have been made in next genera-
tion risk assessment (NGRA) using (non-animal) new approach 
methodologies (NAMs) that allow testing at the cellular and even 
molecular level, thereby facilitating a better understanding of the 
mechanisms leading to adverse effects, including the conceptu-
alization of adverse outcome pathways (AOP) (Choudhuri et al., 
2018). Such mechanistic information enables a more accurate 
prediction of biological responses and, in combination with ex-
posure assessment, the risks associated with a defined exposure 
to a certain chemical compound. 

The liver is a primary target organ for toxicity due to its pivotal 
role in the metabolism of xenobiotics (Gu and Manautou, 2012). 
It acts as a central regulator of lipid homeostasis, which is closely 
controlled by complex interactions between hormones, nuclear re-
ceptors, and transcription factors (Bechmann et al., 2012; Nguyen 
et al., 2008). Thus, drug- or chemical-induced injury to the liver 
may involve multiple and complex mechanisms (Jaeschke et al., 
2012; Russmann et al., 2009; Vinken et al., 2013a). Changes in 
parameters related to hepatic steatosis (i.e., accumulation of fatty 
acids) (Ipsen et al., 2018) and cholestasis (i.e., accumulation of 
bile acids) (Chatterjee and Annaert, 2018) are two of the most fre-
quent toxic manifestations seen in oral repeated dose toxicity data 
included in safety evaluation reports of cosmetic ingredients and 
in drug-induced liver injury cases (Gustafson et al., 2020; Kralj et 
al., 2021; Vinken et al., 2012). Additionally, hepatocellular injury/
death may be one of the most relevant cellular key events (KEs) in 
various liver AOPs that can be investigated using in vitro test sys-
tems for the prediction of hepatotoxicity (Arnesdotter et al., 2021). 
Currently, cultures of primary human hepatocytes (PHH) are con-
sidered the gold standard in vitro test system, but also the human 
hepatoma HepaRG cell line has been explored extensively for 
chemical safety testing since it retains a relatively high metabolic 
capacity (Andersson et al., 2012). However, despite many advanc-
es in cell culture technologies in recent years, replicating complex 
physiological processes and organ-specific functions in vitro (i.e., 
without the use of intact animals) is still a challenging task. 

In the context of non-animal NGRA, toxicogenomics (TXG) 
plays a pivotal role in revolutionizing the approach to evaluat-
ing chemical safety without relying on traditional animal testing 
methods. TXG allows comprehensive analysis of changes in cells, 
tissues, and organisms at the molecular level and is therefore a 
promising tool in mechanism-based risk assessment (Liu, Z. et al., 
2019). TXG can be used to detect a putative mechanism of action 
(MoA) (Berggren et al., 2017), substantiate disease mechanisms 
(AbdulHameed et al., 2019), or form the basis for defining or 
validating key events (KEs) in an AOP (Arnesdotter et al., 2022; 
Vinken, 2019). There is a growing interest to apply TXG to de-
termine a transcriptomic point of departure (tPOD) for use in hu-
man health risk assessment (Farmahin et al., 2017; Friedman et al., 
2020; Thomas et al., 2013a, 2019). However, to date, tPOD deriva-

Abbreviations: AOP, adverse outcome pathway; ATF4/6, activating transcription factor 4/6; APAP, acetaminophen; BHT, butylated hydroxytoluene; BMC, benchmark concent-
ration; BMD, benchmark dose; Cmax, maximum concentration; CPM, counts per million, CRGs, concentration responsive genes; CSA, cyclosporine A; CYP, cytochrome P450; 
DEGs, differentially expressed genes; EGS, eigengene score; ER, endoplasmic reticulum; FC, fold change; KE, key event; log2FC, log2 fold change; MIE, molecular initiating 
event; MoA, mechanism of action; MoS, margin of safety; NAM, new approach methodology; NAPQI, n-acetyl-p-benzoquinone imine; NGRA, next generation risk assessment; 
NPT, 2,7-naphthalenediol; NRF2, nuclear factor erythroid 2-related factor 2; ORA, overrepresentation analysis; PHH, primary human hepatocytes; TCS, triclosan; tPOD, transcrip-
tomic point of departure; TXG, toxicogenomics; UPR, unfolded protein response; VPA, valproic acid; WTT, William’s trend test
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media, including the chemical compounds. Medium of PHH ex-
posures was collected at every refreshment step and just before 
sample collection for RNA sequencing to determine cytotoxicity 
using the LDH assay. Briefly, 50 µL medium was collected in 
v-bottom plates, centrifuged for 5 min at 1000 rpm and stored at 
4°C until measurement of LDH activity according to the manu-
facturer’s protocol (Roche, LDH Cytotoxicity Detection Kit; 
11644793001). For repeated exposures the cumulative cytotoxic-
ity was calculated since medium replacement would wash away 
any released LDH. Stock solutions of butylated hydroxytoluene 
(BHT) (Sigma-Aldrich, #B1378), 2,7-naphthalediol (NPT) (Sig-
ma-Aldrich, #8208510100), cyclosporine A (CSA) (Sigma-Al-
drich, #C30024), and triclosan (TCS) (Sigma-Aldrich, #93453) 
were prepared in dimethyl sulfoxide (DMSO) (Sigma-Aldrich, 
#D8418) and stored at 4°C or -20°C. Fresh stock solutions of val-
proic acid (VPA) (Sigma-Aldrich, #P4543) and acetaminophen 
(APAP) (Sigma-Aldrich, #A3035) were prepared freshly in cell 
culture medium. The final solutions were prepared ex tempore by 
diluting the stock solutions with cell culture medium. During ex-
posure to TCS, BHT, and NPT, plates were covered with Quick-
Seal Gas Perm™ film (IST Scientific, #124-080SS) to prevent 
evaporation. All exposures were repeated three times on separate 
days, which serve as three independent biological replicates. 

RNA sample preparation and sequencing
Following exposure, cell cultures were washed once with DPBS 
without calcium and magnesium chloride (Sigma-Aldrich, 
#D8537). Thereafter, cells were lysed with 50 µL lysis buffer 
(1:1 DPBS and 2x TempO-Seq lysis buffer, BioSpyder, mixed 
ex tempore) for 15 min at room temperature and stored at −80°C. 
Lysates were thawed and transferred to a 96-well conical bottom 
plate (#249662, Thermo Fischer), and plates were sealed with 
an aluminum silver seal (Greiner Bio-One, #676090). Lysates 
stored at −80°C were analyzed at BioClavis (Glasgow, UK) using 
TempO-Seq targeted RNA sequencing technology with the hu-
man whole-transcriptome probeset version 2.0 according to their 
standard protocol (Yeakley et al., 2017). Raw sequencing data, 
metadata, and processed data is deposited in the EMBL-EBI Bio-
Studies genomics database ArrayExpress (E-MTAB-12668 and 
E-MTAB-12677). 

Data analysis
A count table of the RNA sequencing reads was provided by Bio-
Clavis containing 1152 samples (2 cell types, 6 compounds, 7 con-
centrations + 1 control, 4 time points, 3 replicates) with 22,537 
measured probes. Samples with fewer than 500,000 counts were 
removed as these were outliers from the average of 3,000,000 
reads per sample resulting in 1146 samples. Samples were nor-
malized using the DESeq2 package (version 1.36.0) in R (version 
4.1.0 or newer) by applying a counts per million (CPM) normali-
zation (Love et al., 2014; R Core Team, 20222). Low expressed 
probes (5247 probes in total with CPM < 1 in all treatment condi-

Kit (Tebu-bio, #K8000) and centrifuged at 100 × g for 10 min.  
Cell pellet was resuspended in INVITROGRO CP medium 
(BioIVT, #Z99029) supplemented with TORPEDO antibiot-
ics mix (BioIVT, #Z990007) and seeded at a density of 70,000 
cells per well in BioCoat collagen-I-coated 96-well plates (Corn-
ing, #354407). After 6 h, PHH were washed with Dulbecco’s 
phosphate-buffered saline (DPBS) to remove dead cells. PHH 
were overlaid with 100 µL 0.25 mg/mL cooled Matrigel™ (BD 
Biosciences, #354230) in INVITROGRO HI medium (BioIVT, 
#Z99009) supplemented with TORPEDO antibiotics mix 
(BioIVT, #Z990007) to create a collagen-Matrigel™ sandwich. 
While we used Matrigel to delay PHH dedifferentiation and al-
low comparison with previous work, we intend to attempt its re-
placement with synthetic scaffold alternatives in future research 
projects (Aisenbrey and Murphy, 2020). The next day, 24 h after 
plating, PHH were ready to use for chemical exposure.

Cryopreserved differentiated HepaRG® cells (Biopredic Inter-
national, #HPR116-TA08) were thawed and seeded (day 1) ac-
cording to the manufacturer’s protocol. In short, 72,000 viable 
cells per well were seeded in collagen-coated (Corning #354236, 
0.1 mg/mL in 0.02N acetic acid) 96-well plates (Falcon® #353072) 
in 100 µL basal hepatic cell medium (Biopredic International, 
#32551) supplemented with HepaRG® thawing/plating/general 
purpose medium (Biopredic International, #ADD670). On day 2 
of culture, the medium was changed to 100 µL basal hepatic cell 
medium with HepaRG® maintenance/metabolism medium (Bio-
predic International, #ADD620) and subsequently renewed on 
days 4 and 7. A total of six different batches of HepaRG® cells 
were used, three batches for drugs and three for cosmetic ingre-
dients (HPR116-295; HPR116-294; HPR116-250; HPR116-301; 
HPR116-284; HPR116-291; Biopredic International).

Chemicals and exposure
PHH were exposed to compounds in 100 µL INVITROGRO HI 
medium (BioIVT, #Z99009) supplemented with TORPEDO an-
tibiotics mix (BioIVT, #Z990007) 24 h after plating. On day 8  
in culture, HepaRG® cells were exposed to the compounds in  
100 µL basal hepatic cell medium with serum-free HepaRG® 
induction medium (Biopredic International, #ADD650). Com-
pound information and exposure concentrations were based on a 
range around the (estimated) Cmax (defined as maximum chemi-
cal concentration in the blood after administration) of the chemi-
cals (Tab. S11). For the cosmetics ingredients, the estimated 
Cmax values were calculated based on the systemic absorption 
described in reports issued by the Scientific Committee on Con-
sumer Safety (SCCS) and assuming 100% bioavailability without 
any metabolism or clearance (SCCS, 2009, 2010, 2021a). These 
assumptions are conservative by providing a maximum estimate 
of the systemic concentration when Cmax values are not available. 
Cell lysates were collected at four different time points after ex-
posure (i.e., 8, 24, 48 or 72 h) (Fig. 1a). Cell cultures exposed 
for 48 and 72 h were subjected to daily renewal of cell culture 

1 doi:10.14573/altex.2309201s1
2 https://www.R-project.org/ 
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with a lower BMDU/BMDL-ratio is considered more precise. A 
one-sided one-sample Wilcoxon signed rank test (R-package ex-
actRankTests; p-value < 0.05) was used to test if the median of 
the BMDU/BMDL-ratios of all gene log2 CPM within a module 
was significantly higher than the BMDU/BMDL-ratio of the mod-
ule EGS3. Modules with fewer than 5 genes were excluded from 
the analysis due to small sizes and lower biological relevance. To 
check the hypothesis that the BMC confidence intervals of the 
genes had a good overlap with the BMC confidence interval of the 
module EGS, the base two logarithm of the ratio of overlap of all 
gene BMC confidence intervals was calculated with respect to the 
BMC confidence interval of the module, as described previously 
(Zoupa et al., 2020). When the base two logarithm was taken to the 
overlap ratio, a ratio of less than zero signaled a good overlap of 
BMC confidence intervals. It was tested if the median of the base 
two logarithm of the overlap ratios of the gene BMC confidence 
intervals with respect to the module BMC confidence interval was 
significantly lower than zero with a one-sided one-sample Wilcox-
on signed rank test (R-package exactRankTests; p-value < 0.05). 
Overrepresentation analysis (ORA) was done on the concentration 
responsive genes (WTT p-adjust < 0.05) using the enrichR pack-
age (version 3.0) in R for the GO-terms KEGG_2021_Human and 
WikiPathway_2021_Human (Kuleshov et al., 2016). All manu-
script figures were created with R and plotting packages including 
ggplot2, ggVennDiagram, and pheatmap, unless indicated differ-
ently. Gene log2FC and BMC modelling data were also deposited 
in the EMBL-EBI BioStudies genomics database ArrayExpress 
(E-MTAB-12668 and E-MTAB-12677).

3  Results

3.1  Transcriptomics analysis of PHH and HepaRG cells  
exposed to liver toxicants 
For the purpose of mechanism-based risk assessment, we investi-
gated temporal concentration-dependent responses in cultures of 
PHH and HepaRG cells exposed to three drugs, acetaminophen 
(APAP), cyclosporine A (CSA), and valproic acid (VPA), that 
have a high liability for drug-induced liver injury but result in dif-
ferent adverse outcomes (Fig. 1a). To facilitate the identification 
of early KEs and visualization of their development over time, 
samples were collected at 4 time points, namely 8 and 24 hours 
(single exposure), and 48 and 72 hours (daily repeated exposure). 
Concentrations in a broad concentration range were selected 
based on the reported total Cmax of each drug (Tab. S11). As 
these are approved drugs currently on the market, they were not 
expected to induce overt adverse effects after single exposures 
around Cmax. Therefore, the selected maximum concentrations 
were set at approximately 30x Cmax, whilst the minimum tested 
concentrations were approximately 0.1x Cmax. No significant cy-
totoxicity was observed in PHH for the tested drugs, although at 
the highest concentrations of CSA and VPA there was a trend of 
minimal (less than 10%) cytotoxicity (Fig. S14).

tions) were removed from the raw expression matrix according to 
the relevance filter of the RNA-seq R-ODAF pipeline (Verheijen 
et al., 2022). Another 64 probes that showed the highest replicate 
variability were removed, which was 0.283% of the total probeset 
and equal to the percentage of PCA variance that showed high-
est replicate contribution. Next, multiple probes for the same gene 
were combined by taking the sum of the probe counts resulting 
in relevant count levels of 15,156 unique genes. CPM normali-
zation was applied again by dividing raw counts by the sizefac-
tors of each sample in the filtered raw expression matrix (1146 
samples × 15,156 genes) using the DESeq2 package, followed by 
differential gene expression analysis. For each chemical and time 
point, a model was built between the treatment concentrations and 
the time-matched vehicle control. Significant gene expression was 
considered for p-adjust < 0.05 after Benjamini-Hochberg multi-
ple testing correction. Log2FC threshold was not applied to allow 
for consideration of all significant fold changes (even small) and 
comparison of changes in gene expression and module activity. 
Modules’ EGS were calculated using the PHH TXG-MAPr tool as 
described previously (Callegaro et al., 2021). Abs EGS > 2 were 
considered significant (Sutherland et al., 2018), although for some 
figures abs EGS > 5 were used as a cutoff to focus on only the 
highly perturbed modules. To calculate the module EGS per treat-
ment replicate, the log2FC was determined per replicate, followed 
by the calculation of the module EGS using the replicate-specific 
log2FC. BMDExpress (version 2.3) was used for benchmark dose 
(BMD) response modelling, also called benchmark concentration 
(BMC) modelling for in vitro experiments, on gene and module 
levels (Phillips et al., 2019). For gene level BMC modelling, the 
log2 normalized counts per replicate and treatment condition 
were used. The module EGS per replicate was used for module-
level BMC modelling of each treatment condition. First, William’s 
trend test (WTT) was performed using 10,000 permutations and 
Benjamini-Hochberg multiple testing correction to determine the 
significance of the concentration response for all chemicals and 
time points. Thereafter, parametric BMC analysis was performed 
using continuous models (Hill, Power, Linear, Poly2, Exp2, Exp3, 
Exp4, Exp5) at 0.95 confidence level and benchmark response 
(BMR) factor of 1 SD for genes (i.e., recommended by the EPA 
for continuous data) and 1 or 2 SD for modules. The reason for 
deriving module BMCs at two different BMR factors is to com-
pare with gene BMC (BMR factor of 1 SD) and to derive a BMC 
closer to a significant biological response at a module abs EGS 
> 2. Concentration-response models were considered significant 
with a p-adjust < 0.05 of the WTT. The best BMC model was 
selected based on the nested chi-square test, while flagged Hill 
models were excluded and replaced by the next best model. The 
precision of the BMC calculation of the module EGS and the pre-
cision of the BMC calculation of single genes within the module 
was quantified with the BMDU/BMDL-ratio (also BMD or BMC 
precision factor), where the BMDU is the benchmark dose up-
per bound and BMDL the benchmark dose lower bound of the 
BMC confidence interval (More et al., 2022). A BMC calculation 

3 exactRankTests: Exact Distributions for Rank and Permutation Tests. https://CRAN.R-project.org/package=exactRankTests
4 doi:10.14573/altex.2309201s8

https://CRAN.R-project.org/package=exactRankTests
https://doi.org/10.14573/altex.2309201s8
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Fig. 1: Experimental 
setup of 
transcriptomic 
analysis following 
chemical exposures 
in PHH and HepaRG 
cells
(a) Experimental setup 
of the study describing 
different steps of 
sample treatment, data 
analysis, concentration-
response modelling, 
and comparison 
of benchmark 
concentrations (BMCs) 
with (estimated) 
plasma concentrations 
(Cmax) to evaluate 
the margin of safety 
(MoS). Created with 
BioRender.com.  
(b) Differential gene 
expression analysis 
revealed a clear 
concentration and time 
dependency for all 
three drugs in PHH  
and HepaRG cells. 
Number of genes (c)  
and modules (d) 
showing a significant 
concentration response 
using William’s trend 
test (WTT). Differential 
gene expression 
and concentration 
responses were 
considered statistically 
significant after 
Benjamini-Hochberg 
multiple testing 
correction (p-adjust  
< 0.05). 
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The main cellular responses to treatment with liver toxicants 
could be clearly identified with the applied gene co-expression 
network approach, including well-known stress response ac-
tivation by the three drugs in both PHH and HepaRG cells. As 
expected, APAP activated several stress-responsive modules in 
PHH and HepaRG, including module PHH:144 containing sev-
eral nuclear factor erythroid 2-related factor 2 (NRF2) target 
genes, which is involved in an oxidative stress response (Fig. 2, 
cluster 3). Additionally, fatty acid metabolism modules (PHH:31 
and PHH:340) were induced by APAP (Fig. 2, cluster 8). CSA 
induced several modules regulated by activating transcription 
factor 4 (ATF4; PHH:15, PHH:295 and PHH:321) and activat-
ing transcription factor 6 (ATF6; PHH:13), which are transcrip-
tion factors involved in endoplasmic reticulum (ER) stress (Fig. 
2, cluster 4). Other stress-responsive modules activated by CSA 
included other ER stress-related (PHH:62 and PHH:280) and a 
proteasome (PHH:76) module (Fig. 2, cluster 4), while the NRF2 
module (PHH:144) and heat shock (HSF1) modules (PHH95 
and PHH:131) were mainly activated at later time points and 
showed stronger responses in HepaRG cells compared to PHH 
(Fig. 2, cluster 3). Not surprisingly, modules annotated for fatty 
acid metabolism (PHH:31 and PHH:340) were strongly acti-
vated by VPA, as well as modules involved in xenobiotic me-
tabolism (PHH:134), cholesterol metabolism (PHH:16), transport 
(PHH:78), and NFκB signaling amongst (PHH:70) other unanno-
tated modules (Fig. 2, cluster 8). All three drugs repressed the ac-
tivity of a cluster of modules involved in immune responses and 
metabolism (Fig. 2, cluster 2), which is often seen during cellular 
stress (Kültz, 2005). Generally, gene network modulation was 
concordant between PHH and HepaRG, with the latter showing 
activation at higher concentration (see cluster 3 and 8 for APAP 
responses and cluster 4 for CSA responses). Interestingly, while 
for VPA module activation was largely concordant between the 
two test systems, particular modules in clusters 9 and 10 demon-
strated specific modulation by VPA mainly in HepaRG cells. 

3.3  Mechanism-based hazard assessment of liver 
toxicants using concentration-response modelling
To evaluate which genes and modules respond early to liver toxi-
cant treatment and are thus most relevant to consider for risk as-
sessment purposes, BMC modelling was performed using BMD-
Express (Tab. S47, S58). Modules with highly significant concen-
tration responses (WTT p-adjust < 0.01) were sorted by the lowest 
BMC using the response in PHH as the gold standard to visualize 
modules that were perturbed at the lowest compound concentra-
tion and may as such represent the most sensitive biological effects 
(Fig. 3a, Tab. S69). The top five of the most important modules, in 
particular modules with low BMC and clear biological annotation, 
were selected per chemical (Fig. 3a, black and red arrows). BMC 
model fitting of the main stress response modules for APAP, CSA, 

Differential gene expression analysis of the targeted RNA se-
quencing data (TempO-Seq) revealed a clear concentration and 
time dependency for all drugs (Fig. 1b, Tab. S25). In general, 
significant alteration in gene expression was seen at lower con-
centrations in PHH compared to HepaRG cells, which may be 
indicative of their higher responsiveness and/or sensitivity to 
toxicants. Concentration responses of individual genes were in-
vestigated using WTT. A large number of genes showed a signif-
icant (p-adjust < 0.05) concentration response at different time 
points (Fig. 1c), which was comparable to the number of DEGs 
at the highest tested concentration. Overall, there was good 
overlap in DEGs and concentration responsive genes (CRGs) in 
PHH and HepaRG cells, mainly at later time points. Yet, con-
siderable differences were observed in unique DEGs and CRGs 
for both test systems following exposure to APAP, CSA, and 
VPA (Fig. S24). Notably, most genes related to cytochrome P450 
(CYP) iso-enzymes show different temporal expression pat-
terns in vehicle-treated PHH and HepaRG cells, with typically 
higher expression levels in PHH and CYP expression declining 
for most highly abundant CYP isoforms in HepaRG cells (Fig. 
S3a4). This indicates different xenobiotic metabolic capacity 
between the two liver test systems, which could influence their 
temporal response. 

3.2  Gene perturbation in PHH and HepaRG cells exposed 
to liver toxicants by gene co-expression networks
Mechanistic interpretation of transcriptomic data and comparison 
of transcriptional changes between test systems is complicated 
and time-consuming when a large number of genes exhibit sig-
nificant differential expression or concentration responses to con-
trols, while gene set enrichment of DEGs is biased towards known 
biology (Barel and Herwig, 2018). Rather, the complexity of tran-
scriptomic data can be reduced by analyzing gene co-expressing 
network (module) activation (Sutherland et al., 2018). Therefore, 
we leveraged the recently published PHH TXG-MAPr tool for 
mechanism-based risk assessment of the transcriptomic data (Cal-
legaro et al., 2021). Gene log2FC of all treatment conditions was 
used to calculate module EGS, which is a quantitative value for 
the activation or repression of the gene co-expression network 
(Tab. S36). We used the module annotations and enrichments pro-
vided in the TXG-MAPr tool to gain mechanistic understanding 
of the module perturbations by the drugs. Using the WTT, numer-
ous modules exhibited a significant concentration response (Fig. 
1d), which followed a similar pattern as the number of concentra-
tion-responsive genes. As expected, the number of modules was 
much lower due to the clustering of co-expressed genes. In total, 
192 concentration-responsive modules were strongly deregulated 
(p-adjust < 0.01, absolute EGS > 5) by at least one of the treat-
ment conditions (Fig. 2). These modules were clustered in 10 larg-
er groups that reflected treatment-specific responses. 

5 doi:10.14573/altex.2309201s2
6 doi:10.14573/altex.2309201s3
7 doi:10.14573/altex.2309201s4
8 doi:10.14573/altex.2309201s5
9 doi:10.14573/altex.2309201s6
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time point, the BMC of the concentration-responsive modules and 
genes seen in PHH were up to 10-fold higher in HepaRG cells, in 
particular for APAP and CSA exposure.

3.3.1  Acetaminophen
Acetaminophen (APAP) is a well-known inducer of centrilobu-
lar necrosis due to increased production of its deleterious reactive 
metabolite, known as N-acetyl-p-benzoquinone imine (NAPQI), 
following consumption of an overdose (James et al., 2008). Ele-
vated levels of NAPQI cause rapid depletion of glutathione (GSH) 
in the liver, leaving free, highly reactive NAPQI available to react 
with sulfhydryl groups to form APAP protein adducts, ultimately 
leading to oxidative stress and mitochondrial damage (McGill 
and Jaeschke, 2013; Ramachandran and Jaeschke, 2018). There-
fore, the NRF2 module PHH:144 should be considered as the 
most mechanistically relevant concentration-responsive module. 
Indeed, PHH:144 showed a concentration response at 24 and 48 
hours following APAP treatment in PHH at a BMC between 250 
and 600 µM, depending on the BMR factor, which is a threshold 

and VPA showed different BMCs at the four tested time points 
(Fig. 3b-d). APAP module PHH:144 demonstrated the lowest BMC 
at 24 hours, while for CSA and VPA the lowest BMC for mod-
ules PHH:13 and PHH:31, respectively, was observed at 72 hours. 
The selected stress responses are in line with the main pathways 
found using overrepresentation analysis (ORA) of DEGs, includ-
ing NRF2 for APAP, ER stress or unfolded protein response (UPR) 
for CSA, and lipid metabolism including PPAR and PXR signal-
ing for VPA (Fig. S44). Concentration-response models on module 
level are highly representative of BMC models of the underlying 
genes for the three tested drugs (Fig. S54). In addition, module-
derived BMCs show a significant overlap in confidence interval 
or higher precision (low BMDU/BMDL ratio) compared to single 
gene-derived BMCs (Fig. S64, Tab. S710), because the integration 
of gene co-expression in a weighted average module EGS value 
reduces experimental variability of individual genes. Accumula-
tion plots of the module and gene-level BMCs revealed early and 
late responsive modules and genes with similar trends between the 
genes and modules (Fig. 4). In general, although depending on the 
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Fig. 2: Module EGS heatmap of drug exposures in PHH and HepaRG cells
(a) Heatmap depicting concentration-responsive modules (WTT, p-adjust < 0.05) that were strongly deregulated (absolute EGS > 5) by 
at least one of the treatment conditions for the drugs. Ten clusters were defined based on Ward’s hierarchical clustering with correlation 
distance. (b) Specific clusters are highlighted for each drug (right). Module EGS is displayed in a color gradient from 10 (red) to -10 (blue), 
although some modules have higher EGS, which are scaled to the most extreme color. 
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Fig. 3: Benchmark 
concentration 
modelling of module 
eigengene score (EGS) 
responses following 
drug exposures in PHH 
and HepaRG cells
(a) Modules with highly 
significant concentration 
responses in PHH using 
the modules EGS (WTT, 
p-adjust < 0.01, absolute 
EGS > 5) were sorted by 
the lowest BMC using a 
BMR factor of 1 SD. The 
top five modules with 
the lowest BMC at most 
time points or a clear 
annotation are shown in 
Fig. 3b-d (black arrow) 
and Fig. S54 (red arrows). 
(b-d) BMC model fitting of 
the main stress response 
module per drug at the 
four tested time points: 
APAP-induced NRF2 
module PHH:144 (b), 
CSA-activated ATF6 
module PHH:13 (c), and 
VPA-induced fatty acid 
metabolism module 
PHH:31 (d). Blue lines 
display the model fitting of 
the best BMC model, as 
indicated in the subfigure’s 
title. The vertical green 
lines indicate the Cmax 
values of the drugs. The  
vertical red and purple 
lines indicate the BMC  
determined by concen-
tration-response modelling 
using a BMR factor of  
1 SD (red) or 2 SD 
(purple). The shaded 
pink area indicates the 
BMC confidence interval 
(BMDU-BMDL values) 
determined at a BMR 
factor of 1 SD. The BMC 
value at BMR factor of  
1 SD/2 SD and the 
adjusted p-value of the 
WTT are shown in the 
subtitles of the figures. 
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involved in transcription (PHH:151) or with unknown functions 
(PHH:374, 273, 222, 191, 211, 48, 301, 119, 217, 194, 364, 94, 
213, etc.) (Fig. 3a). Genes present in one of the selected modules 
for APAP with a low module BMC also displayed a low BMC on 
gene level (Fig. 4, red colors), all indicating that gene responses 
and the respective module responses show comparable BMCs. 

3.3.2  Cyclosporine A
CSA is a well-known inducer of cholestasis (Sharanek et al., 
2014, 2015; Tazuma, 2006). CSA has been shown to induce 
cholestasis through multiple mechanisms, including competitive 
inhibition of ATP-dependent bile salt transporters, especially the 
bile salt efflux pump (BSEP) and multidrug-resistant protein 2 
(MRP2), by disorganization of the pericanalicular F-actin cy-
toskeleton (Böhme et al., 1994; Kadmon et al., 1993; Román 
and Coleman, 1994) and through obstruction of bile secretion by 
increasing canalicular membrane fluidity with no effect on the 
expression of canalicular transporters (Yasumiba et al., 2001). 
All but one (MRP2 inhibition) of these mechanisms are included 
in the AOP on cholestasis available on the AOP-Wiki (AOP ID 
27), with BSEP inhibition being the molecular initiating event 
(Vinken et al., 2013b). Furthermore, CSA has been associated 
with both ER stress and oxidative stress (Hamon et al., 2014; 
Rao et al., 2018), which are both mentioned as KEs in an updated 
AOP on cholestasis (Gijbels et al., 2020). The results from the 
transcriptomics analysis showed a clear perturbation of multiple 
modules related to ER stress following exposure of both PHH 
and HepaRG cells to CSA. An ATF6 regulated module, PHH:13, 
was strongly induced while having one of the lowest BMC at 
all tested time points (Fig. 3a,c, Fig. S5b4). Similarly, another 
closely related ER stress module, PHH:62, displayed a signifi-
cant concentration response at 24 hours as well as at later time 
points (Fig. 3a, Fig. S5b4). ATF4-related modules PHH:15 and 
PHH:295 showed the lowest BMC at the latest time points, as 
well as module PHH:280 containing the ATF4 target gene DDIT3 
(CHOP). Genes involved in ER stress or the UPR (HSP90B, 
DNAJB9, DNAJB11, PDIA6, SELENOS, SELENOK, CHAC1, 
DDIT3, HSPA13 amongst others) showed similar concentration 
responses and comparable BMCs as their respective modules 
(Fig. S5b4). Moreover, genes present in one of the ER stress- 
related modules displayed the lowest BMC at all four time points, 
also suggesting that ER stress is the most relevant biological re-
sponse after CSA exposure (Fig. 4, green colors). The BMCs 
of ER stress-related modules were between 0.15 and 1.5 µM  
in PHH, and up to 10 times higher in HepaRG cells, which could 
be attributed to the higher metabolic clearances in HepaRG cells 
than in PHH (Bellwon et al., 2015). This was also supported by 
the higher initial expression of CYP3A4 / 5 / 7 in HepaRG cells 
(Fig. S3b4), which could result in a greater metabolic capac-
ity of CSA, leading to a lower level of CSA exposure and thus 
lower gene expression changes compared to PHH. Interesting-
ly, a module annotated as bile acid metabolism (PHH:38) was 
downregulated during CSA exposure at the later time points (Fig. 
3a), which may be an adaptive response to bile acid accumulation 
and is commonly seen during cholestasis (Gijbels et al., 2019).  
Additionally, modules involved in metabolism (PHH:11, 

to determine the effect size of the response (Fig. 3b). Thus, the de-
rived BMC for NRF2 activation in PHH is about 2-4 times higher 
than the reported human Cmax for APAP (i.e., 139-160 µM after 
ingestion of a standard 1000 mg dose (Farré et al., 2008; Sevilla-
Tirado et al., 2003)). However, the BMC is in the range of a mild 
APAP overdose of 484 µM after taking a dose of approximately 
73 mg/kg body weight, thus 50% of the adult toxic dose (Tan 
and Graudins, 2006). Moreover, in a high overdose situation (10- 
100 g APAP intake) the simulated Cmax would be in the range of 
1-2.7 mM (Spyker et al., 2022), which in this study clearly in-
duced the NRF2 response in PHH. Hence, our data suggest that 
the BMC of the NRF2 response is in the range of a mild overdose 
and increases in activity during a high overdose. 

No activation of the NRF2 response was seen at 8 hours, most 
likely due to the time required to reach glutathione depletion and 
the subsequent APAP protein adduct formation, which is a critical 
event in the hepatotoxicity. This is in line with another study that 
measured APAP protein adducts in APAP-exposed HepaRG cell 
lysates. The authors showed that protein adduct peak levels were 
obtained already after 6 hours, albeit lactate dehydrogenase leak-
age did not increase dramatically until several hours later (Xie 
et al., 2015). Nevertheless, the PHH:144 module is activated 24 
hours after APAP exposure in HepaRG cells, but at a higher BMC 
compared to PHH (Fig. S5a4). Well-known NRF2 target genes 
(TXNRD1, SRXN1, and GCLM) displayed similar concentration 
responses compared to the module as such, which suggests lim-
ited bioactivation of APAP to reactive metabolites in HepaRG 
cells (Fig. S5a4). Indeed, lower levels of CYP2E1, the enzyme 
responsible for the metabolism of APAP to its reactive metabolite 
NAPQI, were observed in HepaRG cells compared to PHH (Fig. 
S3b4). In addition, CYP1A2, equally responsible for metabolism 
of APAP, was expressed to a much lower extent in HepaRG cells 
compared to PHH. At 72 hours, the NRF2 concentration response 
was still visible in PHH, but insignificant, which indicates attenu-
ation of the adaptive NRF2 response.

It should be noted that module PHH:144 did not display the 
overall lowest BMC during APAP exposure. Multiple modules 
related to metabolism were perturbed at a lower BMC in APAP ex-
posed cells, including the repressed modules PHH:11 and PHH:23 
in PHH at 24 hours after APAP exposure (Fig. S5a4). Converse-
ly, in HepaRG cells, the downregulation was non-significant on 
module and gene level at the early time points, although the trend 
seemed prominent. Additionally, module PHH:40, associated with 
biotin metabolism, was repressed while the fatty acid metabolism 
module PHH:31 was significantly induced in PHH at the earliest 
time point. Biotin is known to be involved in key metabolic path-
ways, such as gluconeogenesis, fatty acid synthesis, and amino 
acid catabolism (Pacheco-Alvarez et al., 2002). This indicates that 
APAP has a capacity to disturb lipid metabolism, which has been 
reported previously in mice (Chen et al., 2009). Module PHH:261 
was most strongly downregulated at 48 hours both in PHH and 
HepaRG cells and contains calcium binding genes (SCGN, 
S100A2) (Fig. S5a4). Furthermore, numerous other modules 
showed significant concentration responses following APAP ex-
posure, including downregulated modules PHH:187 and PHH:90  
involved in the complement pathway, and upregulated modules 
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jenhoek et al., 2022). Moreover, VPA induced module PHH:340, 
which contains two important genes involved in fatty acid oxida-
tion and storage (Fig. S5c4). Specifically, CPT1, which encodes 
a key enzyme involved in the uptake and oxidation of long-chain 
fatty acids in the outer mitochondrial membrane (Begriche et al., 
2011), and PLIN2, a gene involved in the coating of cytoplasmic 
lipid storage droplets (Itabe et al., 2017; Sztalryd and Kimmel, 
2014). Other modules strongly activated by VPA in PHH and 
HepaRG cells, namely PHH:36, PHH:175, PHH:214, PHH:213, 
PHH:152, PHH:103, PHH:361, PHH:191, PHH:48, PHH:211, 
and PHH:194, were not clearly annotated in the TXG-MAPr,  
but correlated with fatty acid metabolism modules, which may 
suggest involvement in related processes (Fig. 2 cluster 8, Fig. 3, 
Fig. S5c4). Module PHH:261 was most strongly downregulated 
in both cell types (Fig. S5c4) and contains calcium-binding genes 
(SCGN, S100A2). Modules involved in the complement system 
(PHH:187, PHH:90) and mitochondrial function (PHH:113, 
PHH:138) were repressed during VPA exposure, amongst many 
other modules. CYP2C9, the main metabolizing enzyme of VPA, 
showed relatively high and comparable gene expression in the 
two cell types at the earlier time points (Fig. S3b4), which is in 
line with the small differences in transcriptional activation be-
tween the two cell systems.

3.4  Characterization of hazards of cosmetic  
ingredients in liver test systems using concentration-
response modelling of quantitative gene networks
Most chemicals in cosmetic products pose little or no risk to hu-
man health. However, some chemicals have been linked to ad-
verse effects (Panico et al., 2019). Therefore, we aimed to evalu-
ate the applicability of the presented risk assessment approach 
and testing regimen to cosmetic ingredients that lack a defined 
pharmacological MoA, yet have been, to some degree, associ-
ated with liver adversity (Gustafson et al., 2020; SCCS, 2021a; 
Song et al., 2022). Necrosis and steatosis have been observed in 
the liver of experimental animals following exposure to butylated 
hydroxytoluene (BHT) (SCCS, 2021a) and triclosan (TCS) (Song 
et al., 2022), respectively. In a review of animal toxicity data, 
2,7-naphthalediol (NPT) was found to alter three parameters as-
sociated with, and thus possibly indicative of, cholestasis, namely 
increased serum levels of gamma-glutamyl transferase and biliru-
bin together with cellular necrosis (Gustafson et al., 2020). 

Transcriptomics analysis was performed on PHH and HepaRG 
cell culture samples collected after exposure to NPT, BHT, and 
TCS (Tab. S11). There was cytotoxicity in NPT- and TCS-treated 
PHH starting at 24 hours and reaching up to 40% cytotoxicity at 
48-72 hours (Fig. S74), while there was no cytotoxicity observed 
in PHH after BHT exposure. Differential gene expression analy-
sis demonstrated a clear concentration and time dependency only 
in PHH following NPT exposure at sub-cytotoxic concentrations, 
while HepaRG cells had several DEGs mainly at the highest 
tested concentration (Fig. S8a4, Tab. S25). Numerous genes and 
modules showed a significant concentration response (WTT, p-
adjust < 0.05) following NPT exposure in PHH and HepaRG cells, 
though PHH showed more gene perturbations at 48 and 72 hours 
(Fig. S8b-c4). Similarly, TCS exposure induced quite some DEGs 

PHH:31, PHH:32), the complement system (PHH:9, PHH:23, 
PHH:187, PHH:90), and mitochondrial function (PHH:2) were 
repressed following CSA exposure. 

ER stress has been reported as one of the mechanisms of CSA-
induced hepatocellular toxicity (Callegaro et al., 2021; Van den 
Hof et al., 2015), which could be confirmed in this study. How-
ever, oxidative stress has also been claimed to be one of the im-
portant stress pathways associated with CSA toxicity (Hamon 
et al., 2014). It may be that during ER stress disrupted disulfide 
bond formation and breakage could lead to ROS accumulation 
and subsequently cause oxidative stress. Additionally, ER stress 
can cause mitochondrial dysfunction and thereby increase mito-
chondrial ROS production (Cao and Kaufman, 2014). ER stress 
and oxidative stress are not mutually exclusive processes but can 
be subsequent processes during liver injury (Malhotra and Kauf-
man, 2007). Indeed, activation of NRF2-regulated oxidative stress 
(PHH:144 and PHH:337) was observed in the present study but at 
higher CSA concentrations and later time points compared to ER 
stress (Fig. 3a, 4a). So, ER stress precedes oxidative stress follow-
ing CSA exposure, which is in line with previous findings (Burban 
et al., 2018), but in contrast to another study (Gijbels et al., 2020). 
Nonetheless, the herein presented results identified ER stress as 
the primary mechanism of CSA-induced toxicity, which may be a 
compound-agnostic and early KE in the cholestasis AOP. 

3.3.3  Valproic acid
VPA is a commonly used steatogenic compound consisting of a 
branched-chain fatty acid that can compete with other fatty acids 
in hepatocyte metabolic pathways (Schumacher and Guo, 2015). 
VPA has the potential to inhibit mitochondrial fatty acid oxidation 
via three molecular initiating events (MIEs): (i) depletion of coen-
zyme A, which is necessary for the oxidation of fatty acids, (ii) de-
pletion of the biomolecule carnitine, which transports fatty acids 
to mitochondria, and (iii) direct enzyme inhibition of β-oxidation 
(Allen et al., 2014), thereby hampering the β-oxidation of free 
fatty acids in the liver and causing accumulation of triglycerides 
in hepatocytes, known as steatosis (Pavlik et al., 2019). Altered 
fatty acid oxidation is included as a KE in several described AOPs 
leading to steatosis in the AOP-Wiki (AOP IDs 318, 213, 232) 
and elsewhere (Mellor et al., 2016). In the present study, several 
modules displayed a low BMC at all tested time points of VPA 
exposure in both PHH and HepaRG cells, of which the fatty acid 
metabolism modules PHH:31 and PHH:340 were most significant 
and related to VPA-induced steatosis (Fig. 3, 4, Fig. S5c4). The 
BMC of module PHH:31 lowered with time and repeated dosing, 
suggesting an accumulative effect on fatty acid metabolism (Fig. 
3d). PHH:31 contains ACSL6, ELOVL4 and SLC27A1 that could 
be linked to fatty acid metabolism and peroxisome proliferator-
activated receptor (PPAR) signaling, which all showed a signifi-
cant concentration response comparable to the module itself. The 
most significantly upregulated genes (TMEM25 and TUBB2B) 
were most similar to the concentration response of PHH:31 but 
could, however, not be directly linked to fatty acid metabolism 
(Fig. S5c4). A recent study using the TXG-MAPr tool identified 
module PHH:31 as a common mechanism following exposure 
to carboxylic acids with steatotic potential, including VPA (Vri-
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Fig. 5: Benchmark 
concentration modelling 
of module EGS responses 
following cosmetic 
compound exposures in PHH 
and HepaRG cells
Heatmap depicting concen-
tration-responsive modules 
using the module EGS that 
were strongly deregulated by 
at least one of the treatment 
conditions for the cosmetic 
compounds, sorted by lowest 
BMC in PHH using a BMR 
factor of 1 SD. Note the different 
WTT p-values and abs. EGS 
thresholds were used for the 
three cosmetic compounds. 
The top five modules with 
the lowest BMC at most time 
points or a clear annotation 
are shown in Fig. 5b-e (black 
arrows) and Fig. S104 (red 
arrows). (b-e) BMC model fitting 
of the repressed mitochondrial 
module (PHH:2) and activated 
heat shock module (PHH:131) 
following NPT exposure at the 
four tested time points.  
(d) BMC model fitting of 
activated heat shock module 
(PHH:131) following 48 hours 
TCS exposure in PHH and 
HepaRG cells. (e) BMC model 
fitting of activated xenobiotic 
metabolism module (PHH:134) 
following 48-hour BHT exposure 
in PHH and HepaRG cells. Blue 
lines display the model fitting 
of the best BMC model, as 
indicated in the subfigure’s title. 
The vertical green lines indicate 
the estimated Cmax values of 
the cosmetic compounds. The 
vertical red and purple lines 
indicate the BMC determined 
by concentration-response 
modelling using a BMR 
factor of 1 SD (red) or 2 SD 
(purple). The shaded pink area 
indicates the BMC confidence 
interval (BMDU-BMDL values) 
determined at BMR factor of 
1 SD. The BMC value at BMR 
factor of 1 SD/2 SD and the 
adjusted p-value of the WTT 
are shown in the subtitles of the 
figures.
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be observed for the BMCs of concentration-responsive genes. The 
transcriptomics results were compared to the response of hepato-
cytes to the drugs to elucidate any similarities in the MoA.

3.4.1  2,7-naphthalenediol
NPT is used as a precursor for hair colors (SCCS, 2010) and was 
identified as a potentially cholestasis-inducing compound in ani-
mal studies (Gustafson et al., 2020; Vinken et al., 2012). In this 
study, numerous genes and modules were deregulated in a con-
centration-responsive manner following NPT exposure, though 
several only upon repeated exposure at 48 and 72 hours (Fig. 5a, 
6). Early responsive modules in PHH included deactivation of 
mitochondrion (PHH:2) and activation of heat shock (PHH:131 
and PHH:95), as well as two transcription regulation modules 
(PHH:4, PHH:151) and a retinoic acid metabolism module 
(PHH:18), all of which were still deregulated at the late time 
points (Fig. 5a-c, Fig. S10a4). Interestingly, in PHH a bile acid 
metabolism module (PHH:38) was downregulated during NPT 
exposure at the late time points, similar to CSA response, which 
may be an adaptive response to bile acid accumulation (Fig. 
S10a4). In contrast to CSA, the ER stress modules were hardly 
activated by NPT, only ATF4 module PHH:295, suggesting a 
different MoA. Two complement system modules (PHH:187 

at 48 hours, but that was the only time point at which there were 
several concentration-responsive genes and modules (Fig. S84). 
Conversely, BHT did not induce any DEGs or cause activation 
of concentration-responsive genes and modules at any time point 
(Fig. S84). Concentration responsive modules were clearly identi-
fied for PHH following NPT and TCS exposure, showing several 
clusters (8-10) with activated modules, while other clusters (2-4) 
were repressed (Fig. S94, Tab. S36). Due to a lack of concentra-
tion-responsive genes and modules in HepaRG cells, those data 
exhibited only a noisy module EGS activation (data not shown).

BMC modelling identified a higher number of concentration re-
sponsive modules with low BMC after NPT, TSC, and BHT expo-
sure in PHH compared to HepaRG cells (Fig. 5a, Tab. S4-S67,8,9). 
It should be noted that different WTT p-values and max EGS 
thresholds had to be used for the three cosmetic compounds to fa-
cilitate the identification of modules with a concentration response 
trend for the least potent compound, i.e., BHT. BMC model fitting 
of the lowest concentration-response modules for NPT, BHT, and 
TCS identified different BMCs at the four tested time points, which 
were 10-100-fold higher than the estimated Cmax values (Fig. 
5b-e). Not surprisingly, accumulation plots of the BMCs clearly 
showed a steep increase in the number of BMCs at the highest test-
ed concentrations of NPT and TCS (Fig. 6). A similar trend could 
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4  Discussion

Current legislation in place in the European Union governing the 
safety of chemical compounds and cosmetic ingredients restricts 
or bans the use of animal testing, respectively (European Union, 
2006, 2009). Consequently, the field of toxicology is striving to 
develop and make use of methods that assess the safety of chemi-
cals without the use of experimental animals. In this regard, TXG 
is a powerful resource capable of informing on underlying mech-
anisms of possible adverse effects following exposure to exoge-
nous compounds, and of deriving toxicity values, such as tPODs, 
suitable for risk assessment. However, to our knowledge, there is 
currently no formal guidance on how genes, or groups of genes, 
should be selected for this purpose. With the growing interest in 
applying TXG to derive tPODs, exploration of best practices is 
direly needed. In this study, we present a method to derive BMCs 
from gene co-expression networks and demonstrate their similar-
ity to BMCs derived from individual genes. We identified BMCs 
of modules that could be linked to the MoA of drugs after expo-
sure in PHH and HepaRG cells and could be used as tPOD in risk 
assessment.

In this study, two human-relevant liver in vitro models were ex-
posed to compounds with a well-known capacity of inducing com-
mon liver adversities, namely necrosis, cholestasis, and steatosis. 
Subsequently, gene co-expression network analysis was combined 
with concentration-response modelling to gain knowledge of the 
mechanisms underlying these chemical-induced toxicities and 
to derive transcriptomics BMCs for such gene networks as well 
as for the individual genes. By following this strategy, we were 
able to readily get mechanistic understanding of the transcrip-
tomic perturbation following liver toxicant exposures in PHH and  
HepaRG cells using module EGS from the PHH TXG-MAPr tool 
as a measure for the activity of the gene co-expression networks 
(Callegaro et al., 2021). Identified stress responses included an 
NRF2 response, ER stress, and changes in fatty acid metabolism 
genes following exposure to APAP, CSA, and VPA, respectively, 
which were also reported previously (Grünig et al., 2020; Jaesch-
ke et al., 2012; Rao et al., 2018; Xu et al., 2019). In addition to 
the gene co-expression (WGCNA) approach, these results were 
confirmed by “traditional” pathway enrichment analysis.

Subsequently, BMC modelling, which is advised by the Euro-
pean Food Safety Agency to be used over the traditional NOAEL 
approach (More et al., 2022), was used to derive time point-spe-
cific BMCs for gene co-expression modules, thereby demonstrat-
ing their capacity to capture BMC modelling of individual genes. 
Overall, the BMCs of modules were in line with the individual 
genes and showed less variability over the different time points. 
This suggests that pathway- or module-derived BMCs are suit-
able for use in risk assessment, a finding that is in line with previ-
ous conclusions (Harrill et al., 2019). The BMC of modules had 
a clear tendency to be significantly more precise when measured 
by the BMDU/BMDL-ratio or when their BMC confidence in-
tervals exhibited a significant overlap with the BMC confidence 
intervals of the individual genes (Fig. S64). There was a tendency 
for a trade-off between overlap and precision of the module and 
single-gene BMC confidence intervals, which is to be expected 

and PHH:90) were repressed in PHH and HepaRG cells at late 
time points (Fig. S10a4). Multiple NRF2 modules (i.e., oxidative 
stress response; PHH:337, PHH:325 and PHH:144) were de-
regulated in both PHH and HepaRG cells (Fig. 5a). In HepaRG 
cells, the activation of PHH:144 started already at 8 hours, while 
PHH showed activation only after 48 hours (Fig. S10a4), which 
might suggest that early NRF2 activation in HepaRG cells is 
more cytoprotective (Baird and Dinkova-Kostova, 2011). These 
results are in line with the ORA of concentration-responsive 
genes, where several of these processes and pathways were also 
enriched (Fig. S8d4). 

3.4.2  Triclosan
TCS is a polychlorinated biphenolic antimicrobial used as an an-
tiseptic and preservative in personal care products and medical 
equipment that has been associated with liver steatosis (Vinken 
et al., 2012). Following exposure to TCS, more concentration-re-
sponsive modules were identified in PHH compared to HepaRG 
cells at 48 hours, of which a heat shock module (PHH:131) had 
the lowest BMC (Fig. 5a,d). Other activated modules have been 
associated with transcription regulation (PHH:35), immune re-
sponses (PHH:136, PHH:242), retinoic acid receptors (PHH:18), 
and NRF2 response (PHH:337), while a complement system 
module (PHH:187) was repressed (Fig. 5a, Fig. S10b4). Notably, 
the fatty acid metabolism module PHH:340 (containing genes 
CPT1 and PLIN2) that was clearly induced in VPA-exposed 
cells was also slightly, albeit not significantly, induced. The low 
potency of TCS to induce transcriptional changes and the high 
(50-fold) difference between the estimated Cmax and lowest BMC 
may suggest a low hazard of liver adversity.

3.4.3  Butylated hydroxytoluene
BHT is a synthetic antioxidant and lipophilic organic compound. 
BHT is used across multiple chemical sectors and in numer-
ous products, including food additives, personal/care products, 
pharmaceuticals, plastics/rubbers, and other petroleum products. 
Upon metabolism by rat CYP2B1 (CYP2B6 in human), BHT 
can form reactive quinone methide metabolites, which has been 
associated with hepatocellular necrosis (SCCS, 2021a). Unfor-
tunately, the expression of CYP2B6 was low (Fig. S34), which 
may explain the lack of transcriptional changes. Nevertheless, 
upregulation of CYP3A enzymes was observed, which complies 
with previously published data (Price et al., 2008). However, 
the role of these CYP3A enzymes in BHT metabolism or poten-
tial toxicity is unknown. Several modules were identified that 
showed a concentration-response trend (p-value < 0.05), albeit 
not significant after p-value adjustment (Fig. 5a). The module 
with the lowest BMC at most of the time points has been as-
sociated with xenobiotic stress (PHH:134) and contains several 
CYP3A genes (Fig. 5e, Fig. S10c4). In addition, the NRF2 mod-
ule PHH:144 (i.e., the most mechanistically relevant module for 
APAP exposure) also showed a slight induction at the highest 
BHT concentration at 8 hours (Fig. S10c4). This may indicate 
that NRF2 response can be induced by BHT, but only at higher 
concentrations, which could not be reached in vitro due to the 
limited solubility of BHT. 
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tective (Johnson et al., 2022). In this study, we present such an ap-
proach to determine tPODs using modules as surrogates for path-
ways and/or KEs in AOP, but additional research will be needed 
to compare the reliability and robustness of this method to others. 

For CSA and VPA, the lowest BMCs were observed at 72 hours. 
Both were lower than their respective Cmax levels, suggesting a 
significant human risk of CSA and VPA exposure for ER stress 
activation (PHH:13, PHH:15, PHH:62, PHH:295) and fatty acid 
metabolism (PHH:31 and PHH:340), respectively. ER stress or the 
unfolded protein response is also recognized as an important KE 
in the AOP of cholestasis according to recent literature (Burban et 
al., 2018; Gijbels et al., 2020; Liu, X. et al., 2022; Selvaraj et al., 
2020). Besides the ER stress response, other stress processes, like 
oxidative stress and bile acid metabolism, may contribute to chol-
estasis but are likely more downstream KEs since they are induced 
at later time points and higher concentrations. Functional inhibi-
tion of the BSEP protein (i.e., the MIE of CSA-induced choles-
tasis) can obviously not be measured at transcriptional level. In-
terestingly, a decrease of the gene ABCB11 was seen at transcript 
level following CSA exposure at high concentrations above Cmax 
levels, which could potentially lead to lower BSEP levels and con-
tribute to cholestasis. This is a counterintuitive response, as bile 
acids are known to induce ABCB11 expression (Vitale et al., 2023) 
although bile acids were not added to the medium and were not 
measured in the present study.

From an AOP perspective it is well-known that an imbalance 
in fatty acid metabolism, uptake, or export can contribute to fatty 
acid accumulation and finally steatosis (Grefhorst et al., 2021). 
This is likely recapitulated on transcriptomic level by increased 
activity of fatty acid metabolism-related modules PHH:31 and 
PHH:340 after VPA exposure, which may also be linked to mi-
tochondrial toxicity (AbdulHameed et al., 2019). Interestingly, 
module PHH:31 is also induced by APAP, but with a lower BMC 
than the oxidative stress module, which could be a response to li-
pid peroxidation or mitochondrial damage, both well-known KEs 
in APAP-induced liver adversity (Jaeschke and Ramachandran, 
2018; Yoon et al., 2016).

In contrast to the drug exposures, the BMCs for the cosmetic 
ingredients were 10-100-fold higher than their estimated Cmax 
levels, suggesting a reasonable margin of safety. For NPT there 
was a clear aberration of oxidative stress and bile acid metabo-
lism modules at the late time points, which may be common 
downstream KEs in the cholestasis AOP as identified for CSA. In 
addition, NPT induced a heat shock response, which is possibly 
related to unfolded proteins, but NPT did not induce an ER stress 
response like in CSA-exposed PHH. It should be further stressed 
that the other two cosmetic compounds showed little correlation 
in their MoA with the drugs based on the transcriptomic data. In 
fact, little gene perturbation was observed for TCS and BHT, even 
at very high sub-cytotoxic test concentrations. The low potency 
of cosmetic ingredients to induce transcriptional changes and the 
large (10-100-fold) difference between the estimated Cmax and 
lowest BMC suggests a far lower risk of liver adversity (SCCS, 
2021b). Although the initial safety assessment can be guided by a 
transcriptional tPOD, it must be supplemented with other experi-
mental approaches for validation (Rogiers et al., 2020). As this 

because smaller or more precise BMC confidence intervals are 
less likely to exhibit an overlap. Another advantage of module-
derived BMCs is the possibility to link modules to cellular pro-
cesses or pathways, which could be used to directly investigate 
the MoA of a chemical or identify KEs in the context of liver ad-
versity. Linking transcriptionally perturbed pathways or modules 
to KEs in an AOP context has been proposed previously (Saa-
rimäki et al., 2023; Vinken, 2019). However, the impact of a pos-
sible KE activation on cellular physiological perturbations should 
be considered when determining the hazard linked to a chemical 
exposure, as some KEs may be more adverse than others, e.g., 
DNA damage/mutation versus oxidative stress. This favors net-
work-derived BMCs as, intuitively, the biological significance of 
the changes in a group of genes is greater than that of individual 
genes. In this context, BMCs of modules that represent KEs in 
liver adversity could be used as tPOD for safety assessment. Nev-
ertheless, it should be stressed that in NGRA it is not expected 
that a tPOD would be used as a stand-alone method in a complete 
risk assessment, where also functional endpoints and exposure 
should be considered.

Following drug exposure, we could clearly identify mechanisti-
cally relevant gene networks with low BMCs, indicating that the 
tPODs of some important processes or KEs are around or below 
the Cmax levels of the tested drugs. Increased reactive oxygen 
species or oxidative stress is a well-known KE in many AOPs 
leading to cell injury and death (Arnesdotter et al., 2021; Tanabe 
et al., 2022). Oxidative stress is also implicated in the mechanism 
of APAP-induced hepatotoxicity (Yoon et al., 2016). Indeed, the 
NRF2 module PHH:144 demonstrated a low BMC (using a BMR 
factor of 2 SD) around 600 µM at 24 hours following APAP expo-
sure, which is in the range of the plasma concentration following 
a mild APAP overdose, while NRF2 activity increases during a 
high overdose (Spyker et al., 2022; Tan and Graudins, 2006). In 
this case, the BMC derived at a BMR of 2 SD could be considered 
a true biological response, since the BMC is often determined at a 
module abs EGS > 2, which is considered significant (Sutherland 
et al., 2018). The more conservative BMR factor of 1 SD resulted 
in a NRF2 module BMC of 250 µM, which is lower than a mild 
overdose, and thus could be used as a tPOD for risk assessment. 
However, the module BMC is not as conservative as the BMC of 
100 µM of the lowest gene SRXN1, which is lower than the Cmax 
after a single APAP exposure (Fig. S5a4). This suggests that mod-
ule-derived BMCs using a BMR factor of 1 SD are conservative 
enough to derive tPODs for safety assessment in case of APAP 
exposure, while focusing risk assessment on a small number of 
genes with low BMCs may introduce conservative and/or false 
positive hazards. Importantly, tPODs derived with different meth-
ods can differ by several orders of magnitude, which exempli-
fies the need for reliable methods to derive tPODs (Harrill et al., 
2024; Reardon et al., 2023). There is general scientific consensus 
that pathway-based methods are preferred to determine tPODs, 
which will also provide mechanistic information that could be 
linked to KEs in AOPs (Barutcu et al., 2023; Basili et al., 2022; 
National Toxicology Program, 2018; Ramaiahgari et al., 2019; 
Thomas et al., 2013b), although others argue to determine tPODs 
as any concerted molecular change to be more human health pro-
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ule-based BMCs may be suitable for NGRA purposes, when com-
bined with an in vivo dose extrapolation and exposure assessment.
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