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A B S T R A C T   

The importance of local versus landscape drivers of biodiversity is presently intensely discussed, which raises the 
question what information ecological sampling can provide about the relative importance of these factors and 
how the amount of information is distributed over different spatial scales. Here, we have tried to assess the 
amount of the information in sets of arthropod samples on four landscape characteristics, i.e., the percentage 
arable land, semi-natural area, urban area, and edge density, at spatial scales varying from 100 m to 3000 m 
around sample sites. A large, existing dataset of different studies from all over Europe was used for that. Random 
Forests were used for predicting the characteristic classes of the surrounding area. The accuracy of the pre
dictions, calculated as the reversed Normalized Brier score, was used as measure of the amount of information. 
The results showed that, at least in Europe, the amount of information is different between edge density on the 
one hand, and arable land, semi-natural area, and urban area on the other hand. In case of edge density, the 
information decreased from 100 m to 250 m around the sample site, then increased to get a hump-shape between 
250 and 3000 m, with the maximum amount at 1750 m. In case of the other three landscape characteristics, the 
information decreased from 100 m to 1000 m, and then stayed equal or slightly increased. These results could be 
explained by assuming that organisms present at a sample site are either site-specific, or non-site-specific. Site- 
specific organisms are thought to enable predictions of characteristics at the small scales, while non-site-specific 
organisms are thought to indicate characteristics of larger scales. The results implied that, for study designs, it is 
important to be aware of the type of processes that result in the presence of species at sample sites. For effective 
conservation measures for arthropods, the results showed that landscapes at a spatial scale of at least 9.6 km2 

should be taken in consideration in Europe.   

1. Introduction 

The relative importance of local versus landscape drivers of biodi
versity is presently intensely studied and discussed, because of the 
decline in biodiversity and the search for effective nature conservation 
measures (Akter et al., 2023; Cardoso et al., 2009; Estrada-Carmona 
et al., 2022; Gallé et al., 2022; Gonthier et al., 2014; Harvey et al., 2022; 
Köthe et al., 2022; Marja et al., 2022; Martin et al., 2019; Petit and 
Landis, 2023; Schweiger et al., 2005; Tscharntke et al., 2012; Tscharntke 
et al., 2021). In studying the relationship between organisms and their 
environment, ecologists make a distinction between the effect of local 
characteristics of the environment on the abundance of organisms and 

the effect of environmental characteristics of the surroundings of the 
location - the landscape - on that abundance. Marja et al. (2022) 
concluded in their meta-analysis that “increasing landscape complexity 
primarily enhances species richness”. 

The results of these kind of studies will depend on the amount of 
information that ecological datasets contain on the local versus land
scape characteristics of the areas around the sample sites. If information 
on either of the spatial levels is lacking or spars, the interpretation of the 
results of these studies might be problematic. Our study tries to assess 
the relative amount of information present in datasets based on samples 
of arthropod communities. It starts by developing a concept on how 
information in samples might be distributed over different spatial scales. 
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In order to be able to correlate biodiversity with one or more spatial 
or temporal gradients of environmental characteristics of the study site, 
ecological field studies typically collect information on the set of or
ganisms present at a set of sites at a set of moments in time. However, it 
has long been known that it is not true that each organism that is present 
at a site has an equal chance of being sampled. Many studies have shown 
that the organisms that were collected during ecological field work 
depended on sampling technique, perceptibility of the organisms, 
behavior and activity of the organisms, season, hours of the day, weather 
(temperature, precipitation, wind), and the biotic and abiotic charac
teristics of the sample site, including diversity therein (e.g., Hohbein and 
Conway, 2018; Jouveau et al., 2022; McNamara Manning and Bahlai, 
2021; Thomas et al., 1998; Wardhaugh, 2014; Yi et al., 2012). 

Apart from this, the set of organisms present at a site is not only 
affected by the characteristics of the site at that moment, but it is also 
affected by its past and the area surrounding it. Many studies showed 
that biodiversity is affected by both local and landscape characteristics 
(e.g., Gonthier et al., 2014; Marja et al., 2022; Petit and Landis, 2023). 
Recent studies showed that the size of the area around a sample site that 
affects a sample of arthropods might be larger than usually expected 
(Musters et al., 2021, 2022). 

In general, a sample, even when it contains only information on a 
small part of the organisms present at the site, will show an expert that it 
was taken from, for example, a pond, forest, grassland, or desert. On the 
other hand, its species composition will also show the expert from which 
species pool, i.e., on which continent, it was taken. So, a sample will 
contain information on the sample site as well as on the surrounding 
area of the site at the very large level of scale. But how much information 
do samples contain on the landscape, at different levels of scales? 

In this study, we tried to unravel for the first time the difference in 
relative amount of information on local versus landscape characteristics 
that sets of arthropod samples contain. Studies that consider difference 
in spatial scale while assessing information on landscapes are very rare 
(Bouasria et al., 2023). Since arthropods have been collected with all 
kind of techniques in all kind of landscapes, arthropod samples are well 
suited as examples for answering our research question. As to the con
cepts that were used to indicate the spatial scale, ‘local’ was used for the 
area around the sample site with a radius smaller than 100 m, ‘region’ 
for the area with a radius larger than 200 km, and ‘landscape’ for the 
areas in between, which deviates only slightly from the categories of 
Pearson and Dawson (2003). 

For assessing the amount of information in a dataset, we predicted 
the characteristics of the landscape around the sample site. Since a 
prediction based on samples will be more accurate when the samples 
contain more information on the landscape characteristics, we consid
ered the amount of information equivalent to the accuracy of the pre
diction. Based on this, different levels of spatial scale were compared on 
their differences in amount of information present in the datasets. 

Four different landscape characteristics were predicted: percentage 
arable land, percentage semi-natural area, percentage urban area, and 
edge density. Percentage arable land is often regarded as the reverse of 
landscape complexity, which has been defined as the percentage non- 
arable land in an area (Tscharntke et al., 2012). Semi-natural areas 
included hedges, grassy margins, unmanaged grassland, shrubs, and 
fallows (Martin et al., 2019). Edge density is measured as the total length 
of the edges between crop fields and their surroundings, including crop/ 

crop and crop/non-crop edges, divided by area. It is a metric for land
scape configuration: it is large when crop fields and non-crop patches are 
small, and vice versa (Martin et al., 2019). One could argue that edge 
density is actually a more accurate metric of landscape complexity than 
the often-used percentage of non-arable land (Martin et al., 2019). 
Landscape complexity is regarded as the key predictor in the theory of 
the effectiveness of nature conservation policy in agricultural intensive 
areas (see Fig. 1 in Tscharntke et al., 2012). It plays a central role in the 
above described discussion about the relative importance of local versus 
landscape drivers of biodiversity. 

The non-parametric technique of Random Forest (RF) was used for 
the predictions (Breiman, 2001; Prasad et al., 2006). This enabled 
optimal use of all the information that is present in a dataset, without the 
need for a priori variable selection or for specific, parametric assump
tions on the relationship between the composition of organisms in 
samples and the characteristics of the landscape around the sample sites 
(Breiman, 2001; Fox et al., 2017). 

2. Theory 

To understand what kind of information might be present in a set of 
samples, we assume that this information is stored in a dataset: a matrix 
with the cases (sample) as the rows and the dependent variables 
(characteristics of the landscape) and the independent variables (taxo
nomic units) as columns. Each sample is collected at a different site. This 
dataset is used to study the relationship between the set of organisms in 
the samples and the characteristics of the area around the sample sites. 
So, not the sample site itself, but the area around it is the object of this 
study. This area has a predefined size indicated by the radius of a circle 
around the site. 

Since organisms can be regarded as goal-oriented entities (Godfrey- 
Smith, 2014; Musters et al., 2023; Thompson, 1987), a distinction can be 
made between two fundamentally different types of reasons for an or
ganism to be present at sample sites: an organism can be present either 
because it was intended to be at the site, or because it was not specif
ically intended to be there. We will call the first kind of organisms the 
‘site-specific’ organisms and the second kind the ‘non-site-specific’ 
organisms. 

A site-specific organism is present at a site because of intended behavior 
of the organism or its parents. Examples are that the organism hatched or 
metamorphized at the site and is somehow attached to it, that it is 
looking for food or mates, that the site provides a hiding place for 
predators or shelter against bleak weather. Caterpillars on host plants, 
hover flies on flowers, predators on plants where the prey is abundant, 
parasites on hosts, the presence of certain spiders in the vegetation that 
has the structure needed for constructing their webs, or the presence of 
scavengers on dead bodies, are examples. These kind of reasons for 
species to be present at a site are deterministic, because they depend on 
organisms being attracted to, or trying to avoid specific biotic or abiotic 
characteristics of the site. Therefore, sites that differ in their biotic or 
abiotic characteristics can be recognized by differences in the presence 
of the site-specific organisms in samples taken from there. Now, when 
our study object, the area, is small, chance will be high that the site 
characteristics are present in the complete area. A small area may easily 
lay completely within a woodlot, a field or road margin, a crop field, or a 
grassland. But when areas increase in size, the probability increases that 

Fig. 1. Hypotheses on the relationship between radius of area around a sample site and the amount of information based on the site-specific organisms sampled.  
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other characteristics than those of the site become present in the areas. 
One could say that the site characteristics become diluted with 
increasing size of an area. As a consequence, the presence of site-specific 
organisms in the sample becomes less informative on the characteristics 
of the complete area. In other words, the amount of information that 
site-specific organisms give on the complete area around the sample site 
decreases with increasing area size (Fig. 1). 

A non-site-specific organism is present at a site without any specific 
ecological reasons. Examples are that the organism happens to be passing 
by, that the wind blew it to the site, or that another organism brought it 
there. These types of events are stochastic, because they are independent 
of the biotic or abiotic characteristics of the site. Non-site-specific or
ganisms are present in the samples because they were unintendedly 
transported to the sample site, for example by wind, water, or biota, 
including man. Alternative names for these organisms could be ‘tourists’ 
or ‘vagrants’, but we do not use these terms because they are also used in 
other contexts, which can lead to confusion. For example, tourist species 
may also be regarded as species that attract tourists (Yang et al., 2022) 
and vagrant species may be discussed in migration theory of birds 
(Gilroy and Lees, 2003). The transportation may take place over large 
distances, but the chance that an organism reaches a sample site from a 
place where it actually is site-specific, decreases probably quickly with 
distance (Östrand and Anderbrant, 2003). One can assume that each 
organism has during a certain life stage a more or less fixed distance over 
which it has a relatively high chance of being unintendedly transported 
by stochastic processes, the ‘transportation distance’. An organism will 
only have a chance of being present in a sample when its original site is 
within this transportation distance. So, when an organism is present in a 
sample, it is known that its original site is present within an area with the 
radius of the transportation distance of the organism around the sample 
site. One could say that the presence of a non-site-specific organism in a 
sample gives one unite of information: the original site is present within 
a radius equal to its transportation distance. The more of these non-site- 
specific organisms are present in a set of samples, the more information 
on the surroundings of sample sites is present in the dataset. But since 
each organism has its own transportation distance, the amount of in
formation on the total area around the sample site depends on the 
transportation distances of the organisms sampled. If many organisms in 
the samples have a more or less equal transportations distance of, say, 
1000 m, and only a few have a distance of 5000 m, than more infor
mation is available in the dataset on the area with radius of 1000 m 
around the sample site than on the area with radius of 5000 m. So, the 
amount of information in the samples correlates to the distribution of 
the transportation distances of the organisms. In Fig. 2, a normal dis
tribution and two related distributions are supposed to occur in ar
thropods (Jopp and Reuter, 2005; Thomas et al., 2003). 

The complete amount of information in the dataset must be result of 
the mixture of site-specific and non-site-specific organisms in the set of 
samples. But which organisms are site-specific, and which not, may be 
largely unknown. However, in the above we have developed two kinds 
of hypotheses on the relationship between the amount of information 
and area size, one for the site-specific organisms and one for the non- 
site-specific organisms. And knowing that the dataset will be a 
mixture, we can now combine these two kinds of hypotheses to a set of 

hypotheses on the relationship between amount of information and area 
size in the complete dataset. The main problem for combining is that the 
scale of the x- and y-axis in Figs. 1 and 2 may not be the same. It is 
possible that the amount of information from either site-specific or
ganisms or non-site-specific organisms is negligible low, so that either 
Fig. 2 or Fig. 1 reflects the relationship between amount of information 
and radius of the complete dataset. But when both types of information 
are relevant, many different hypotheses on that relationship can be 
generated. Fig. 3 gives an illustration. It combines Fig. 1A and Fig. 2A, 
assuming different scales of the y-axis: when the maximum amount of 
information from the site-specific organisms is larger than that of the 
non-site-specific species, when it is more or less equal, and when the 
maximum amount from the non-site-specific organisms is larger (Fig. 3). 

We assume that in sets of arthropods samples collected in agricul
tural, urban, and semi-natural areas, the distribution of information on 
the characteristics of the landscape at different levels of spatial scales is 
more or less according to one of the graphs in Fig. 3. Any strong 
empirical deviation of the distribution from these graphs must be 
regarded as a rejection of the above theory. 

Presently, it is unknown how information in samples is distributed 
over the size of area surrounding sample sites. In this study, we explored 
this distribution for the first time. Our way of doing that was by trying to 
predict the characteristics of the surrounding area at different spatial 
scales based on the samples, and evaluate these predictions. The better 
the prediction, the more information the samples contain on the sur
rounding area at that spatial scale. 

3. Material and methods 

To be able to perform the exploration of the distribution of infor
mation, a set of datasets was needed of samples of organisms present at 
sites of which characteristics of the surrounding area are known. Martin 
et al. (2019) collected such datasets from all over Europe. Also, a way of 
predicting the characteristics of an area from samples was needed that 
make optimal use of all available information within the sample. The 
Random Forest does exactly that (Breiman, 2001). For classification, it 
delivers a Brier score, which is a strictly proper score of the accuracy of a 
prediction and, therefore, can be regarded as a measure of the amount of 
the information that samples contain on the characteristics of an area 
(Brier, 1950; Ishwaran and Lu, 2019). 

3.1. Data 

Martin et al. (2019) brought the data together from 59 European 
landscape studies (doi: https://doi.org/10.5061/dryad.6tj407n). All 
studies were from agricultural areas, but the landscapes included varied 
strongly, from Scandinavian to Mediterranean, from low lands to 
mountainous, and from small-scale and closed to large-scale and open 
landscapes. The research units are samples characterized by site vari
ables, crop variables, landscape variables, sampling variables, and 
arthropod data measured as abundancies of Operational Taxonomic 
Units (OTUs). For more details see Martin et al. (2019). From all studies 
in the dataset, we selected the data of the sample techniques for which 
10 or more samples and 17 or more OTUs were available. To ensure that 

Fig. 2. Hypotheses on the relationship between radius of area around a sample site and the amount of information based on the non-site-specific organisms sampled. 
A: the transportation distance of organisms has a normal probability distribution over radius; B: the transportation distance has a near uniform probability distri
bution with a low mean probability and a large standard deviation; C: the transportation distance has a skewed probability distribution. 
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our analyses were not biased by extremely large abundances for some 
OTUs, and zeroes in others, we applied a Hellinger transformation on all 
abundances (Borcard et al., 2011). 

3.2. Landscape characteristics 

The aim of this study was to analyze the amount of information in 
arthropod samples for predicting landscape characteristics with the 
abundance of arthropod OTUs in samples. Three types of landscape were 
to be predicted: the location of the sample site, the region of the sample 
site, and landscape around the site with varying radii. The information 
on type of landscape was taken from the data of Martin et al. (2019). For 
the location of the site, four local classes were used: grassland, crop field, 
orchard, and field margin. For the region, the locations of the studies 
were divided into four regional classes: Eastern Europe (longitude 
≥10◦), Mid Northern Europe (longitude <10◦ and ≤ 0◦; latitude ≥49◦), 
Mid Southern Europe (longitude <10◦ and ≤ 0◦; latitude <49◦), and 
West Europe (longitude <0◦). For characterizing the landscape of the 
areas per radius, four landscape variables were selected: percentage 
arable land, percentage semi-natural area, percentage urban area, and 
edge density (km per ha) as defined by Martin et al. (2019). Two other 
available variables, percentage forest and percentage water, were not 
taken into consideration because of high amount of zero scores in these 
variables (Fig. S1, Supplementary Information). The values of each 
variable were categorized into five, approximately logarithmic, land
scape classes from very low to very high (Table S1). The distribution of 
all samples over the landscape classes is shown in Fig. S2. 

3.3. Statistical analyses 

For predicting the location, the region, and the four landscape 
characteristics in the radii around the sample site, Random Forest (RF) 
for classification was applied. RFs consist of a large number of decision 
trees that classify the cases according the classes of the response variable 
(Breiman, 2001). Each tree of the forest uses a random subset of cases 
and predictive variables out of the complete dataset as a learning set. 
Using RF instead of a single classification tree prevents over-fitting 
(Breiman, 2001; Strobl et al., 2009). RFs are especially fit for handling 
datasets in which the number of predictive variables is large compared 
to the number of cases (Fox et al., 2017; Strobl et al., 2009). They do not 
have a problem with handling non-linear relationships between the 
predictive variables and the response variable (Strobl et al., 2009). 
Moreover, since on every node it is decided which predictive variable 
should be used for dividing the remaining set of cases, interactions be
tween predictive variables are also taken into consideration. RF uses the 
internal ‘Out Of Bag’ (OOB) technique to assess the accuracy of the 
classification: each decision tree of the forest takes a different random 
subsets from the dataset as training set, the ‘Bag’ cases, and the classi
fication of the cases outside that subset, the OOB cases, are used to test 
the trained decision trees and assess the classification error of the RF 
(Breiman, 2001; Fox et al., 2017). 

We used the function rfsrc() with its default settings of the random
ForestSRC package in R (Ishwaran et al., 2008; Ishwaran and Kogalur, 
2007, 2022; R Core Team, 2022) for the classification. The in Section 3.2 

Landscape characteristics defined classes of location, region, and the four 
landscape characteristics were the dependent or response variables, and 
the Hellinger transformed abundance or present/absent of OTUs were 
the independent or predictive variables. Each sample was considered as 
an independent case. Each RF consisted of 500 decision trees. 

The classification of the samples into local and regional categories 
was done five times, one for every sample technique of which more than 
three separate studies were available. These five sample techniques are 
the pitfall, pan trap, sweep net, transect count, and trap nest, all as 
defined by Martin et al. (2019). 

The classification of the samples into the classes of the four landscape 
characteristics was performed for every combination of study, sample 
technique, and radius separately. This resulted in 184 RFs of arable land, 
174 RFs of semi-natural areas, 169 RFs of urban areas, and 168 RFs of 
edge density of which the accuracy of prediction of landscape charac
teristic were available for further analysis. That the number of RFs per 
landscape characteristic is not equal is because in some combination of 
study, sample technique, and radius the landscape characteristics fall all 
in the same class. 

The function rfsrc() uses the classification errors of the RF to calcu
late the Normalized Brier score. The Brier score is a strictly proper 
scoring function that calculates the accuracy of probabilistic predictions 
(Brier, 1950). Normalizing the Brier score makes it independent of the 
number of categories of the response variable (Ishwaran and Lu, 2019). 
The Normalized Brier score has a theoretical value range between 
0 (perfect accuracy) and 1 (zero accuracy). For clarity sake, that score 
was transformed, by subtracting it from one, into the ‘reversed 
Normalized Brier score’ (rNBs) that runs from 0 (zero accuracy) to 1 
(perfect accuracy). Because of the bootstrapping parts of the RF pro
cedure, classification may result in negative rNBs values. The distribu
tion of these negative values can be regarded as half of the variance 
distribution of zero accuracy. In accordance with Strobl et al. (2009), the 
negative variance distribution was used to estimate a threshold value for 
accuracies higher than zero (Musters and van Bodegom, 2018). rNBs’s 
higher than the absolute 0.025 quantile of the rNBs-distribution were 
regarded as significantly different from zero. 

Our further analysis, the actual analysis of the amount of informa
tion, started with the exploration of the correlation between rNBs and 
the sample technique, number of OTUs, number of samples, longitude of 
study, latitude of study, maximum distance between sample site 
(calculated with https://geo.javawa.nl/coordcalc/), mean character
istic of the landscape, number of characteristic classes, and radius 
around the sample site. Based on the significance of the correlation 
between rNBs and the linear, quadratic, or cubic equation with these 
independent variables, and a backward stepwise model selection, a 
minimum Linear Mixed Model (LMM) was constructed for describing the 
relationship between dependent variable rNBs and independent variable 
landscape scale, i.e., radius, corrected for confounding variables. For a 
formal model selection, starting with a complete model including all 
independent variables and their interactions, our number of cases of 
calculated rNBs were too small (Anderson, 2008). Because it could not 
be assumed that the different rNBs calculated from the same dataset of a 
study were independent observations, the random effect variable was 
the study wherein the samples were collected. The LMM was fit with the 

Fig. 3. Hypotheses on the relationship between radius of area around a sample site and the amount of information based on combining Fig. 1A and 2A. A: the 
maximum information from site-specific organisms is larger than that of non-site-specific ones; B: the maximum information from site-specific organisms is equal to 
that of non-site-specific ones; C: the maximum information from site-specific organisms is lower than that of non-site-specific ones. 
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lmer() function of the lme4 package in R (Bates et al., 2015). Graphs were 
made with the scatterplot() function of the car package, the emmip() 
function of the emmeans package (Lenth, 2022), and several functions of 
the ggplot2 package (Wickham, 2016), all in R (R Core Team, 2022). 
Spatial autocorrelation of the rNBs of the pitfall studies with radius 500 
m, the most common type of study in our dataset, was checked by 
calculation Moran’s I with the function moranI() of the package lctools of 
R (Kalogirou, 2020), using a weight that selected the 3 nearest studies 
and the p-value of the randomized z-score. 

4. Results 

4.1. General results 

The dataset contained 40 European studies that could be used to 
predict the local and regional class of the sample sites based on the five 
sampling techniques of which >3 studies were available. The accuracies 
of these predictions, in terms of the reversed Normalized Brier score 
(rNBs), were between 0.64 and 0.91 (Table 1). 

The dataset contained 44 European studies that met the criteria (see 
Section 3.1. Data and 3.2. Landscape characteristics in Material and 
methods) for predicting the four landscape characteristic classes of the 
areas surrounding the sampling sites. The maximum distance between 
the sample sites within these studies is on average 89.7 km, but strongly 
left skewed (Fig. S3). The total number of datasets that allowed pre
diction of the four landscape characteristic classes, i.e., all radii with 
known landscape characteristics, added over all sampling methods and 
all studies, was 185. In most of these datasets the radii had >different 
classes per landscape characteristic, but in some cases only one class was 
available and therefore did not show differentiation in the landscape 
characteristic. This resulted in a variable number of cases per landscape 
characteristic that allowed us to grow a RF to predict the landscape class 
of the surrounding area. Therefore, the number of rNBs calculations of 
the prediction differed between the four landscape characteristics 
(Table 2). The average rNBs over all four landscape characteristics was 
0.206 (n = 697), but showed a left-skewed distribution (Fig. 4). 
Assuming that rNBs’s higher than the absolute 0.025 quantile of the 
distribution, which was − 0.238, are significantly different from zero, 
247 predictions had an rNBs significantly higher than zero, which is 
35.4% of all predictions (Table 2). The percentage of non-zero rNBs per 
radius variated between 24.3% and 42.1% (Table 3). 

4.2. First analysis of the effect of scale on the accuracy of predictions 

When plotting the rNBs against radius, the landscape characteristic 
seemed to show different relationships (Fig. 5). The correlations be
tween the four landscape characteristics were not strong, with that be
tween arable land and semi-natural area being the strongest (r = − 0.67; 
Table S2). 

The relationship between radius and rNBs per landscape character
istic is shown in Fig. 6. Based on Fig. 3, a cubic equation was used to first 
describe these relationships. In Fig. 7 is per landscape characteristic the 
effect given of the cubic relationship between radius and rNBs, esti
mated with an LMM without any confounding fixed effect variables and 
Study as random effect variable. When the predictions were based on 

present/absent of OTUs, instead of abundance, the accuracy of the 
predictions was slightly lower for all landscape characteristic (Table 2), 
this was consistent over spatial scales (Fig. S4), and the form of the 
relationship between the cubic relationship between radius and rNBs 
remained in all landscape characteristics the same (Fig. S5). 

4.3. Analyses of confounding variables 

The rNBs of all predictions together had a quadratic relationship 
with both longitude and latitude resulting in relative low scores in Mid- 
Europe (Fig. S6 and S7). No spatial autocorrelation was detected be
tween the rNBs of the pitfall studies at a radius of 500 m, the most 
common studies (Moran’s I = − 0.0675, Expected I = − 0.0769, p-value 
= 0.954). Obviously, the mean landscape characteristic measured 
within a study (meanLandscape) was different between the four char
acteristics (Landscape) (Fig. S1). Sampling technique (Sample.tech) did 
hardly affect rNBs, except for pitfalls that had relative high scores 
(Fig. S8). The number of OTUs per study varied between 17 and 565 
(mean = 100.2), the number of sampling sites between 10 and 160 
(mean = 44.2). Neither the number of OTUs, nor that of sampling sites 
affected the rNBs (Fig. S9 and S10). The maximum distance (MaxDist) 
between sample sites within a study showed a cubic relationship with 
rNBs (Fig. S11). The rNBs was lowest when the lowest landscape char
acteristic class (lowest.cc) was 2 and highest when the number of classes 
(n.cc) was 2 (Fig. S12, S13, and S14). 

4.4. Best models 

The LMM with all the rNBs as dependent variable and the cubic log 
(radius) interacting with the four landscape characteristics, including all 
significant confounding independent variables as discussed above, 
showed that the relation between the radius and rNBs was indeed 
significantly different between the four landscape characteristics 
(Fig. S15). Especially predicting edge density deviated from predicting 
the other landscape characteristics in its effect on the relationship be
tween rNBs and radius. Because of that, we also constructed an LMM for 
predicting all the landscape characteristics except edge density. This 
model showed that predicting arable land, semi-natural area, and urban 
area did not differ in their relationship between the radius and rNBs 
(Fig. S16). 

Next, two minimal best fitting LMM were backwardly stepwise 
selected, one for the relationship between the rNBs and the radius when 
predicting edge density classes (Table 4) and one for that relationship 
when predicting the three other landscape characteristic classes 
(Table 5). These models showed a cubic relationship between rNBs and 
radius when predicting edge density (Fig. 7D) and a quadratic rela
tionship when predicting the other three landscape characteristics 
(Fig. 8). 

5. Discussion 

The results showed that, as expected, arthropod samples contained 
ample information on the location and the region of the sample sites. 
The results also showed that arthropod samples indeed contain infor
mation that can be used to predict the characteristics of a landscape from 
the small (radius 100 m) to the large (radius 3000 m) landscape scale 
(Fig. 7). However, the information was in about 65% of the cases not 
enough to be accurate (Table 2). It may seem that this percentage is 
high, but one should take into consideration that in order to predict the 
class of the landscape accurately 1) a study should have done in a 
landscape that has enough variety in landscape characteristic to be 
predicted and 2) the study should have collected a large enough dataset, 
that is, it should have sampled enough sites and should have collected 
and identified enough OTUs. The studies of the landscapes within 250 m 
from the sample site had the lowest percentage of non-zero rNBs (24%), 
that of 100 m from the sample site the highest (42%; Table 3). 

Table 1 
Accuracy of the prediction of local and regional class per sampling technique. 
rNBs: reversed Normalized Brier score.  

Sampling Datasets OTUs Samples rNBs Location rNBs Region 

Pitfall 15 1406 841 0.809 0.893 
Pantrap 4 549 298 0.866 0.907 

Sweepnet 10 485 449 0.800 0.798 
Transect 7 334 356 0.644 0.734 
Trapnest 4 249 208 0.710 0.725  
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Our most remarkable general result, though, is that the relationship 
of the spatial scale of the surrounding area and the amount of infor
mation in the samples is different for the prediction of edge density on the 
one hand, and arable land, semi-natural area, and urban area on the other 
hand. 

For predicting edge density, a clear cubic relationship was found be
tween the spatial scale of the surrounding area and the amount of in
formation for that spatial scale (Fig. 7D). Of the scales studied, the 
information on the surrounding area in the 250 m radius around the 
sample site was the lowest and that in the ca. 1750 m radius was esti
mated to be the highest. 

When predicting arable land, semi-natural area, and urban area, a 
quadratic relationship was found between the spatial scale of the sur
rounding area and the amount of information (Fig. 8). The highest 
amount of information was found on the landscapes in 100 m around the 
sample site. The information decreased to the scale of about 1000 m 
around the sample site and leveled off to an almost equal rNBs, but 
slightly increasing amount of information over the larger scales up to 
3000 m. In this respect, no difference between the three landscape 

Table 2 
Datasets and predictions per landscape characteristic variable. Mean landscape is in percentage for arable land, semi-natural area, and urban area, and in km per ha for 
edge density. Percentage of predictions that result in a rNBs that is significantly higher than zero are between brackets. P/A: present/absent.  

Landscape characteristic Datasets Mean landscape Predictions Sign. pred. Mean rNBs Abund. Mean rNBs P/A 

Arable land 185 23.8 184 44 (23.9) 0.113 0.091 
Semi-natural area 185 9.4 174 54 (31.0) 0.206 0.184 
Urban area 185 4.8 170 71 (41.8) 0.250 0.239 
Edge density 185 0.3 169 79 (46.7) 0.263 0.247 
All 740 – 697 247 (35.4) 0.206 0.188  

Fig. 4. The distribution of rNBs values over all 695 predictions of the landscape 
characteristic class. 

Table 3 
Distribution of predictions and non-zero rNBs over the radii. A: arable land; S: semi-natural area; U: urban area; E: edge density.  

Radius (m) Datasets Predictions Non-zero rNBs Percentage Mean perc.   

A S U E A S U E A S U E  

100 44 43 40 34 40 14 19 18 26 32.6 35.0 55.9 45.0 42.1 
250 44 44 43 39 44 7 12 15 14 15.9 16.3 30.8 34.1 24.3 
500 44 44 43 44 41 9 12 20 13 20.5 20.9 27.3 48.8 29.4 
1000 29 29 26 29 25 5 6 11 15 17.2 19.2 20.7 44.0 25.3 
2000 14 14 13 14 10 5 4 5 6 35.7 38.5 28.6 50.0 38.2 
3000 10 10 9 10 9 4 1 2 5 40.0 44.4 10.0 22.2 29.2 
All 185 184 174 170 169 44 54 71 79 23.9 25.3 31.8 42.0   
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Fig. 5. Smoothed nonlinear regression lines of the raw relationship between rNBs and radius of the four landscape characteristics. Lines were constructed with the 
default settings of the function scatterplot() of the package car in R. 
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characteristics was detected. 

5.1. Linking the results to a theory of site-specificity 

In the Theory section, we hypothesized that the distribution over 
levels of spatial scale of the amount of information from the site-specific 
organisms is fundamentally different from that from the non-site- 
specific organisms. Our results give us no reasons to reject our 
hypotheses. 

First, the results concerning the prediction of edge density in the 
landscape around sample sites showed a high resemblance with the 
distribution of information in Fig. 3B, that assumed a more or less equal 
maximum amount of information of the site-specific and the non-site- 
specific organisms (compare Fig. 7D and Fig. 3B). 

Second, when predicting arable land, semi-natural area, or urban area 
in the landscape around sample sites, the results showed a resemblance 
with the distribution of information in Fig. 3A, that assumes a relative 
high amount of information of the site-specific organisms and low in
formation of the non-site-specific organisms, except that no decrease of 
information is detected at large levels of scale. This could be caused by 
the fact that the extend of this study is limited to levels of scale up to 
3000 m around the sample site and the decrease is taken place at much 
larger scales, which is also suggested in previous studies (Musters et al., 
2021, 2022). But it could also be caused by the small amount of infor
mation on these landscape characteristics at larger levels of spatial scale 
in the samples, so that any sign of a decrease is undetectable. 

The relatively large amount of information that seems to be available 
on the edge density in landscapes as compared to the low amount on 
arable land, semi-natural area, and urban area is striking, especially 

since the latter three are landscape features that may occupy large areas, 
while edges have no area themselves, but reflect the configuration of the 
landscape. And even under the assumption that edges are landscape 
elements themselves, with a width of, say, 10 m, the area occupied by 
them is 10 to 100 times smaller than that of the other three elements 
studied. 

According to our hypotheses on the distribution of information on 
spatial scale levels, our result suggests that organisms that inform us on 
edge density have an average transportation distance of ca. 1750 m, 
while that of organisms informing on arable land, semi-natural area, and 
urban area show no transportation distance within 3000 m. As stated 
before, this latter result could be due to the small amount of information 
on these landscape characteristics at larger levels of spatial scale in the 
samples, so that any sign of a transportation distance is undetectable. 

This leaves us with the question why in arthropod samples there is 
ample information on differences in the landscape configuration at 
higher levels of spatial scale, while there is limited information on the 
difference in area of what, for arthropods, seems to be highly relevant 
types of land use, i.e., arable, semi-natural, and urban, at such scales? 
Martin et al. (2019) give several reasons why higher edge density may 
lead to higher survival of the populations of organisms due to increased 
opportunities for exchange between different patches, which again may 
result in recue effects, resource complementation and supplementation, 
and asynchronization with competitors and predators. However, higher 
survival of populations might also be expected due to larger semi- 
natural area and lower survival due to larger arable or urban areas 
(Aguirre-Gutiérrez et al., 2015; Mei et al., 2023; Sánchez-Bayo and 
Wyckhuys, 2019; Svenningsen et al., 2024). But why are these latter 
effects hardly traceable at large scales in our datasets? Source-sink 
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theory (Pulliam, 1988) can help here: although, theoretically, non-site- 
specific organism can come from both source and sink populations, one 
might expect them more likely to come from sources than from sinks. 
This would result in a higher presence of organisms from sources in the 
datasets, and thus a higher amount of information about landscape 
features in the vicinity of the sample sites that support source pop
ulations. We think that these issue needs further research. 

5.2. Further considerations 

Tscharntke et al. (2012) described eight hypotheses for the way 
landscape characteristics affect biodiversity patterns and ecological 
processes, and gave ample references to support them. Of these we 
applied one for biodiversity patterns and one for population dynamics in 
our reasoning. 

The hypothesis for biodiversity patterns says that the size of the 
landscape-wide species pool moderates local biodiversity (Tscharntke 
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Fig. 7. Relationship and confidential interval (grey area) of the cubic relationship between radius and rNBs, estimated with an LMM without any confounding fixed 
effect variables and Study as random effect variable per landscape characteristic, calculated by the function emmip() of the emmeans package in R. 

Table 4 
Estimation of the effect of the fixed effect independent variables in the best fitting LMM model of rNBs for predicting edge density classes. Conditional R2 of the 
complete model: 0.385; marginal R2: 0.218; n = 169.   

Estimate Std. Error df t value Pr(>|t|)  

(Intercept) 17.6500 4.5980 127.6 3.839 0.000 *** 
log10(radius) − 19.6200 5.2960 125.1 − 3.705 0.000 *** 
I(log10(radius)^2) 7.1250 2.0030 124.4 3.558 0.001 *** 
I(log10(radius)^3) − 0.8438 0.2482 124.1 − 3.399 0.001 *** 
I(meanLandscape^2) 1.7750 0.6807 62.6 2.608 0.011 * 
I(meanLandscape^3) − 1.1140 0.5028 98.7 − 2.216 0.029 * 
Sample.techmalaise − 0.0643 0.1779 19.9 − 0.361 0.722  
Sample.techpansweep 0.1972 0.2387 30.6 0.826 0.415  
Sample.techpantraps 0.0452 0.0900 98.4 0.502 0.617  
Sample.techpitfalls 0.1630 0.0663 86.9 2.458 0.016 * 
Sample.techsuction 0.1660 0.1202 111.8 1.382 0.170  
Sample.techsurvey − 0.0523 0.1772 148.4 − 0.295 0.768  
Sample.techtransect 0.0782 0.0932 82.7 0.839 0.404  
Sample.techtrapnests 0.0617 0.1099 29.5 0.562 0.579  
MaxDist 0.0083 0.0036 22.6 2.322 0.030 * 
I(MaxDist^2) − 0.0001 0.0000 23.5 − 2.333 0.029 * 
I(MaxDist^3) 0.0000 0.0000 23.9 2.299 0.031 * 
lowest.cc − 0.1124 0.0395 133.6 − 2.842 0.005 **  
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et al., 2012). A simplified version of this hypothesis was used to explain 
the high amount of information on the regions from which the samples 
were taken (Table 1). It assumed that the four regions in which was 
divided Europe, viz. Eastern Europe, Mid Northern Europe, Mid South
ern Europe, and West Europe, are large enough to contain distinctly 
different species pools. As far as we know, little research has been done 
on the absolute size of regions to be able to consider them as containing 
different species pools of arthropods. We also used the hypothesis for 
supporting one of our assumption about the datasets. The analysis of the 
information on landscape characteristics in sets of samples used the 
accuracy of predicting the landscape characteristic classes as measure of 
information. For that, it was assumed that all samples per study were 
taken from the same species pool. Distances between sample sites within 
one study were never larger than 385 km, but usually much smaller 
(Fig. S3). Of aquatic arthropods it has been shown that they may not be 
spatially limited at large scales (De Bie et al., 2012), even up to 300 km 
(Viana et al., 2015), suggesting that there is no reason to reject our 
assumption. 

The hypothesis for population dynamics says, among other things, that 
spillover of organisms across habitats influences the landscape-wide 
community structure (Tscharntke et al., 2012). This hypothesis was 
used for the assumption that non-site-specific organisms may be present 
in samples. It was specified by assuming that organisms have, at a 
certain moment and place of sampling, a certain transportation distance. 
This assumption is support by literature discussed by Tscharntke et al. 
(2012), such as Schmidt et al. (2007), that shows that landscape-wide 
dispersal differs considerable among species and that species have spe
cific spatial scales at which they respond to landscape complexity. Of 

course, the transportation distance may depend on certain characteris
tics of the landscape, often summarized in the ‘connectivity’ of a land
scape. But it seems unlikely that the connectivity of the landscapes that 
were studied here, is different for the organisms that inform us on edge 
density from the organisms that do so on arable land, semi-natural area, 
or urban area. For that reason, we think that our results for the latter 
landscape characteristics is mainly due to low amounts of non-site- 
specific organisms that carry information on these characteristics in 
the samples. 

5.3. Recommendations for study designs 

The results and interpretation of the results have many consequences 
for the design of landscape studies of arthropod communities. 

First, when a study is aimed at finding relationships between species 
abundancy and local biotic and abiotic characteristics, the size of the 
focus area should be chosen small, probably smaller than with a radius 
of 100 m (0.031 km2). Also, it should be taken into consideration that 
part of organisms sampled are non-site-specific and do not inform on the 
local characteristics. These non-site-specific organisms cause noise in 
the dataset and may veil the relationship that is studied. They might 
even unjustly suggest context dependency of the results. Choosing a 
sample site and sampling time that minimalizes the chance for non-site- 
specific organisms could improve the research results. 

Second, when the study is aimed at finding the effects of the sur
rounding landscape on the arthropod community, the theory suggests 
that the size of the surrounding area should be limited by the typical 
transportation distances of the species studied. According to our results, 
this size should be at least an area of a circle with radius of ca. 1750 m, 
which is 9.6 km2, when studying arthropods. Also, it may be helpful for 
such studies to choose the sample site such that stochastic processes can 
easily transport organisms to it and to choose the time of the year such 
that these processes have a high chance of taken place. For monitoring 
systems that aim to follow the changes in arthropod abundancies as a 
result of landscape changes, the density of monitoring sample sites 
should be chosen in accordance with the size of the surrounding areas 
that is most cost effective. For arthropod in temperate agricultural 
landscapes the results of this study would mean that sample sites need 
not be closer than 3500 m to each other. 

Third, a small, but consistently lower, amount of information was 
found when present/absent instead of abundance of OTUs were used. 
Obviously, abundancy gives more information on landscape character
istics than presence/absence, but the loss of information seems small. 
From a study efficiency point of view, it might be justified to limit the 
processing of samples to the assessment of the presence of OTUs. 

Fourth, the confounding variables that turned out to be included in 
our best models showed that the amount of information available in an 
arthropod dataset may depend on the mean area or density of the 
landscape characteristic, the sampling technique, the distance between 
sample sites, and the way the depended variable is categorized in 

Table 5 
Estimation of the effect of the fixed effect independent variables in the best fitting LMM model of rNBs for predicting all landscape characteristic classes except edge 
density. Conditional R2 of the complete model: 0.548; marginal R2: 0.414; n = 528.   

Estimate Std. Error df t value Pr(>|t|)  

(Intercept) 1.99298 0.30509 494.4 6.532 0.000 *** 
log10(radius) − 0.64739 0.21838 493.3 − 2.965 0.003 ** 
I(log10(radius)^2) 0.10788 0.04134 497.5 2.609 0.009 ** 
meanLandscape 0.00578 0.00136 516.0 4.258 0.000 *** 
LandscapeSemiNatural 0.20762 0.03779 503.7 5.494 0.000 *** 
LandscapeUrban 0.22020 0.03844 513.2 5.728 0.000 *** 
lowest.cc − 0.16674 0.02548 516.0 − 6.544 0.000 *** 
I(highest.cc^2) 0.01459 0.00226 502.8 6.458 0.000 *** 
n.cc − 0.37839 0.07185 505.5 − 5.267 0.000 *** 
I(n.cc^2) 0.02136 0.00975 503.0 2.19 0.029 * 
meanLandscape:LandscapeSemiNatural − 0.00939 0.00258 513.2 − 3.639 0.000 *** 
meanLandscape:LandscapeUrban − 0.00489 0.00387 508.2 − 1.262 0.207   
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istics except edge density, estimated with an LMM without any confounding 
fixed effect variables and Landscape:Study:Sample.tech as random effect vari
able, calculated by the function emmip() of the emmeans package in R. 
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classes. 
Fifth, this study used samples taken from arthropod communities, 

without distinction between different arthropod groups. However, when 
the relationships between species abundancy and local characteristics 
are the focus of a study, one might consider to aim at arthropod groups 
that are known to be highly dependent on site-specific characteristics, i. 
e., species that are often referred to as specialists. And, when the focus is 
on the characteristics of the surrounding landscape, one might consider 
to aim at groups that are easily transported by wind, water, or biota. 

Sixth, our results suggested that arthropod samples may contain little 
information on arable land, semi-natural area, or urban area in the 
landscape at scales beyond 500 m around the sample site. Research 
aimed at studying this might lead to non-informative results, unless it is 
based on large datasets. 

Finally, this study uses terrestrial arthropods as a proxy for organ
isms taken from a local community for studying the amount of infor
mation in samples on the surroundings area. The results suggested that 
for a complete insight in that, spatial scales beyond the radius 3000 m 
should have been included in the study. Moreover, the method can also 
be applied on other animal groups, from aquatic invertebrates up to 
birds and mammals, and maybe even on plants and micro-organisms, as 
long as spillover of organisms can be assumed (Tscharntke et al., 2012). 
Bouasria et al. (2023) used regression RFs for studying the influence of 
spatial scales on model predictions of biomass. 

In general, awareness of the processes that bring organisms to sample 
sites in relation to the aim of the research could improve the study 
design and, as a consequence, the research results. 

5.4. Relevance for nature conservation 

Although this study was not aimed at nature conservation, its results 
are relevant for that. The ‘Intermediate Landscape Complexity Theory’ 
of Tscharntke et al. (2012) says that nature conservation measures are 
most cost effective when they are done in agricultural landscapes of 
intermediate complexity. But the theory does not tell what the absolute 
size of the areas should be that one could consider as belonging to one 
landscape. The study showed that, for arthropods, this size should in 
Europe be at least of a radius of 1750 m, that is of 9.6 km2, around the 
location of nature conservation measures, but other recent research 
show that it might be more (Akter et al., 2023; Cardoso et al., 2009; 
Evans et al., 2016; Musters et al., 2022). 
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