
Integrating ADTs in KeY and their application to
history-based reasoning about collection
Bian, J.; Hiep, H.A.; Boer, F.S. de; Gouw, C.P.T. de

Citation
Bian, J., Hiep, H. A., Boer, F. S. de, & Gouw, C. P. T. de. (2022).
Integrating ADTs in KeY and their application to history-based
reasoning about collection. Formal Methods In System Design, 61,
63-89. doi:10.1007/s10703-023-00426-x
 
Version: Publisher's Version
License: Creative Commons CC BY 4.0 license
Downloaded from: https://hdl.handle.net/1887/3765726
 
Note: To cite this publication please use the final published version
(if applicable).

https://creativecommons.org/licenses/by/4.0/
https://hdl.handle.net/1887/3765726


Formal Methods in System Design (2022) 61:63–89
https://doi.org/10.1007/s10703-023-00426-x

ORIG INAL ART ICLE

Integrating ADTs in KeY and their application to
history-based reasoning about collection

Jinting Bian1,3 · Hans-Dieter A. Hiep1,3 · Frank S. de Boer1,3 ·
Stijn de Gouw1,2

Received: 14 April 2022 / Accepted: 16 April 2023 / Published online: 9 May 2023
© The Author(s) 2023

Abstract
We discuss integrating abstract data types (ADTs) in the KeY theorem prover by a new
approach to model data types using Isabelle/HOL as an interactive back-end, and represent
Isabelle theorems as user-defined taclets in KeY. As a case study of this new approach, we
reason about Java’s Collection interface using histories, and we prove the correctness of
several clients that operate on multiple objects, thereby significantly improving the state-of-
the-art of history-based reasoning. Open Science. Includes video material (Bian and Hiep in
FigShare, 2021. https://doi.org/10.6084/m9.figshare.c.5413263) and a source code artifact
(Bian et al. in Zenodo, 2022. https://doi.org/10.5281/zenodo.7079126).

Keywords Formal verification · Abstract data types · Program correctness · Java collection
framework · KeY · JML · Isabelle/HOL

1 Introduction

The overall aim of this paper is to put formal methods to work by the verification of software
libraries which are the building blocks of millions of programs, and which run on the devices
of billions of users every day. Our research agenda is to verify heavily used software libraries,
such as the Java collection framework, since the verification effort weighs up against the
potential impact of errors. In [15] the use of formal methods led to the discovery of a major
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flaw in the design of TimSort, the default sorting method in many widely used programming
languages, such as Java and Python, and platforms, such as Android. An improved version
of TimSort was proven correct with the state-of-the-art domain-specific theorem prover KeY
[1]. The correctness proof of [15] convincingly illustrates the importance and potential of
formal methods as a means of rigorously validating widely used software and improving
it. In [21] this line of research has been further successfully extended by the verification of
the basic methods of (a corrected version of) the LinkedList implementation of the Java
collection framework, laying bare an integer overflow bug, using again the KeY theorem
prover.

KeY is tailored to the verification of Java programs. In a proof system based on sequent
calculus, KeY symbolically executes fragments of the loaded program which are represented
by modal operators of the underlying dynamic logic. KeY uses the Java Modeling Lan-
guage [10], JML for short, for the specification of class invariants, method contracts, and
loop invariants: these are annotations added to original Java programs. This specification
language is intrinsically state-based and as such is not directly suitable for the specification
of state-hiding interfaces. As such, our work described in [21] excludes the specification
and verification of the Collection#addAll(Collection) method implemented by
LinkedList, which adds all the elements of the collection that is passed as parameter.
Here, the difficulty lies in giving a specification of the interface, that works for all possible
implementations (including LinkedList itself).

In recent previous work [20] the concept of a history as a sequence of method calls and
returns has been introduced as a general methodology for specifying interfaces and verifying
clients and implementations of interfaces. As a proof-of-concept, using the KeY theorem
prover, this methodology has been applied to the core methods of Java’s Collection
interface and uses an encoding of histories as Java objects on the heap. That encoding,
however, made use of pure methods in its specification and thus required extensive use of
so-called accessibility clauses, which express the set of locations on the heap that a method
may access during its execution. These accessibility clauses must be verified (with KeY).
Furthermore, for recursively definedpuremethodswealso need to verify their termination and
determinism [30]. Essentially, the associated verification conditions boil down to verifying
that the method under consideration computes the same value starting in two heaps that are
different except for the locations stated in the accessibility clause. To that end one has to
symbolically execute the method more than once (in the two different heaps) and relate the
outcome of the method starting in different heaps to one another. After such proof effort,
accessibility clauses of pure methods can be used in the application of dependency contracts,
that are used to establish that the outcomeof a puremethod in two heaps is the same if one heap
is obtained from the other by assignments outside of the declared accessible locations. The
degree of automation in the proof search strategy with respect to pure methods, accessibility
clauses and dependency contracts turned out to be rather limited in KeY. So, while the
methodology works in principle, in practice, for advanced use, the pure methods were a
source of large overhead and complexity in the proof effort.

This paper avoids this complexity by instead modeling histories as Abstract Data Types,
ADTs for short. Elements of abstract data types are not present on the heap, avoiding the
need to use dependency contracts for proving that heap modifications affect their properties.
Since KeY has limited support for user-defined abstract data types, we introduce a general
workflow which integrates the domain-specific theorem prover KeY and the general-purpose
theorem prover Isabelle/HOL [33] for the specification of ADTs.

More generally, in our set-up, we distinguish domain-specific theorem provers, in our
case KeY, from general-purpose theorem provers, in our case Isabelle/HOL. The domain-
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specific theorem prover acts as verification condition generator: KeY has domain-specific
knowledge of the programming language (Java) and program specification language (JML)
in question. The theorems of a domain-specific theorem prover are correct pairs of programs
and specifications, and thus can be seen as giving an axiomatic semantics to programs and
specifications. A general-purpose theorem prover, in contrast, is oblivious to the intricate
details of programs and its specifications in question: e.g. it is not needed to formalize the
semantics of Java nor of JML in our general-purpose theorem prover Isabelle/HOL. Our
set-up thus differs from other approaches, such as in the Bali [32, 37] and LOOP [22, 25]
projects, that embed the semantics of the programming language and specification language
within the general-purpose theorem prover.

We apply our workflow to the Java Collection interface, study a number of example
client use cases of the interface, and compare our new approach with the previous approach
described in [20]. Although the previous approach works in principle, with our new approach
we can practically give a specification of the addAll method and verify correctness prop-
erties of its clients. Going further, we are now able to reason about advanced, realistic use
cases involving multiple instances of the same interface: we also have verified a complex
client program that destructively compares two collections.

This paper is an extended version of the conference paper [5]: in this extended paper,
we improved the accompanying artifact [6], we give more details on how we designed our
specification of the Collection interface, and describe in more detail the steps needed to
verify a number of complex example clients. In this paper we shall introduce and informally
explain concepts as they appear on-the-fly, but for reproducing the proofs underlying the
results it is helpful if the reader is familiar with KeY, JML, and Isabelle/HOL. Still, also to
the non-specialist, this paper may be interesting as it shows what features of a specification
and verification system we need in order to reason about real-world programs.

Related work The Java collection framework is among the most heavily-used software
libraries in practice [11], and various case studies have focused on verifying parts of that
framework [3, 23, 24]. Knüppel et al. [27] specified and verified several classes of the Java
collection frameworkwith standard JML state-based annotations, and found that specification
was one of the main bottlenecks. One source of the complexity concerns framing: specifying
and reasoning about properties and locations that do not change.

In state-based approaches, including the work by Knüppel et al. [27], (dynamic) frames
[38] inherently heavily depend on the chosen representation, i.e. at some point, the concrete
fields that are touched or changed must be made explicit. The same holds for separation logic
[34] approaches for Java [16]. Since interfaces do not have a concrete state-based represen-
tation, a priori specification of frames is not possible. Instead, for each class that implements
the interface, further specifications must be provided to name the concrete fields. One can
abstract from these concrete fields by using a footprint model method that specifies the frame
dynamically, i.e. a framemay depend on the state. However, the footprint model method itself
also requires a frame, leading to recursion in dependency contracts [2]. Moreover, any spec-
ification that mentions (abstract or concrete) fields can be problematic for clients of classes,
since the concrete representation is typically hidden from them (by means of an interface),
which raises the question: how to verify clients that make use of interfaces?

The history-based approach in this paper (contrary to our previous work on histories [20])
avoids specifying such frames, thus eliminating much effort needed in specification: there is
no need to introduce ad hoc abstractions of the underlying state, as the complete behavior of
an interface is captured by its history. Additionally, since wemodel such histories as elements
of an ADT separate from the sorts used by Java in this paper, histories can not be touched
by Java programs under verification themselves, and so we never have to use dependency
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contracts for reasoning about properties of histories. This allows us to avoid the bottlenecks
that arises in the approach of [20],which used an encoding of histories as ordinary Java objects
living on the heap. We refer to the previous approach [20] as the executable history-based
(EHB) approach, and the new approach presented in this paper as the logical history-based
(LHB) approach.

The idea presented in this paper of integrating Isabelle/HOL and KeY arises out of the
need for user-defined data types usable within specifications. Other tools, such as Dafny [29]
and Why3 [17], support user-defined data types in the specification language, contrary to
JML as it is implemented by KeY. However, the former tools are not suitable to verify Java
programs: for that, as far as the authors know, only KeY is suitable due to its modeling of
the many programming features of the Java language present in real-world programs.

2 Integrating abstract data types in KeY

Abstract data typeswere introduced in 1974 byBarbara Liskov and StephenZilles [31] to ease
the programming task: instead of directly programming with concrete data representations,
programmers would use a suitable abstraction that instead exposes an interface, thereby
hiding the implementation details of a data type. In most programming languages, such
interfaces only fix the signature of an abstract data type (e.g. Java’s interface or Haskell’s
typeclass). Further research has lead to many approaches for specifying abstract data types,
e.g. ranging from simple equational specifications, to axiomatizations in predicate logic. See
for an extensive treatment of the subject the textbook [35].

In the context of our work, we need to distinguish the two levels in which abstract data
types can appear: at the programming level, and at the specification level. In fact, Java supports
abstract data types bymeans of its interfaces, and for example the Java Collection Framework
provides many abstractions to ease the programming task. The specification language JML
does support reasoning about the instances of such interfaces, but does not allow user-defined
abstract data types on the specification level only. The reason is that JML is designed to be
“easier for programmers to learn and less intimidating than languages that use special-purpose
mathematical notations” [28]. There are extensions of JML to support user-defined types on
the specification level, e.g. model classes [12], but KeY does not implement them.

However, KeY does extend JML in an important way: a number of built-in abstract data
types at the specification level are provided [1, Section 2.4.1]. There is the abstract data type
of sequences that consists of finite sequences of arbitrary elements. Further, KeY provides the
abstract data type of integers that comprises the mathematical integers (and not the integers
modulo finite storage, as used in the Java language) to interpret JML’s \bigint. Elements
of these abstract types are not accessible by Java programs, and are not stored on the heap.
It is possible to reason about elements of such abstract data types, since the KeY theorem
prover allows definition of their theories implemented by inference rules for deducing true
statements involving these elements.

When introducing user-defined abstract data types, KeY does allow the specification of
abstract data types by adding new sorts, function symbols, and inference rules. These new
sorts and function symbols can be used in JML by a KeY-specific extension. A drawback is
that KeY provides no guarantee that the resultant theory is consistent. Thus, a small error
in a user-defined abstract data type specification could lead to unsound proofs. In contrast,
Isabelle/HOL (Isabelle instantiatedwithChurch’s type theory) includes a definitional package
for data types [7] that provides a mechanism for defining so-called algebraic data types,
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Fig. 1 The workflow of integrating ADTs in KeY

which are freely generated inductive data types: the user provides some signature consisting
of constructors and their parameters, and the system automatically derives characteristic
theorems, such as a recursion principle and an induction principle. Under the hood, each
algebraic data type definition is associated with a Bounded Natural Functor (BNF) that
admits an initial algebra [36], but for our purposes we simply trust that the system maintains
consistency.

The overall approach of integrating ADTs in KeY can be summarized by a workflow
diagram, see Fig. 1. What is common between Isabelle/HOL and KeY are the abstract data
types. From KeY, the underlying definition of the algebraic data type is not visible, nor are
the Java-specific types visible in Isabelle/HOL. This allows us to make use of the best of
both worlds: Isabelle/HOL is used as a general-purpose theorem prover, while KeY is used
as a domain-specific theorem prover for showing correctness of Java programs. Essentially,
we will be following three steps for defining the abstract data type between the two provers:

1. We define algebraic data types and functions in Isabelle/HOL to logically model domain-
specific knowledge of the Java program that we want to verify. These definitions can not
refer to Java types directly, but instead are defined using polymorphic type parameters,
thereby abstracting away from Java types.

2. We take the signature of our data types and functions from Isabelle/HOL and add corre-
sponding sorts and function symbols in KeY, using a type mapping for common types.
Then we write specifications of the Java program in JML that makes use of the new sorts
and function symbols by using a KeY-specific extension of JML.

3. We use the KeY system to perform symbolic execution of the Java program. This leads to
proof obligations in which the imported symbols are uninterpreted, meaning that one is
limited in reasoning about them in KeY. Sometimes, contracts in JML specify sufficient
detail such that the proof obligations can already be closed in KeY. Other times, specific
properties of the imported symbols are needed. At this stage, properties can be formulated
that capture our expectations, and after formulating these properties in Isabelle/HOL we
can prove them also in Isabelle/HOL. If we succeed in proving a lemma, that lemma is
added to KeY by representing it as an inference rule called a taclet.

The last step will usually be repeated many times until we finish the overall proof, because
typically one can not find all required lemmas at once.

Below we give more detail on each of these main steps.
Step 1. Formalizing ADTs in Isabelle/HOL. One defines data types and functions in

Isabelle/HOL in the usual manner: using the datatype command to define a data type and
the fun command to define functions. There are a number of caveats when working in
Isabelle/HOL, to ensure a smooth transfer of the theory to KeY:
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– For data types that contain Java objects, we have to work around the limitation that Java
types are not available in Isabelle/HOL. We can instead introduce a polymorphic type
parameter. Below we show how in our translation back to KeY, we put back the original
types by instantiating the polymorphic type parameters by Java types which are available
in KeY.

– Isabelle/HOL allows higher-order definitions, whereas the dynamic logic of KeY is first-
order. Thus, for function symbols that we wish to import in KeY, we limit ourselves
to first-order type signatures, therefore we only allow a subset of Isabelle/HOL to be
imported in KeY.

As a simple example, we declare a new parameterized data type (in Isabelle type param-
eters, such as α, are written prefixed to the parameterized type):

datatype α option = None | Some(α)

This data type allows us to model partially defined functions: an element of α option rep-
resents either ‘nothing’ or an element of the given type α. The definition introduces the
constructors None: α option and Some : α ⇒ α option. We can define functions recursively
over the structure of a user-defined data type. The latter is illustrated in Sect. 3.

Step 2. Using ADTs in JML specifications. The dynamic logic underlying KeY is a multi-
sorted logic. To declare new data types and functions, we may introduce sorts and function
symbols. The behavior of these function symbols are encoded as proof rules, which we
formulate using an extensible formalism called taclets [18, 19]. Taclets in KeY are stored in
plain-text files alongside the Java program sources that comprise the following blocks:

– We declare sorts corresponding to our data types in a block named \sorts. KeY has no
parameterized sorts. So, we instantiate each type (where the type parameters are replaced
by corresponding sorts provided by KeY) and introduce a sort with a suitable name for
each type instantiation.

– We declare the signatures of each function in a block named \functions. A function
signature consists of its arity and the sorts corresponding to its parameters. We erase
polymorphic type parameters, by replacing them by their instantiated sorts. Also, we
ensure that Isabelle/HOL’s built-in types are mapped to the corresponding KeY built-in
types, e.g. for int and bool.

– We add axioms to specify properties of functions in a block named \axioms.

Listing 1 shows how to represent the above data type α option. We have instantiated the type
parameter α with the java.lang.Object sort.

\sorts { option; }
\functions { option Some(java.lang.Object); option None; ... }
\axioms { ... }

Listing 1 Declaring sorts and function symbols for new ADTs in KeY.

The new function symbols can then be used in JML specifications (such as method con-
tracts and class invariants) by prefixing their name with \dl_. For example, the function
symbol None can be referred to in a JML contract by writing it as \dl_None. Axioms are
not (yet) needed to use our function symbols in JML specifications. Therefore, in step two
of our workflow we do not specify any axioms. We describe adding axioms in more detail in
step three below.

Step 3.Using the importedADTs during verification.Wenow focus on using the newADTs
in proofs of Java programswith KeY.When one starts proving that a Java program satisfies its
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JML specification and that specification contains function symbols as above (prefixed with
\dl_), KeY treats these as uninterpreted symbols (with unknown behavior, other than their
signature). In otherwords:without adding any axioms, only facts about general predicates and
functions that are universally valid can be used in KeY proofs. Typically this is insufficient
to complete the proof: one needs specific properties that following from the underlying
definition in Isabelle/HOL.

There are two ways in “importing” such properties in KeY. The first way is to specify
expected properties in JML contracts (e.g. preconditions, postconditions, invariants) where
the data type is used: this defers the moment in which the expected properties are actually
proved, e.g. if used in the contracts for interface methods. The second way is to “import” such
properties about the behavior of user-defined functions into KeY by defining inference rules
in the axioms block. These rules allow the inference of properties that KeY can not derive
from any other inference rules. By combining these two ways, the human proof engineer has
some flexibility when the proofs of specific properties are done.

We leverage Isabelle/HOL to prove the soundness and consistency of the imported axioms.
In essence, this provides a way to use Isabelle/HOL as an interactive back-end to KeY. Our
workflow supports a lazy approach that minimizes the amount of work: we only add axioms
about functions when they are necessary, i.e., when we are stuck in a proof situation that
requires more knowledge of the function behavior.

Let us consider a simple concrete example that illustrates the above concepts. Suppose
we have a proof obligation in KeY in which Some(o) = None appears as an assumption (it
occurs as an antecedent of an open goal, and to discharge this proof obligation it is sufficient
to show this assumption leads to a contradiction). We need to show that if there is some
object o, then Some(o) �= None. KeY can not proceed in proving this goal without any
axioms because Some and None are uninterpreted symbols in KeY. We thus formulate in
Isabelle/HOL, abstracting from the particular sorts as they appear in KeY, the following
lemma

lemma option_distinct :: Some(o) �= None

which we easily verified (in Isabelle) using a characteristic theorem of α option.
Our next objective is to import this lemma to KeY to make it available during the proving

process. We do this by formulating the lemma as a taclet in the block axioms, as can be
seen in Listing 2.

\axioms {
option_distinct {

\schemaVar \term java.lang.Object o1;
\find(Some(o1) = None)
\replacewith(false)

};
}

Listing 2 Adding a taclet to KeY that expresses the distinctness of constructors.

This taclet states that the name of the inference rule isoption_distinct. The keyword
find states to which expression or formula the rule can be applied (on either side of the
sequent). The placeholder symbols, called schema variables, are used to stand for, in this case,
the argument of the Some function. The placeholders are instantiated when the inference rule
is applied in a concrete proof. The keyword replacewith states that the expression or
formula in the find clause to which the rules is applied, is replaced after application by a
new expression or formula (which in this case is the formula false) in the resulting sequent.
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Onemay also express side conditions on other formulas that need to be present in the sequent
with the clause assumes (as shown in Listing 13 later on).

Another example shown below expresses injectivity of the function Some. This lemma
can also be verified using the characteristic theorems of the data type.

lemma Some_injective :: Some(a) = Some(b) ↔ a = b

Wecan express this injectivity rule by using thefind clausewith the expression Some(o1) =
Some(o2), and use o1 = o2 as the replacewith clause. A taclet which uses find and
replacewith on formulas corresponds to a logical equivalence in Isabelle/HOL, since
the formula can appear either as an antecedent or a succedent in a sequent in KeY. A full
exposition of the taclet language is out of scope of this article, we instead refer to the KeY
book [1].

3 History-based specification of collection

As a particular case study of working with abstract data types in KeY, we will employ ADTs
to support history-based reasoning [20]. In this section we will motivate our approach, and
give specifications of the Collection interface in terms of histories. In Sect. 4, we will
illustrate the use of these specification in the verification of the correctness of clients of the
Collection interface.

Listing 3 shows some of the main methods of the Collection interface. We want to
give a specification of these methods, which formalizes the informal Javadoc documentation
[8], by means of pre- and postconditions using JML. As already pointed out in the introduc-
tion, such a JML specification is intrinsically state-based, describing properties of instance
variables. But interfaces abstract from any information about instance variables because these
expose details about the underlying implementation.

Existing approachesmodel the general properties of a collection usingmodel fields in JML
[23, 27]. However, there are twomainmethodological problemswith usingmodel fields: first,
addingmodel fields to an interface isadhoc, e.g., they capture specific properties, and, second,
model fields denote locations on the heap and thus require (dynamic) frame conditions (see
e.g. [38]) for each method of the interface. From a client perspective, however, what is only
observable about any implementation of the Collection interface is the sequence of calls
and returns of the methods of the Collection interface. This sequence of events is also
called the history of the instance of the interface. Therefore in our approach, the methods of a
collection are formally specified bymathematical relations between user-defined abstractions
of such sequences.Histories thus can be viewed to constitute the canonical abstract state space
of an interface [20, 26]: by modeling the interface using its history, no longer do we need ad
hoc abstractions at the level of the interface. Further, since histories are modeled using ADTs
of which its elements are not stored on the heap, we do not have to specify frame conditions
when reasoning about general properties of histories.

All implementations of the Collection interface have certain constraints on sequences
of method calls and returns in common, which characterize valid behavior. These constraints
are formalized as pre- and postcondition specifications of the interface methods. In fact, the
signature of the methods of the Collection interface has been designed to allow for the
expression of such constraints, e.g., theBoolean value returned by theaddmethod, according
to the informal documentation, expresses whether the specified element has been added:

boolean add(Object o)

123



Formal Methods in System Design (2022) 61:63–89 71

Ensures that this collection contains the specified element. Returns true if this col-
lection changed as a result of the call. Returns false if this collection does not permit
duplicates and already contains the specified element. ... [A] collection always contains
the specified element after this call returns [normally]. [8]

Whether the element is actually added to the Collection is thus, in some cases, left to the
underlying implementation to decide. However, we can still infer from a sequence of calls of
add and remove and their corresponding returns what is the content of the Collection,
abstracting from the underlying implementation.

The Java collection framework has a behavioural subtype hierarchy [?]. Here,
Collection is the topmost type, that has two subtypes List and Set. These two sub-
types are incompatible: no set can be considered a list. As we shall see in the next subsection,
it is quite surprising that we can make use of multisets to formally capture the content of
a collection, since in algebraically specified data types multiset is a subtype of list and a
supertype of set.

public interface Collection {
boolean add(Object o);
boolean addAll(Collection c);
boolean remove(Object o);
boolean contains(Object o);
boolean isEmpty();
Iterator iterator();
...

}

Listing 3 The Collection interface.

public interface Iterator {
boolean hasNext();
Object next();
void remove();

}

Listing 4 The Iterator interface.

In order to formalize in Isabelle/HOL sequences of calls and returns of the methods
of the Collection interface, we introduce for each method definition a corresponding
constructor in the following parameterized data type:

datatype (α, β, γ ) event = Add(α,bool) | AddAll(γ, α elemlist) |
Remove(α,bool) | Iterator(β) | IteratorNext(β, α) | IteratorRemove(β) | ...

The type parameters α, β and γ correspond to (type abstractions of) the Java types Object,
Iterator, and Collection, respectively. In general, events specify both the actual
parameters and the return value (the last argument of event) of a call of the specified method.
For simplicity we focus here only on the essential methods of the collection interface, but
without much difficulty all other methods can be added too. For technical convenience, only
normal returns from method calls are considered events. The limitation of this is that some
programs rely on thrown exceptions, and may exhibit different method behavior based on
past method calls that throw exceptions. With extra work, this restriction can be lifted by also
considering additional events corresponding to method calls that do not return normally, e.g.
by recording the exception that is thrown instead of the return value.
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Note that in our definition above, one event is special: namely, the one that corresponds
with calls to the addAll method, which, roughly, adds all the elements of the argument
collection [8]:

boolean addAll(Collection c)
Adds all of the elements in the specified collection to this collection. The behavior of
this operation is undefined if the specified collection is modified while the operation
is in progress. (This implies that the behavior of this call is undefined if the specified
collection is this collection, and this collection is nonempty.) Parameter c is the collec-
tion containing elements to be added to this collection. Returns true if this collection
changed as a result of the call.

The problem here is that the Boolean return value only indicates that the underlying collection
has been modified. This information does not suffice to infer from a sequence of events the
contents of the underlying collection: the informal specification that in this case all elements
have been added is ambiguous in that it does not take into account the possible underlying
implementation of the receiving collection, e.g., what happens if you want to add all elements
of a list with duplicates to a set? In our formalization, the addAll event returns a selection
which is consistent with the type of the receiving collection. This selection is represented
by the α elemlist type which denotes lists of pairs of elements of type α and a Boolean
value. Intuitively, instances of this type represent the contents of the argument filtered by
the receiving collection, where each Boolean is a status flag whether the paired element is
considered to be included or not.

Note that this return type is a refinement of the Boolean returned by the addAllmethod,
which returns true if and only if the element list contains a pair (o, true), for some object o.
The requirement that the first component of the pairs in such a list corresponds to the content
of the added collection will be stated in the contract of the addAll method (see the next
section). The α elemlist data type is defined as follows:

datatype α elemlist = Nil | Cons(α,bool, α elemlist).

It introduces a polymorphic type, a constant Nil : α elemlist and a 3-ary function symbol
Cons : α × bool × α elemlist ⇒ α elemlist. The use of the names Nil and Cons is standard
for sequences.

An iterator provides a view of the elements that the collection contains. Iterators are
obtained by calling the iterator method of the Collection interface. This method
returns an object of a so-called inner class (which implements the Iterator inter-
face) of the surrounding collection. Objects of inner classes have access to the internal
state of the surrounding class. Iterator objects exploit this property to access the ele-
ments of the collection. It is possible to obtain multiple iterators, each with their own
local view on a collection. Thus, we model iterators as sub-objects of their owning col-
lection: method calls to sub-objects are registered in the history of the associated owning
object. The methods of the iterator interface are represented by corresponding events,
e.g., IteratorNext(β, α) and IteratorRemove(β) represent the Iterator#next() and
Iterator#remove() methods of the iterator β, respectively. As a sequence of events,
the history of a collection, as defined below, thus includes the calls and returns of the methods
of its iterators.

Finally, we introduce the type history as a recursive datatype:
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datatype (α, β, γ ) history = Empty | Event((α, β, γ ) event, (α, β, γ ) history)

As above, the type parameters α, β and γ correspond to (type abstractions of) the Java types
Object, Iterator and Collection. Here the data type history uses the constructors
Empty and Event: either the history is empty, or it consists of an event at its head and another
history as its tail. To add a new event to an old history, the new event will become the head
in front and the old history will be its tail.

3.1 History abstractions

Abstractions of a history are used to map the history to a particular value. Instead of dealing
with a specific history representation, we use abstractions to reason about histories: since
clients of an interface are oblivious of the implementation of the interface, clients cannot
know the exact events that comprise a history, only the value of our abstractions. In this
sense, we could consider two histories observationally equivalent whenever the value of all
our abstractions are the same.

The abstractionmultiset can be recursively defined to compute themultiplicity of an object
given a particular history. Intuitively it represents the ‘contents’ of a collection at a particular
instant.

fun multiset : (α, β, γ ) history × α ⇒ int

multiset(Empty, x) = 0

multiset(Event(Add(y, b), h), x) = multiset(h, x) + (x = y ∧ b ? 1 : 0)
multiset(Event(AddAll(y, xs), h), x) = multiset(h, x) + multisetEl(xs, x)

multiset(Event(Remove(y, b), h), x) = multiset(h, x) − (x = y ∧ b ? 1 : 0)
multiset(Event(IteratorRemove(i), h), x) =

multiset(h, x) − (last(h, i) = Some(x) ? 1 : 0)
multiset(Event(e, h), x) = multiset(h, x)

and e is any event not specified above leave the multiset unchanged.
The function multisetEl is defined as follows: given an element list and an element, it

computes the multiplicity of pairings of that element with true, intuitively representing the
‘contents’ of a filtered sequence.

fun multisetEl : α elemlist × α ⇒ int

multisetEl(Nil, x) = 0

multisetEl(Cons((y, b), t), x) = multisetEl(t, x) + (x = y ∧ b ? 1 : 0)
Similarly, occurs is defined as follows: given an element list, it computes the multiplicity of
elements occurring on the left in each pair that is in the element list, regardless of the Boolean
status flag.

A call to the iterator() method should returns a new iterator sub-object. We use the
abstraction iterators to collect all previously returned iterators and store them in a set. If we
are to ensure that a new iterator is returned then the newly created iterator must not be in this
set.

The Iterator#remove() method does not carry any arguments from which we can
infer what element of the collection is to be removed: this element is only retrieved by
searching the past history. Each iterator sub-object can be associated with an element that it
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has returned by a previous call to its next() method (if it exists). To that end, we define
the partial function last below:

fun last : (α, β, γ ) history × β ⇒ α option

last(Empty, i) = None

last(Event(IteratorNext( j, x), h), i) = (i = j ? Some(x) : last(h, i))

last(Event(e, h), i) = (modify(e) ? None : last(h, i))

where in the final clause e is any event different from IteratorNext.
We use the α option type to model this as a partial function, because not all iterators have

a last element (e.g., a newly created iterator). We cannot use null, since a collection could
contain such objects and that reference is not available in our Isabelle theory. We also define
the modify abstraction recursively: it is true for those and only those events that represent a
modification of the collection (e.g. successfully adding or removing elements).

The abstraction visited tracks the multiplicities of the elements already seen. Intuitively,
a call on method Iterator#next() will increase the visited multiplicity of the returned
object by one and leaves all other element multiplicities the same. We also define size that
takes a history and gives the number of elements contained by the collection, iteratorSize
of a history and an iterator which computes the total number of elements already seen by
the iterator, and the attribute objects that collects all elements that occur in the history in a
set. The abstraction hasNext models the outcome of the Iterator#hasNext()method.
That method returns true if and only if the iterator has a next element. If the iterator has not
yet seen all elements that are contained in its owner, it must have a next element that can
be retrieved by a call to Iterator#next(). We define hasNext to be true if and only if
iteratorSize is less than size.

What happens when using an iterator if the collection it was obtained from is modified
after the creation of the iterator? A ConcurrentModificationException is thrown
in practice. To ensure that the iterator methods are only called when the backing collection is
notmodified in themeantime, we introduce the notion of validity of an iterator as below. If the
backing collection is modified, all iterators associated with that collection will be invalidated.

We introduce the following abstraction:

fun isIteratorValid : (α, β, γ ) history × β ⇒ bool

isIteratorValid(Empty, i) ↔ false

isIteratorValid(Event(Iterator(y), h), i) ↔
(y = i ? true : isIteratorValid(h, i))

isIteratorValid(Event(IteratorNext(y, x), h), i) ↔
((y = i → hasNext(h, y)) ∧
(visited(h, y, x) < multiset(h, x)) ∧ isIteratorValid(h, i))

isIteratorValid(Event(IteratorRemove(y), h), i) ↔
((y = i) ∧ (∃w. last(h, y) = Some(w) ∧
(0 < visited(h, y, w))) ∧ isIteratorValid(h, i))

isIteratorValid(Event(e, h), i) = (¬modify(e) ∧ isIteratorValid(h, i))

where in the last clause, again e is any event not specified above: for those events we first
check if the collectionwasmodified thenwe leave isIteratorValid the same as for its tail. Note
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that calling the Iterator#remove()method invalidates all other iterators, but leaves the
iterator on which that method was called valid.

Finally, the abstraction isValid is a global invariant of the Collection interface and is
used only in Isabelle/HOL. We say a history is valid if all the conditions on the history as
specified by the method contracts are satisfied (see next section). The sort of histories that
is imported in KeY comprises only the valid histories, i.e. the subtype of histories for which
this global invariant holds. Validity of histories is defined recursively over the history data
type as follows (but we only focus on the definition of validity for the most important events,
for the full definition we refer the reader to the artifact [6]):

fun isValid : (α, β, γ ) history ⇒ bool

isValid(Empty) ↔ true

isValid(Event(Add(y, b), h)) ↔ (multiset(h, y) = 0 → b) ∧ isValid(h)

isValid(Event(AddAll(xs, b), h)) ↔
(∀y. multiset(h, y) = 0 → multisetEl(xs, y) > 0) ∧
(b ↔ ∃y. multisetEl(xs, y) > 0) ∧ isValid(h)

isValid(Event(Remove(y, b), h)) ↔ (b ↔ multiset(h, y) > 0) ∧ isValid(h)

isValid(Event(Iterator(x), h)) ↔ x /∈ iterators(h) ∧ isValid(h)

isValid(Event(IteratorNext(x, y), h)) ↔ x ∈ iterators(h) ∧
isIteratorValid(Event(IteratorNext(x, y), h)) ∧ isValid(h)

isValid(Event(IteratorRemove(x), h)) ↔ x ∈ iterators(h) ∧
isIteratorValid(Event(IteratorRemove(x), h)) ∧ isValid(h)

Intuitively, the clauses of the isValid predicate captures the following conditions which are
based on the Javadoc descriptions:

– Add: If one adds an element to the receiver, it must return true if it was not yet contained
before.

– AddAll: All elements of the argument that are not contained in the receiver should be
added; and the return value must be true whenever one such add succeeds.

– Remove: An element is removed (the return value must be true) if and only if it was
contained.

– Iterator: The returned iterator sub-object is an object that is not returned by a previous
call to Collection#iterator().

– IteratorNext: The method is only called on sub-objects returned before by a previous call
to Collection#iterator(), and the iterator should remain valid. By definition of
isIteratorValid, we also know that it implies isIteratorValid(h), i.e. that the iterator must
be valid before the method Iterator#next() is called.

– IteratorRemove: Similar to above.

3.2 Method contracts of collection

We are now able to formulate method contracts of the methods of the interface, making
use of histories and its abstractions. Every instance of the Collection interface has an
associated history, which we specify by using amodel method in JML, as shown in Listing 5.
Themodel method has as return type the sort corresponding to the histories we defined earlier
in Isabelle/HOL. We also specify the owner of an iterator by the means of a model method,
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see Listing 6. This allows us to refer to the history of the owning collection in the specification
of methods of the iterator.

public interface Collection {
/*@ model_behavior

@ requires true;
@ model history history();
@*/

...
}

Listing 5 The history() model method in JML.

public interface Iterator {
/*@ model_behavior

@ requires true;
@ model Collection owner();
@*/

...
}

Listing 6 The owner() model method in JML.

The history() model method here returns an element of an abstract data type: these
elements are independent of the heap, meaning that heapmodifications do not affect the value
returned by the model method before the heap modifications took place, thus eliminating the
need to apply dependency contracts for lifting abstractions of the history to updated heaps
as was required in the EHB approach [20].

As a guiding principle, we refrain from refering to constructors of the history in the pre-
and postcondition specifications of interface methods. Thus, our contracts are specified in
terms of the history abstractions only. This principle ensures that interfaces are specified up
to observational equivalence, thus leaving more room on the side of an implementor of an
interface to make choices how to implement a method. For example, the addmethod can be
implemented in terms of calling the addAll method of the same implementation supplied
with a singleton collection wrapping the argument. Another example would be implementing
the addAll method by iterating over the supplied collection and for each object call the
add method of the same implementation.

3.2.1 Method contract of the add()method

We have specified this method in terms of the multiset of the new history (after the method
call) and the old history (prior to themethod call, referred to in the postcondition with \old).
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/** Ensures that this collection contains the specified
element
* (optional operation).
* Returns true if this collection changed as a result of the call.
* Returns false if this collection does not permit duplicates and
* already contains the specified element. **/

/* @ public normal_behavior
@ ensures \dl_multiset(history(),o) ==
\dl_multiset(\old(history()), o) + ((\result == true) ? 1 : 0);

@ ensures (\forall Object o1; o1 != o; \dl_multiset(history(),o1) ==
\dl_multiset(\old(history()), o1));

@ ensures \dl_multiset(history(),o) > 0;
@ ensures \result == false ==>
(\forall Iterator it; it.owner() == this;

\dl_isIteratorValid(\old(history()), it) ==>
\dl_isIteratorValid(history(), it));

@ ensures (\forall Iterator it;
\old(it.owner()) == this; it.owner() == this);

@*/
boolean add(Object o);

Listing 7 The specification of the add() method.

In Listing 7, lines 1–5 show the informal Javadoc of the add method [8]. The JML
specification (lines 7–17) covers all information present in the Javadoc. More explanation
about the specification is given below:

– On lines 7–8: This clause ensures that the collection contains the specified element after
the add method call (as described in the informal Javadoc). If the collection changed as
a result of the call, the result is true and the multiset will be incremented accordingly.
Otherwise, the multiset will remain unchanged. Note that the value of \result is
underspecified, leaving room for multiple implementations of the collection interface.
Indeed, the difference between the refinements List and Set of the Collection
interface make a distinction between the behavior of add(Object): lists always allow
the addition of new elements, whereas sets only add unique elements. So, for the List
interface, the \result is unconditionally true. For the Set interface, the \result is
true if and only if the multiplicity of the object to add is zero before execution of the add
method.

– On lines 9–10: For each object different from the object to be added, the multiplicity
does not change. The Javadoc does not explicitly cover this. However, this makes more
precise how the collection may change by the call: no other objects may be added, other
than the one in the parameter.

– On line 11: The call to the add method guarantees that the multiplicity of the object
to add is positive. This formalizes the informal Javadoc property that the collection will
contain the specified element after returning.

The last two postconditions in the contract of add are not related to the Javadoc description,
but rather specify two properties related to our formalization of iterators as sub-objects.
On lines 12–15, the specification is a direct translation of the isIteratorValid definition in
Isabelle/HOL. If the collection remains unchanged, all iterators related to the collection are
still valid, otherwise the iterators will be invalidated due to the successful adding of elements
to the collection. On lines 16–17, it specified that a call to the add method does not affect
ownership of iterators of the collection.
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3.2.2 Method contract of the addAll()method

Consider modeling the addAll() method: how can we represent an invocation of this
method in a history? We can not simply record the argument instance, since that instance
may be modified over time. Could we instead take a snapshot of its history, and embed that
in the event corresponding to addAll? No, it turns out that such a nested history snapshot
leads to difficulty in defining themultiset function that represents the contents of a collection:
the receiver of the addAll method, being a concrete implementation, is underspecified at
the level of Collection. A snapshot of the history of the argument merely allows us to
retrieve the contents of the argument at that time, but not how the receiving collection deals
with those individual elements.

Listing 8 shows the interface specification of the addAll method. Lines 1–7 show the
informal Javadoc of the addAll method.

/** Adds all of the elements in the specified collection to this
* collection (optional operation).
* The behavior of this operation is undefined if the specified
* collection is modified while the operation is in progress.
* This implies that the behavior of this call is undefined if the
* specified collection is this collection, and this collection is
* nonempty. **/
* @ ensures (\exists elemlist el;

(\forall Object o;
\dl_occurs(el,o) == \dl_multiset(c.history(),o) &&
\dl_multiset(history(),o) ==
\dl_multiset(\old(history()),o) + \dl_multisetEl(el,o)));

@ ensures (\forall Object o;
\dl_multiset(c.history(),o) == \dl_multiset(\old(c.history()),o));

@ ensures (\forall Object o;
\dl_multiset(c.history(),o) > 0 ==>\dl_multiset(history(),o) > 0);

@ ensures \result == false ==>
(\forall Iterator it; it.owner() == this;
\dl_isIteratorValid(\old(history()), it) ==>
\dl_isIteratorValid(history(), it));

@ ensures (\forall Iterator it;
\old(it.owner()) == this; it.owner() == this);

@*/
boolean addAll(Collection c);

Listing 8 The use of multiset and elemlist in the specification of addAll.

• On lines 8–12: The ensures clause shows how the multiplicities of elements of the argu-
ment collection are related to that of the receiving collection. Here,
\dl_multiset(c.history(),o) and \dl_multiset(history(),o),
defined above, denote the multiplicity of an element o in the argument and receiving
collection, respectively. The list el associates a status flag with each occurrence of an
element of the argument collection. This flag indicates whether the receiving collection’s
implementation actually does add the supplied element (e.g., a Set filters out dupli-
cate objects but a List does not). Consequently, the multiplicity of the elements of the
receiving collection is updated by how many times the object is actually added, denoted
by \dl_multisetEl(el,o) (also defined above). The existential quantification of
this list allows both for abstraction from the particular enumeration order of the argu-
ment collection and the implementation of the receiving collection as specified by the
association of the Boolean values.

• On lines 13–14: The multiplicity of the elements of the argument collection will not
change due to thismethod call. The Javadoc does not explicitly state this, but this property
is needed to reason about unchanged contents of the supplied argument collection.
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• On lines 15–16: If there are some objects in the argument collection that are not yet added
to this collection, then the multiplicity of those objects must be positive after the method
returns. This formalizes the informal Javadoc that all of the elements in the specified
collection need to be added to this collection.

The postconditions on lines 17–20 and lines 21–22 have the same meaning as the last two
postconditions of the add method.

3.2.3 Method contract of the Iterator#remove()method

Next we consider the following use case: iterating over the elements of a collection. The
question arises: what happenswhen using an iterator when the collection it was obtained from
is modified after its creation? In practice, a ConcurrentModificationException is
thrown. To ensure that the iterator methods are only called when the backing collection is
not modified in the meantime, we introduce the notion of validity of an iterator. As already
discussed above, we record the events of the iterators in the history of the owning collection,
alongside other events that signal whether that collection is modified, so that indeed we can
define a recursive function that determines whether an iterator is still valid. Another complex
feature of the iterator is that it provides a parameterless Iterator#remove() method,
producing no return value. Its intended semantics is to delete from the backing collection the
element that was returned by a previous call to Iterator#next(), and invalidating all
other iterators.

The specification of this method is illustrated in Listing 9.

/** Removes from the underlying collection the last element returned by
* this iterator (optional operation).
* This method can be called only once per call to next().
* The behavior of an iterator is unspecified if the underlying
* collection is modified while the iteration is in progress in any way
* other than by calling this method. **/

/* @ ...
@ requires \dl_last(owner().history(),this) != \dl_None;
@ ensures (\exists Object o;

\dl_last(\old(owner().history()),this) == \dl_Some(o);
\dl_multiset(owner().history(),o) ==
\dl_multiset(\old(owner().history()),o) - 1);

@ ensures (\exists Object o;
\dl_last(\old(owner().history()),this) == \dl_Some(o);
(\forall Object o1; o1 != o;

\dl_multiset(owner().history(),o1) ==
\dl_multiset(\old(owner().history()),o1)));

@*/
void remove();

Listing 9 Part of the specification of the remove method on Iterator.

– On line 8: Here we use the last property to capture the return value of a previous call
to Iterator#next(). This formalizes the informal Javadoc that the remove()
method can be called only once per call to next(): after the remove method returns, the
last property gives back None as can be seen from the definition in the previous section.
Thus calling remove() twice after one call to next() is not allowed.

– On lines 9–12: The object that was last returned by next() is removed from the owning
collection.

– On lines 13–17: This postcondition is not explicitly covered by the informal Javadoc,
but this specifies that no other object may be removed, other than the object that was
returned by the previous call to next.
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For the full Isabelle/HOL theory and method contracts of our case study, we refer the
reader to the artifact accompanying this paper [6]. This artifact includes the translation of the
theory to a signature that can be loaded in KeY (version 2.8.0), so that its function symbols
are available in the JML specifications we formulated for Collection and Iterator. It
also includes the taclets we imported from Isabelle, that we used to close the proof obligations
generated by KeY.

4 History-based client-side verification of collection

In this section, we will describe several case studies which we perform to show the feasibil-
ity and usability of our history-based reasoning approach supported by ADTs. Section4.1
provides an example that we have verified with both the EHB approach [20] and the LHB
approach described in this paper. This case supports our claim that the LHB approach yields
a significant improvement of the total proof effort when compared to the EHB approach. As
such, we are now able to verify more complex examples: the examples in Sect. 4.2 demon-
strate reasoning about iterators, and, advancing further, we will verify binary methods in
Sect. 4.3. Finally, proof statistics for all case studies are in Sect. 4.4.

We focus in this paper on the verification of client-side programs. Clients of an interface
are, in principle, oblivious of the implementation of the interface. Hence, every property
that we verify of a client of an interface should hold for any correct implementation of that
interface.

4.1 Significant improvement in proof effort

Using ADTs instead of encoding histories as Java objects results in significantly lower effort
in defining functions for use in contracts and giving correctness proofs. This can be best seen
by revisiting an example of our EHB work [20] and comparing it to the proof effort required
in the LHB approach using ADTs.

/*@ ...
@ ensures (\forall Object o1; \dl_multiset(x.history(),o1) ==

\dl_multiset(\old(x.history()),o1)); @*/
public static void add_remove(Collection x, Object y) {

if (x.add(y)) x.remove(y);
}

Listing 10 Adding an object and if successful removing it again, leaves the contents of a Collection the
same.

The client code and its contract is given in Listing 10, which has the same contract as in
previous work, except we now use the imported functions we have defined in Isabelle instead
of using pure methods and their dependency contracts.

In both the previous and currentwork,we specify the behavior of the client by ensuring that
the ‘contents’ of the collection remains unmodified:we do so in terms of themultiset of the old
history and the new history (after the add_remove method). During verification we make
use of the contracts of methods add(Object) and remove(Object). These contracts
specify their method behavior also in terms of the old and new history, relative to each call.
Let h be the old history (before the call) and h′ be the new history (after the call). Let y be the
argument, the removemethod contract specifies thatmultiset(h′, y) = multiset(h, y)−1 if
the return value was true, and multiset(h′, y) = multiset(h, y) otherwise. Further, it ensures
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the return value is true if multiset(h, y) > 0. Also, multiset(h′, x) = multiset(h, x) holds
for any object x �= y. In similar terms, a contract is given for add that specifies that the
multiplicity of the argument is increased by one, in the case that true is returned, and that
regardless of the return value the multiplicity of the argument is positive after add.

We need to show that the multiplicity of the object y after the add method and the
remove method is the same as before executing both methods. At this point, we can see
a clear difference in verification effort required between the two approaches. In the EHB
approach, multiplicities are computed by a pure Java method Multiset that operates on
an encoding of the history that lives on the heap. Since Java methods may diverge or use
non-deterministic features, we need to show that the pure method behaves as a function: it
terminates and is deterministic. Moreover, since we deal with effects of the heap, we also
need to show that the computation of this pure method is not affected by calls of add or
remove, which requires the use of an accessibility clause of the multiset method.

To make this explicit, Listing 11 shows a concrete example of a proof obligation from
KeY that arose in the EHB approach.

...
History.Multiset(h,y)@heap2 + 1 = History.Multiset(h,y)@heap1,
History.Multiset(h,y)@heap1 = History.Multiset(h,y)@heap + 1,
...
==>
History.Multiset(h,y)@heap2 = History.Multiset(h@heap,y)@heap2

Listing 11 Simplified proof obligationwith histories as Java objects showing evaluation of themultiset function
as a pure (Java) method in various heaps.

Informally, the proof obligation states that we must establish that the multiplicity of y
after adding and removing object y (resulting in the heap named heap2) is equal to the
multiplicity of y before both methods were executed (in the heap named heap). So we have
to perform proof steps relating the result/behavior of the multiset method in different heaps.
In practice, heap terms may grow very large (i.e. in a different, previous case study [14] we
encountered heap terms that were several pages long) which further complicates reasoning.

By contrast, in the LHB approach of this paper, we model multiset as a function without
any dependency on the heap, and so we do not have to perform proof steps to relate the
behavior of multiset in different heaps (the interpretation of multiset is fixed and does not
change if the heap is modified). While the arguments ofmultiset may still depend on the heap
(such as the history associated with an interface that lives on the heap), when we evaluate
the argument to a particular value (such as an element of the history ADT) the behavior
of the multiset function when given such values does not depend on the heap.1 Moreover,
by defining the function in Isabelle/HOL, we make use of its facilities to show that the
function is well-defined (terminating and deterministic). These properties are verified fully
automatically in Isabelle: contrary to the proofs of the same properties given in KeY in the
EHB approach. Thus, the LHB approach significantly reduces the total verification effort
required.

More specifically, the proof statistics that show how to verify the Multiset puremethod
is terminating and deterministic and satisfies its equational specification in our EHB approach
is shown in Table1. This (partially manual) effort in KeY is eliminated in the LHB approach,
since the proof can be done automatically using Isabelle/HOL: these properties follow auto-

1 This can be compared to the expression x + y in Java where x and y are fields: the value of x and y depends
on the heap but the meaning of the ‘+’ operation does not.
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Table 1 Proof statistics of verifying termination, determinacy, and equational specification of the Multiset
pure method in the EHB approach. The required effort for a single pure method is large

Name Nodes Branches I.step Q.inst Contract Dep Loop inv Time

Multiset 54,857 1053 52 476 39 0 0 72min

matically from the function definition and the characteristic theorems of the underlying data
type definitions.

Furthermore, comparing the verification of theadd_removemethod in both approaches,
it can be immediately seen that we no longer have to apply any dependency contract in the
LHB approach. The EHB approach was studied in the context of a simpler definition for
histories (without modeling the addAll event), thus favoring the LHB approach even more.
Moreover, the proof obligations involving the function symbol multiset can be resolved
using the contracts of the methods add(Object) and remove(Object) only, since
these contract specify that the multiplicity of the argument is first increased by one and then
decreased by one. Thus, this example client can be verified without importing any lemma
from Isabelle/HOL.

4.2 Reasoning about iterator

In this subsection we will illustrate the benefits of our LHB approach in the verification
of client-side examples that work with iterators. We model iterators as sub-objects so that
their history is recorded by the associated owning collection. As we discuss above, iterators
require special treatment because their behavior relies on the history of other objects, in our
case the enclosing collection that owns the iterator.

In the EHB approach [20], we did verify a client (shown in Listing 12) of iterator and
showed its termination: but we did not verify the pure methods (termination, determinism,
equational specification) used in the specification that modeled the behavior of iterators.
The EHB approach was not practical in this respect, since we need many abstractions: such
as size, iteratorSize, isValid, isIteratorValid and its supporting functions last, hasNext, and
visited. The large number of abstractions needed to model the behavior of iterators shows a
verification bottleneckwe encountered in the EHB approach:modeling these as puremethods
and verifying their properties takes roughly the same effort as required for multiset, per
function! In the LHB approach we have defined these abstractions in Isabelle/HOL, and thus
eliminated the need to show termination, determinism and that they satisfy their equational
specification within KeY.

public static void iter_only(Collection x) {
Iterator it = x.iterator();
/*@ ...

@ decreasing \dl_size(it.owner().history()) -
\dl_iteratorSize(it.owner().history(),it); @*/

while (it.hasNext()) it.next();
}

Listing 12 Iterating over the collection. Why does it terminate?

The main term needed to show termination of the client of iterator is given in the
decreasing clause in JML. For the decreasing term, it has to be shown that it is strictly
decreasing for each loop iteration and that it evaluates to a non-negative value in any state
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satisfying the loop invariant [1]. Following our workflow in Sect. 2, we are stuck in proof situ-
ation of the verification conditions involving the decreasing term, since the function behaviors
of size and iteratorSize are not defined in KeY. We thus formulate the lemma below:

lemma sizeCompare :: isValid(h) ⇒ isIteratorValid(h, i t) ⇒
size(h) ≥ iteratorSize(h, i t)

According to the definition of iteratorSize, it only adds 1 when executing the next()
method, but the definition of isIteratorValid in Sect. 3.1 indicates that this method is only
executed under the condition that size is larger than iteratorSize, so this lemma can be proven
in Isabelle/HOL. The next step we take, is translating the above lemma to a taclet named
sizeCompare as shown in Listing 13.We can now apply this taclet to close the verification
condition showing that the loop invariant implies that the decreasing term is not negative.

\axioms {
sizeCompare {

\schemaVar \term history h;
\schemaVar \term Iterator it;
\assumes(isIteratorValid(h,it) = TRUE ==>)
\add(size(h) >= iteratorSize(h,it) ==>)

}; }

Listing 13 Adding a taclet to KeY that expresses the relationship between size and iteratorSize.

Advancing further, we want to verify an example that modifies the backing collec-
tion through an iterator. Consider the example in Listing 14 that makes use of the
Iterator#remove() method. We iterate over a given collection and at each step we
remove the last returned element by the iterator from the backing collection. Thus, after
completing the iteration, when there are no next elements left, we expect to be able to prove
that the backing collection is now empty.

/*@ ...
@ ensures \dl_size(x.history()) == 0; @*/

public static void iter_remove(Collection x) {
Iterator it = x.iterator();
/*@ ...

@ loop_invariant \dl_iteratorSize(it.owner().history(),it) == 0;
@ decreasing \dl_size(it.owner().history()); @*/

while (it.hasNext()) {
it.next();
it.remove();

} }

Listing 14 Example 3: Iterating over the collection and removing all its elements.

This example also shows an important aspect of our LHB approach: being able to use
Isabelle/HOL to derive non-trivial properties of the functions we have defined. The crucial
insight here is that, after we exit the loop, we know that hasNext() returned false. Fol-
lowing the definition of hasNext, we established in Isabelle/HOL the (non-trivial) fact that a
valid iterator has no next elements if and only if iteratorSize and size are equal. Following
our workflow, we have proven this fact and imported it into KeY as a taclet, which is shown
in Listing 15. Since it is a loop invariant that the size of the iterator remains zero (each time
we remove an element through its iterator, it is not only removed from the backing collection
but also from the elements seen by the iterator), we can thus deduce that finally the collection
must be empty.

123



84 Formal Methods in System Design (2022) 61:63–89

HasNext_size {
\schemaVar \term history h;
\schemaVar \term Iterator it;
\assumes(isIteratorValid(h,it) = TRUE ==>)
\find(HasNext(h,it) = FALSE)
\replacewith(size(h) = iteratorSize(h,it))
};

Listing 15 Taclet for showing the equality between size and iteratorSize.

4.3 Reasoning about binarymethods

Binary methods are methods that act on two objects that are instances of the same interface.
The difficulty in reasoning about binary methods [9] lies in the fact that one instance may,
by its implementation of the interface method, interfere with the other instance of the same
interface. By using our history-based approach, we can limit such interference by requiring
that the history of the other instances remains the same during the execution of a method
on some receiving instance. Consequently, properties of other collection’s histories remain
invariant over the execution of methods on the receiving instance.

As a client-side verification example, we have verified clients that operate on two col-
lections at the same time. This is interesting, since both collections can be of a different
implementation, and can potentially interfere with each other. The technique we applied here
is to specify what properties remain invariant of histories of all other collections, e.g. that
a call to a method of one collection does not change the history of any other collection.
Since histories are not part of the heap, that a history remains invariant implies that all its
(polymorphic) properties are invariant too. However, if a history contains some reference to
an object on the heap, it can still be the case that properties of such an object have changed.

In the example given in Listing 16, we make use of the addAllmethod of the collection,
adding elements of one collection to another. Clearly, during the addAll call, the collections
interfere: collection x could obtain an iterator of collection y to add all elements of y to
itself. So, in the specification of addAll we have not history invariance of y. Instead, we
specify what properties of y’s history remain invariant: in this case its multiset must remain
invariant (assuming x and y are not aliases). In our example, the program first performs
such addAll, and then iterates over the collection y that was supplied as an argument. For
each of the elements in the argument collection y, we check whether x did indeed add that
element, by calling contains. We expect that after adding all elements, that all elements
must be contained. Indeed, we were able to verify this property.

/*@ ...
@ ensures \result = true; @*/

public static boolean all_contains(Collection x, Collection y) {
x.addAll(y); Iterator it = y.iterator();
/*@ ...

@ loop_invariant (\forall Object o1;
\dl_multiset(y.history(),o1) > 0 ==>
\dl_multiset(x.history(),o1) > 0); @*/

while(it.hasNext()) {
if (!x.contains(it.next())) { return false; }

}
return true;

}

Listing 16 Using the addAll method and checking for inclusion.
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The crucial property in this verification is shown as the loop invariant: all objects that are
contained in collection y are also contained in collection x. This can be verified initially:
the call to iterator does not change the multisets associated with the histories of x and y,
and after the addAllmethod is called this inclusion is true. But why? As already explained
above, in the specification of addAll, we state the existence of an element list: this is an
enumeration of the contents of the argument collection y, but for each element also a Boolean
flag that states whether x has decided to add those elements. Since this flag depends on the
actual implementation of x, which is inaccessible to us, the contract of addAll existentially
quantifies the element list. Thus, from the postcondition of addAll, for any element that was
not yet contained in x, at least one of the pairs in the element list with that same element must
have a true flag associated. Following from the specification of addAll, we can deduce
that the loop invariant holds initially. From the loop invariant, we can further deduce that the
contains method never returns false, so the then-branch returning false is unreachable.
Termination of the iterator can be verified as in the previous example. Hence, the overall
program returns true.

The last example we give is the most complex and realistic one: it is a program that
compares two collections. The example involvesmutation of two collections. Two collections
are considered equivalent whenever they have the same multiplicities for all elements. The
example shown in Listing 17 performs a destructive comparison: the collections are modified
in the process by removing elements. Thus, we have formulated in the contract that this
method returns true if and only if the two collections were equivalent before calling the
method. From this example, it is also possible to build a non-destructive comparison method
by first creating a copy of the input collections, e.g. using IdentityHashMap (which, in
recent work [13], has its correctness verified).

/*@ ...
@ requires x != y;
@ ensures \result == true <==> (\forall Object o1;

\dl_multiset(\old(x.history()),o1) ==
\dl_multiset(\old(y.history()),o1)); @*/

public static boolean compare_two(Collection x, Collection y) {
Iterator it = x.iterator();
/*@ ...

@ loop_invariant \dl_isiteratorValid(it.owner().history(), it);
@ loop_invariant (\forall Object o1;

\dl_multiset(\old(x.history()),o1) ==
\dl_multiset(\old(y.history()),o1) <==>

\dl_multiset(x.history(),o1) ==
\dl_multiset(y.history(),o1)); @*/

while (it.hasNext()) {
if (!y.remove(it.next())) { return false; }
else { it.remove(); }

}
return y.isEmpty();

}

Listing 17 A realistic example of a binary method.

We assume the two collections are not aliases. The verification goes along the following
lines: it is a loop invariant that the two collections were equivalent at the beginning of the
method compare_two if and only if the two collections are equivalent in the current state.
The invariant is trivially valid at the start of the method, and also at the start of the loop since
the iterator does not change the multisets of either collection: the call on x explicitly specifies
that x’s multiset values are preserved, but moreover specifies the invariance of properties of
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histories of any other collection (so also that of y). The crucial point is that a call to a method
of one collection does not change the properties of other collections, such as the value of
its multiset. The same holds for iterators of other collections. We specify that the history
remains invariant for all other collections (and thus the history of sub-objects too) and that
the owners of all iterators are preserved, as shown in Listing 18. These ensures clauses need
to be additionally mentioned in the collection’s method specifications.2

/*@ ...
@ ensures (\forall Collection x; x != this;

x.history() == \old(x.history()));
@ ensures (\forall Iterator it; \old(it.owner())== it.owner());
@*/

Listing 18 Additional specification clauses needed to prevent potential aliasing.

For each element of x, we remove it from y (which does not affect the iteration over x,
since the removal of an element of y specifies that the history of any other collection remains
unaffected). If that fails, then there is an element in x which is not contained in y, hence
x and y are not equivalent, hence they were not equivalent at the start of the program. If
removal from y succeeded, we also remove the element from x through its iterator: hence x
and y are equivalent iff they were equivalent at the start of the loop. At the end of the loop
we know x is empty (a similar argument as seen in a previous example). If y is not empty
then it has (and had) more elements than x, otherwise both are empty and thus were also
equivalent at the start of the program.

4.4 Proof statistics

The proof statistics of all the use cases discussed in this article are given in Table 2 below.
These proofs were constructed with KeY version 2.8.0. Some of the lemmas proven in
Isabelle/HOL can be done automatically, but the overall proof effort in Isabelle/HOL takes
about 2h. The time estimates must be interpreted with caution: the reported time is based on
the final version of all definitions and specifications and does not include the development
of the theory in Isabelle/HOL or specifications in JML, and the time estimates are highly
dependent on the user’s experience with the tool.

The rows marked † come from the EHB approach (encoding histories as Java objects
[20]). The non-marked rows, i.e. the LHB approach, are part of the accompanying artifact [6].
Compared with the artifact [6] for our conference paper [5], we have simplified the contracts
to make them more readable. For example, instead of adding invariant properties to all pre-
and postconditions explicitly in the contracts, we now specify them as interface invariants.
This requires more effort during verification, since previously verification conditions that
could be automatically closed need to be proven manually (due to the limitations of KeY
in its strategy of automatically unfolding partial invariants). We also provide video files (no
sound!) that show a recording of the interactive proof sessions [4].

5 Conclusion

We showed how ADTs externally defined in Isabelle/HOL can be used in JML specifications
and KeY proofs, and we applied this technique for specifying and verifying an important

2 See, in the artifact, the LocalCollection and LocalIterator interfaces.
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Table 2 Summary of proof statistics

Name Nodes Branches I.step Q.inst Contract Dep Loop inv Time (min)

add_remove† 3936 79 44 5 2 23 0 11

add_remove 1514 15 12 7 2 0 0 1

iter_only† 8549 58 53 0 4 12 1 15

iter_only 6549 18 0 9 3 0 1 2

iter_remove 10,353 24 20 0 4 0 1 4

all_contains 23,900 94 187 40 5 0 2 40

compare_two 44,481 199 544 93 8 0 1 100

Nodes and Branchesmeasure the size of the proof tree, I.step counts the number of interactive steps performed
by the user, Q.inst is the number of quantifier instantiations, Contract is the number of contracts applied, Dep.
is the number of dependency contracts applied, Loop inv. is the number of loop invariants applied, and Time
is the estimated time of completing the proof in the KeY theorem prover

part of the Java Collection Framework. Our technique enables us to use Isabelle/HOL as an
additional back-end for KeY, but also to enrich the specification language. We successfully
applied our approach to define an ADT for histories of Java interfaces and specified core
methods of the main interface of the Java collection framework and verified several client
programs that use it. Our method is tailored to support programming to interfaces, and
powerful enough to deal with binary methods and sub-objects such as iterators. Sub-objects
require a notion of ownership as their behavior depend on the history of other objects, e.g.
the enclosing collection and other iterators over that collection. Moreover, we specified the
method Collection#addAll(Collection) and were able to verify client code that
makes use of that method, which solved a problem left open in our previous paper [21].

Compared to modeling the history as an ordinary Java class (the so-called EHB approach)
[20], the modeling of histories in this paper as an external ADT with functions (the so-called
LHB approach) offers numerous benefits. In the latter we avoid pure methods that rely on
the heap, which give rise to additional proof obligations every time these pure methods are
used in JML specifications. Also we significantly simplified reasoning about properties of
user-defined functions themselves. For example, in our case study, we reduced proofs from
the previous paper (in KeY) about multiset modeled as a pure method from 72min of work,
to a fully automated verification in Isabelle/HOL with multiset modeled as a function.

This work has opened up the possibility of defining many more functions on histories,
thus furthering the ability to model complex object behavior: this we demonstrated by ver-
ifying complex and realistic client code that use collections. Our most complex example, a
binary method, takes more than 100min to verify: it is hard to imagine that it can be done
with the EHB approach. Further, while KeY is tailored for proving properties of concrete
Java programs, Isabelle/HOL has more powerful facilities for general theorem proving. Our
approach allows leveraging Isabelle/HOL to guarantee, for example, meta-properties such
as the consistency of axioms about user-defined ADT functions. Using KeY alone, this was
problematic or even impossible.

Themain contribution of this paper is to provide a technique for integrating ADTs, defined
in the general-purpose theorem prover Isabelle/HOL, in the domain-specific theorem prover
KeY. We describe how data types, functions and lemmas can be imported into KeY from
Isabelle/HOL. From the practical perspective, an automatic tool that imports Isabelle/HOL
theories into KeY based on our work could be implemented, but such work is beyond the
scope of this paper and we leave it as future work.
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In this paper we have seen an application of our technique to the case of history-based
reasoning. Our LHB approach is not only useful for reasoning about the Java collection
framework, it is a generalmethod that can also be applied to other libraries and their interfaces.
We foresee that our technique can be extended to other common data types, such as trees and
graphs, which provides a fruitful direction for future work.

A further next step is to continue work in the history-based specification of interfaces and
its application to the Java Collection Framework. We can develop more advanced client-side
use cases involving addAll but also the methods removeAll and containAll using
our method. Moreover, we want to work on a general history-based refinement theory which
allows to formally verify that a class implements a given interface, and, more specifically,
that inherited methods are correct with respect to refinements of overridden methods.
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